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Abstract 

      Minimum average variance estimation (MAVE) has become an important and 

widely used method, it is powerful dimension reduction method and it is effective 

in dealing with high dimensional data. It was proven to be an efficient to deal with 

the dimensionality problem in conditional mean regression. In this thesis, the 

quantile minimum average variance estimator method (QMAVE) and the sparse 

quantile minimum average variance estimator with lasso penalty (LQMAVE) were 

proposed. In addition, this thesis introduced an inclusive study of QMAVE and 

LQMAVE. Efficient algorithms proposed to solve QMAVE and LQMAVE 

minimization problems. The real data analysis and simulations were used to 

examine the performance of QMAVE and LQMAVE, respectively. From the 

numerical results, it is clear that the QMAVE and LQMAVE are useful methods in 

practice. In Chapter one, review of dimension reduction, quantile  regression and 

variable selection concepts were presented. In Chapter two, minimum average 

variance estimator methods is reviewed, quantile minimum average variance 

estimator (QMAVE) and sparse quantile minimum average variance estimator with 

lasso (LQMAVE) penalty method were proposed. In Chapter three, simulations 

study.  In Chapter four, data analysis were employed to check the performance of 

QMAVE and LQMAVE. In Chapter five, conclusions and future works were 

reported. 
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1.1. Introduction                                                             

    In some applications of multiple regression, the number of the predictors   

became large and therefore the analysis of this data becomes difficult. In order to 

deal with this problem, we need to  shrinkage dimensionality of   with few 

assumptions. When we talk about reducing of dimensions this means that there are 

high dimensions, these dimensions are known as variables or features. The greater 

the number of these variables, the more difficult it will be to deal with them. 

Therefore, we will encounter a problem known as curse of dimensions, which 

occurs when the variables are increasing to the multivariate model, where the 

greater the number of dimensions, the more difficult it is to predict a specific 

quantity. These variables may not be all effective or influential or may be 

interconnected and therefore redundant and this requires reduction. Therefore, the 

process of reducing the dimension is the process of converting high-dimensional 

data to a less space. It plays an important role to address this problem and by 

reducing the number of random variables, in other word, simplifying the 

understanding of data only numerically or visually and thus maintaining the 

integrity of data.  

In addition, there are other benefits to reduce the dimension where it works on data 

compression and reduces the time of calculations and there are some algorithms do 

not work well when the dimensions are so high. Therefore, we should work on 

reducing the dimension and make the algorithms useful.  

Also we need to deal with the problem of links and that by removing the duplicated 

features and thus reduce the number of features in the data set without the need to 

lose a lot of information and maintain or improve the performance of the model. It 
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is an effective way to deal with huge sets of data and in general, the dimension can 

be reduced in two ways: 

 

      1-Variable selections:- A technique that is used extensively in machine 

learning to select partial sets of variables, where we specify subgroups of the 

original set of variables to get the smallest subset that can be used to model the 

problem. The process of selecting the variables helps to give a clearer 

understanding of the variables and data by informing us about the important 

variables and their relationship with each other, in addition to that is reduces the 

cost. In general it is divided into two types of methods, traditional and 

regularization methods.  

Traditional methods include such as stepwise selection Efroymson (1960), AIC 

(Akaike, 1973) and BIC (Schwarz, 1978), and when it is compared with 

regularization methods, one can notice the instability high variance. whereas, the 

regularization methods which are first used (to determine the variable) by Donho 

and Johnston in (1994) such as lasso (least absolute shrinkage and selection 

operator) the Lasso  (Tibshirani, 1996),  adaptive lasso (Zou, 2006),  (SCAD) (Fan 

and Li, 2001) and elastic-net (Zou and Hastie, 2005)  among others. These 

methods are more stable than traditional method because the process of estimation 

and selection of variables is continuously achieved through continuous reduction 

 

      2 - Variable extraction:- is the process that leads to the reduction of dimensions 

when the input of algorithms is very large to be processed easily. we reduce the 

data with high dimensions to the area of less dimensions and there are many new 
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techniques to extract the variables and to reduce the dimensions without losing 

significant number of the information.  

 

      Sufficient dimension reduction SDR (Cook, 1998) was introduced to achieve 

this aim. Many methods were suggested to estimate the SDR space. Some of them 

focusing on finding the central subspace SY/Х. Examples for these methods are 

Graphical regression GR (Cook, 1994) and Sliced inverse regression SIR (Li, 

1991) among others.     

      For regression problems and when the mean function is of interest, Cook and 

Li (2002) introduced the concept of CMS for DR. Many DR methods were 

suggested under this concept, for examples, PHD (Li, 1992) and MAVE (Xia et al., 

2002) among others. MAVE is a powerful dimension reduction method and it is 

effective in dealing with high-dimensional data. The MAVE was shown to be an 

efficient to deal with DR in conditional mean regression.                    
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1.2. Literature Review                                              .                                                                

      Many authors studied sufficient dimension reduction, which 

depend feature selection and feature extraction. Now outlining some 

rummages for this subject.                                                                

       Examples of regularization methods are the Lasso  (Tibshirani, 1996),  

adaptive lasso (Zou, 2006),  (SCAD) (Fan and Li, 2001) and elastic-net (Zou and 

Hastie, 2005)  among others. 

      Under the framework of the SDR, Ni et al. (2005) suggested a penalized SIR.  

Li and Nachtsheim (2006) suggested another version of the sparse SIR. Li (2007) 

proposed Sparse Sliced Inverse Regression. Wang and Yin (2008) proposed the 

sparse MAVE (SMAVE) method. Alkenani and Yu (2013) proposed the SMAVE 

with adaptive lasso, SCAD and MCP penalties. Alkenani and Reisan (2016) 

proposed the sparse sliced inverse quantile regression.                                                                                              

       QR has attracted much significant interest in the literature. For examples, Yu 

et al.  (2003), Koenker (2004), Melly  (2006),   Wang et al.(2007), Li and Zhu 

(2008), Zou and Yuan (2008) , Owen (2008),  Wu and Liu (2009), Yuan and Yin 

(2010), Li et al.  (2010), Alhamzawi and Yu (2012), Alkenani et al.  (2012), and  

Alkenani and Yu (2013) Alkenani  and Dikheel  (2016), Ciuperca (2016),   Ou 

et.,al. (2017). 
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1.3. Aim 

      The first aim in this thesis is QMAVE was proposed. QMAVE combines the 

strength of QR with the effective method MAVE under the sufficient dimension 

reduction framework. The details of QMAVE was reported in chapter 2.  

           

      QMAVE method gives us a good tool to obtain SDR under quantile regression 

settings, however, this method suffers from that each dimension reduction 

component is a L.C of the predictors, which may be difficult to explain the 

resulting estimates.    

       

      The second aim is sparse QMAVE with Lasso penalty (LQMAVE) which is 

proposed in order to solve the problem of that each dimension reduction 

component was produced through QMAVE is a L.C of all the predictors.      

      

       The rest of the thesis is organized as follows: In chapter 2,varaibles selection 

methods, a short review of MAVE was given, QMAVE and LQMAVE were 

proposed, respectively. Numerical experiments in chapter 3. real data was reported 

in chapter 4. The conclusions and possible future work were reported in 5.                                                                     
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2.1. Variable selection(V.S) 

       V.S is necessary for construct the model of multiple regression. It works on 

the improving the prediction of the models, providing model with low cost (Guyon 

and Elisseeff, 2003) . 

 

2.1.1. Traditional V.S 

      V.S techniques, such as stepwise selection Efroymson (1960), AIC (Akaike, 

1973) and BIC (Schwarz, 1978)  are highly time consuming, discrete procedures 

with  high variance and suffer from instability (Brieman,1996).  

 

2.1.1.1. Step wise selection procedure                                       

     This method is a development of the forward selection  method establish its 

basis (Efroymson, 1960) to make it more efficient and the point of distinction 

between the two methods is that all independent variables at the end of each step 

are ascertained by relying on the choice  (Fpartail)and re-evaluated again because 

there are strong relationships between the independent variables that were 

introduced in the previouse steps and so the way stepwise selection is the best way 

to choose the best regression equation (Zahra Hasan AlTameemi et.,al,2014).                                              
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2.1.1.1.1. Forward selection procedure                                       

     This method depends on starting without any independent variable and  the 

independent variables are chosen to be included in the equation one after the other 

depending on the comparison  (Fpartial) for each variable with a value  (Ftabular) . the 

highest value is chosen (Ftabular) for each step and after making sure that value is 

greater than (Fin) the variable in question is entered into the eqution and the steps 

continue to show  the independent variables one after the other untile we get to the 

top (Fpartial) less than (Fin) according to the following formula.                                                                    

                                           

   =
       
       

   

                                                  (1) 

where SSR:-represents the deviations showen                                                

SSE:-represents the unelarified  deviations 

n:- sample size 

 

 

2.1.1.1.2. Backward elimination procedure                         

    This method begins with the adoption of all the independent variables in the 

equation  and then deletes the variables from the equation one after the other 

depending on the  value (Ftabular) ,which is called  (FIN)the steps are described as 

follows:                                                                                                                           
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Steps one:-work to include all independent variables in the regression equation and 

calculate the values (Fpartial)for each variable according to the following formulas:-                                                                                                                        

  

Fi partial= 
   [

  

                               
]

            

     

                                           (2) 

  

 

And chooses the variable that has the lowest value (Fpartial) , and compare with 

(FIN). If it proves that (Fi)<(FIN) the relevant variable is deleted  from the equation 

and the second step is moved to the degree of freedom of the numerator (1) and the 

denominator (n-k-1).                                                                                                                                        

 Step two :- all independent  variables except  those deleted in step (1)  are 

included (Fpartial) for each of the remaining variables of the first step the smallest is 

chosen and compared with (FIN) to the degree of freedom of the numerator (1) and 

the denominator (n-k-2) . if (Fpartial) <(FIN) ,deletes the variable in question and 

moves to step (3) and so the steps  continue  untill the  smallest  value is  obtained 

(FIN)< (Fpartial) the solution stops .                             
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2.1.1.2. Akaike Information Criteria(AIC)  

      Akaike (1973)  developed AIC, which is a measure of the relative quality of 

statistical modeling. Its main objective is to make a distinction between the 

estimated models by relying on its lowest value (Sugiura, 1978), where the model 

with the lowest value is considered the best model and is expressed as follows:     

                                                        

AIC( )=-2Ln(L)+2 ,                                                  (3) 

where  : is the number of parameters.                  

L: is the value of MLE. 

 

2.1.1.3. Bayesian information criteria(BIC) 

     Schwarz (1978) proposed BIC which is one of the traditional V.S  methods. It is 

similar to AIC, but it differs than it by including the sample size where it was taken 

into consideration which makes it better than the Akaiki information criteria 

(Carlos and Sergioc, 2012). The model with lowest value is considered the best and 

it is expressed by the following formula: 

  

BIC( )=-2Ln(L)+  Ln(n),                                      (4) 

 

where n: represents the  number of observations .                                                          
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2.1.2. Regularization methods 

        Regularization techniques can also carry out variable selection. Therefore 

Regularization methods is the technique which is used to solve complexity models 

problem. In Generalization performance is closely related to the complexity  

model.  where the model with high complexity  tends to have low bias and high 

variance. while the model low complexity  tends to have high bias and low 

variance, therefore the Regularization methods are frequently used to control the 

model complexity by penalizing to more  complex models. First use of 

regularization techniques for V.S is made by Donoho and Johnstone (1994). 

Regularization methods can be formed by adding penalty terms to the standard loss 

functions, such as O.L.S loss function  . In regularization methods the V.S is 

implemented through the parameter estimation process (Wang and Yin, 2008).  

Examples of regularization methods are the Lasso  (Tibshirani, 1996),  adaptive 

lasso (Zou, 2006),  (SCAD) (Fan and Li, 2001) and elastic-net (Zou and Hastie, 

2005)  among others. 

 

2.1.2.1. Lasso  

       Lasso was proposed by Tibshirani (1996) for parameters estimation and V.S. It 

is considered a powerful and effective to tackle HD data.  In lasso,  the RSS was 

minimized subject to ∑     
 
     being less than a constant. According to this 

condition, Lasso shrinks some coefficients and sets other to 0. In this method, 

(Tabshirani, 1996) added a penalty function to the least squares loss function as 

follows: 
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                                               (5) 

 

where           
   ∑       

     
     

         ∑     
 
    is the    norm of    

     controls the strength of penalty, the bigger value of   gives the greater 

amount of shrinkage 

                                     

2.1.2.2. Adaptive Lasso                                                          

      Zou (2006) proposed Adaptive Lasso, where Zou criticized Lasso and he  

explained that Lasso estimates are biased because lasso imposes the same 

restriction on all coefficients and this produces estimates will not be consistent. 

Zou (2006) explained that it is possible to impose different weights for different 

coefficients in the penalty function, thus we will reduce the bias and improve the 

accuracy of V.S and as a result, we get unbiased and consistent estimates. Adaptive 

Lasso estimates can be obtained by the following formula:                                                                                

  

         
                                                             (6) 

 

    is the tuning parameter. 

w 
 

 ̂   
 is a known weights vector.  

𝛽 

argmin 

𝑚𝑖𝑛 

𝛽

β 

 

 

  

𝑤𝑘 
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2.1.2.3. Elastic net                                                           

      Zou and Hastie (2005) proposed Elastic net. They studied lasso and they 

pointed a number of limitations of lasso as follow:  

1. In case if p> n the Lasso selects almost n variables.                                                                                 

2. If there is a set of variables strongly related, then Lasso will select only one from 

the group and ignores the rest of the variables.               

They also proved that the Elastic net method has the Oracle properties. Elastic net 

estimates can be obtained by the following formula:                                                                                                                                    

 

         
                     

 ,                             (7) 

      

where           are the tuning parameters   

The elastic net penalty is a combination of the lasso and ridge penalties. 

 

 

 

 

 

 

 

𝑚𝑖𝑛 

𝛽 
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2.2. MAVE 

       Cook (1998) introduces the theory of sufficient dimension reduction to 

minimize the number of predictors and maintain the whole information of 

regression and use small number of hypothesis. Therefore, there are several 

proposed methods to estimate sufficient dimension reduction.                                                   

      Some of these methods focus on finding the central subspace that referred to 

as SY/Х ,and examples include graphical regression(Cook, 1994), sliced average 

variance estimation (SAVE) (Cook and Weisberg,1991) and sliced inverse 

regression (SIR) (Li, 1991).                                                                  

      It is noted that in many cases of regression analysis, the focus is on estimating 

the central mean subspace. Cook and Li (2002) introduced the notion of central 

mean subspace to reduce dimensions when the mean function is interest. There are 

some dimension reduction methods  included in this classify, for examples, 

Principal Hessian direction (PHD) (Li and Cook, 1992) and the most popular 

method to estimate the CMS which is the  MAVE  (Xia et al. 2002). The MAVE 

method is used to a wide range of models, with fewer constraints on the 

distribution of the covariates. The MAVE is especially effective in dealing with 

high-dimensional covariates and it was shown to be an powerful dimension 

reduction  method in high dimensional regression problems  (Zhu et al. 2006). 

MAVE was attracted much significant interest in the literature.     

 

 



 

16 
 

Xia et al. (2002)  proposed MAVE which was employed to estimate the CMS. 

MAVE such that   is the solution of:      

                                    

  { E[ - E( |  B)]2} ,                                        (8) 

where    =  .  

The variance given   B is         

  
B (   )= E[{ -E( |  B)}2|  B].              

 Thus, 

        E[ -E( |  B)]2   =             E{  
B(  B)}.  

                                                     

 For given X0,   
 (  B) can be approximated as follows:                                                                                             

  
  (X0B)  ∑      (  |  

  )     
 
    

    ∑                
      

  
                                                (9) 

 

where   +(   -  )т b0 is the local linear expansion of E(  |  
 B) at   , and wi0 

   are  the kernel weights centered at   
 B with ∑      

 
                                                                 

 

   =  {        
   ∑            

   
   , 

 𝑚𝑖𝑛 

B 

𝑚𝑖𝑛 

B 

𝑚𝑖𝑛 

B
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where           
 

 
 , where      is the Gaussian Kernel as follows   (Brillinger, 

1983).    

                                                                        

     
 

√  
   

                                      (10) 

 

 where   : represents the  Smoothing parameter, Sometimes it  is called the 

bandwidth, which is the parameter represents the size of the distribution or contrast 

window. Smooth parameter greatly affects the similarity of the estimated curve and 

the real curve.  For proper approximation, it is necessary to find the best way to 

balance between the bias and the variance in order to obtain the least possible 

errors. Therefore, the selection of smooth parameter value must be done with high 

accuracy, (Altman, 1990). By increasing the value of this parameter the bias 

increases and the variance value decreases. But when we decrease this parameter 

the opposite occurs. There are many methods for estimating this the bandwidth, 

including the method of cross validation, which is one of the common methods 

used to find the value of the bandwidth where it plays an important role in both 

bias and the shape of the curve.  

                               

The basic idea of the method is that each time one value of the explanatory 

variable is excluded and it can be represented by the following formula:                                                                                                   

                                   

                  ∑      ̂        
  

    (  )                                        
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 ̂   (       ∑          
 
    

 

Can be obtained from solving (12)  

 

(∑ ∑                
      

     
  

   
 
   )             (12)   

  

 

  

2.3. Algorithm of MAVE  

      The algorithm of MAVE was  explained as follows: 

1. Let     and B=  , any arbitrary     vector. 

2. For known B, solve (  ,  ) where          from the minimization below: 

   

(∑ ∑                
      

     
  

   
 
   ) 

   

3. For a given ( ̂   ̂ )          solve    from the constrained quadratic 

minimization below:                                                                                           

(∑ ∑     ( ̂            
  ̂ 

   ̂   ̂     ̂       ) 
  

   
 
      ) 

𝑚𝑖𝑛 

Β: 𝛣𝑇Β  I 

𝑎𝑗 𝑏𝑗 𝑗     𝑛   

𝑚𝑖𝑛 

𝑎𝑗𝑏𝑗 𝑗     𝑛 

𝑚𝑖𝑛 

Β: 𝛣𝑇Β  𝐼 
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4. Now, put  ̂  in the     column of   , and continue step 2 and 3 till 

convergence is attained.                                                                        

5. Update   by ( ̂   ̂     ̂    )  and let    to be      

6. If      go to steps 2 to 5 till                                                                                      

 

Xia et al. (2002) suggested to employ the refined multidimensional Gaussian 

kernel to compute the weights for MAVE as follows:    

            

   =    { ̂
        } ∑ { ̂        }

 
   ⁄  

 

 

2.4.Quantile regression      

       Koenker and Bassett (1978) proposed QR is approach  with great potential and 

is a very fertile in terms of a possible applications and it is analysis differs from 

more the traditional regression models in its focus on the distributions And the QR 

estimates actually includes far more information than can be presented in simple 

tables. QR is a powerful estimation method for regression models which offers a 

robust approach to observe how covariates influence the response distribution in 

different levels. In addition  the QR estimates actually includes far more 

information than can be presented in simple tables. It has become well-known 

technique to describe a distribution of the response variable given the set of 

predictors. Therefore the QR gives a complete analysis of a stochastic relationships 
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between random variables and is much better suited to analyzing questions include 

changes in the distribution of the dependent variable.  

Mean  regression analysis focus on the relationship among the conditional mean of 

the    given   . QR was attracted a lot of theoretical practical interest (see Koenker 

(2005), Yu et al. (2003) for details).  

One of the attractiveness of QR is its ability to give a clear and whole picture of the 

relationship between    and   . It is robust to non–normal errors and outliers (Yu et 

al., 2003). This can be illustrated in the following diagram:-                   

  

 

Figure 1: shows quantile regression levels. (Koenker et al.,2001) 

 

      To explain the importance of QR  let     be a response variable and    a     

vector of predictors for the     observation,         is      of   /     Then,        
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can be modeled as        =  
         is a vector of 𝜌 unknown parameters and 𝜏 is 

the quantile level. 

      Koenker and Bassett (1978) suggest to obtain     as minimizer of the 

following:                                                                                                              

∑ 𝜌 
 
      -  

                                                (13) 

                                                                                                                   

where 𝜌     is the check loss function  

 

𝜌     𝜏              𝜏                                          (14) 

 

                           𝜌  {
𝜏                                                                 

    𝜏                                                                
          

 

where  : represents    -  
    . The check loss function can be illustrated by the 

following diagram: 

𝑚𝑖𝑛 

𝛽𝜏 
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Figure 2: shows the check loss function.(Koenker et al.,2001) 

 

2.5. QMAVE    

       QMAVE combines the strength of QR with the effective method MAVE under 

the sufficient dimension reduction framework, where the QR gives a complete 

analysis of a stochastic relationships between random variables and is much better 

suited to analyzing questions include changes in the distribution of the dependent 

variable and MAVE method it was shown to be an powerful dimension reduction  

method in high dimensional regression problems. Therefore QMAVE method give 

us a good tool to obtain sufficient dimensions reduction under quantile regression 

settings 

  

The QMAVE was proposed as a minimizer of the following formula: 
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(∑ ∑ 𝜌                
          

  
     

 
   )                          (15) 

  

2.6.Algorithm of QMAVE 

      In this chapter, QMAVE method has been proposed. QMAVE gives us a good 

tool to obtain sufficient dimension reduction under quantile settings. QMAVE 

estimates can be obtained according to solve the following algorithm:                                                                                                                                     

1. Let       and B     any arbitrary     vector. 

 

2.For known B, solve (  ,  ) where          from the minimization below: 

(∑ ∑ 𝜌                
   

   
   

 
        )  

 

 

3.For a given( ̂ , ̂ ),          solve     from the following   minimization   

 

(∑ ∑ 𝜌       ̂            
   ̂ 

 ( ̂   ̂     ̂       } 
 
   

 
      ) 

 

4. Now, put  ̂   in the     column of B, and continue step 2 and 3 till 

convergence is attained. 

5. Update B by ( ̂    ̂      ̂     )  and assume   to be      

𝑚𝑖𝑛 𝑎𝑗𝑏𝑗     𝑛 

𝑚𝑖𝑛 

Β ∶ 𝛣𝑇Β  𝐼  

 

𝑚𝑖𝑛 
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6. If      repeat steps 2  to 5 till      

  

The refined Gaussian kernel which was used for MAVE was employed for 

computing the weights in our proposed method. 

 

2.7. LQMAVE 

      MAVE (Xia et al. 2002) suffers  from the fact that each dimension reduction 

component is a linear combination of all the original predictors so that it is difficult 

to interpret the resulting estimates.                                                                                                                         

      QMAVE method give us a good tool to obtain sufficient dimensions 

reduction under quantile regression settings, however, this method suffers from 

that each dimension reduction component is a linear combination of all of the 

predictors, which may not be simple to explain the resulting estimates.   

      In this chapter, Sparse QMAVE with Lasso penalty (LQMAVE) was   

proposed.                                                                

 

 

 

LQMAVE can be solved as a minimizer of (16).      

                

(∑ ∑ 𝜌                
          

  
     

 
   )     ∑     

 
             (16) 
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where   +(   -   
  b0 is the local linear expansion, ∑     

 
    is the    norm of  .                

where     is the tuning parameter. The tuning parameter plays an important role 

in the process of selection of significant variables, where it controls the amount of 

shrinkage or penalty. If the value of the tuning parameter a tend to  zero, the 

estimation of the least - squares that is not penalized will be obtained. A wide 

range of methods have been developed for the estimation of tuning parameter such 

as the Cross - Validation method, which is one of the commonly used methods.   

                           

      
 

 
∑      
 
                                          (17) 

 

where         ∑      ̂     
  

    ,          
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2.8. Algorithm of LQMAVE  

      In this chapter, LQMAVE was proposed to obtain sparse sufficient dimension 

reduction under quantile settings. LQMAVE proposed according  to the following 

algorithm:                                                

 The algorithm of LQMAVE was described as follows:                                                                                                 

1. Let       and  B     any arbitrary     vector. 

2.For known B, solve (  ,  ) where          from the minimization below: 

    

(∑ ∑ 𝜌                
   

   
   

 
        )  

 

 

3.For given( ̂ , ̂ ),          solve      from the constrained  minimization 

below: 

(∑ ∑ 𝜌 
 
   

 
       { ̂  (     ) ̂ 

 ( ̂   ̂     ̂     ̂  
 }]    

               ∑       
 
   )       

 

 

 

 

𝑚𝑖𝑛 

𝑎𝑗𝑏𝑗     𝑛 

  
 

𝐵: 𝐵𝑇𝐵  𝐼     

 

𝑚𝑖𝑛 
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4.Now, put  ̂    in the     column of B, and continue step 2 and 3 till 

convergence is attained.   

5.Update B by ( ̂    ̂      ̂      )  and let   to be        

6. If      repeat steps 2  to 5 till      
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Chapter three 
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 A simulation study 

      A- The effectiveness of QMAVE was examined through numerical examples. 

QMAVE were compared with  SIQR and QR for  𝜏                      ). The 

mean and SD of the absolute correlation (| |) between  ̂   and the true index     

and the MMSE for  ̂   were reported for the sake of comparison.                         . 

                                                                    .                                

      Example 1:      datasets with size       from          were 

generated. The parameters vector is                                         

and   were generated from standard normal. In this example, we assumed     

and    .                                                  .                                                                  

       Example 2: the same example was used as the first example, but the size of the 

sample was resized n=100 

 Example 3: We generated     datasets with       from:   

   in {
      

   
}      

where                  ,                      √  ,   
√ 

 
 

     

√  
 , 

  
√ 

 
 

     

√  
 ,      Unif (0,1) and                is estimated with 

𝜏             an      ).       
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 Example 4: : the same example was used as the third example, but the size of the 

sample was resized n=100 

   B- According to V.S, the efficiency of LQMAVE was checked via numerical 

examples. The LQMAVE was compared with LSIQR and LQR for 

𝜏                     ). The Ave   s , the mean and SD of     between  ̂   

and     and MMSE for  ̂   were reported.                                         .            .       

                                                                                                    

      Example 5:We generated      datasets with       from            

where  as follows:                        

Model 1:                                               

Model 2:                                               

Model 3:                                               

 

The three models true unknown parameters vector,       and X            

were from     ∑) and the       element of ∑ is          . The     N(0,1). We 

assumed     and    .                                   .                                      .                  
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Table 1. The comparison of QMAVE, SIQR and QR was depended on example 1                    

                                                  .                                       

 QMAVE SIQR QR 

𝜏        

    Mean|r| 0.9687 0.9654 0.9621 

SD|r| 0.0004 0.0006 0.0007 

MMSE 0.0011 0.0019 0.0023 

    Mean|r| 0.9665 0.9633 0.9610 

SD|r| 0.0005 0.0007 0.0008 

MMSE 0.0017 0.0025 0.0030 

𝜏        

    Mean|r| 0.9699 0.9677 0.9644 

SD|r| 0.0002 0.0004 0.0006 

MMSE 0.0007 0.0013 0.0017 

    Mean|r| 0.9674 0.9654 0.9620 

SD|r| 0.0003 0.0005 0.0007 

MMSE 0.0009 0.0019 0.0022 

𝜏        

    

 
 
 

Mean|r| 0.9690 0.9662 0.9632 

SD|r| 0.0003 0.0005 0.0007 

MMSE 0.0009 0.0016 0.0020 

 

    
 

Mean|r| 0.9711 0.9642 0.9617 

SD|r| 0.0004 0.0006 0.0008 

MMSE 0.0012 0.0022 0.0025 
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Table 2. The comparison of QMAVE, SIQR and QR was depended on example 2                    

                                                   

 QMAVE SIQR QR 

𝜏        

    Mean|r| 
0.9481 0.9466 0.9432 

SD|r| 
0.0006 0.0009 0.0010 

MMSE 
0.0015 0.0023 0.0030 

    Mean|r| 
0.9332 0.9327 0.9311 

SD|r| 
0.0007 0.0010 0.0010 

MMSE 
0.0026 0.0039 0.0047 

𝜏        

    Mean|r| 
0.9544 0.9519 0.9501 

SD|r| 
0.0004 0.0007 0.0008 

MMSE 
0.0011 0.0018 0.0023 

    Mean|r| 
0.9522 0.9507 0.9489 

SD|r| 
0.0005 0.0008 0.0009 

MMSE 
0.0021 0.0029 0.0033 

𝜏        

    

 
 
 

Mean|r| 
0.9690 0.9662 0.9632 

SD|r| 
0.0005 0.0008 0.0009 

MMSE 
0.0014 0.0024 0.0027 

 
    

 

Mean|r| 
0.9711 0.9642 0.9617 

SD|r| 
0.0006 0.0009 0.00010 

MMSE 
0.0023 0.0034 0.0040 
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Table 3. The comparison of QMAVE, SIQR and NQR was depended on example 3.                     

  

 QMAVE SIQR NQR 

 

 

 

𝜏       

 

Mean|r| 0.8887 0.8854 0.8721 

SD|r| 0.0977 0.0998 0.1137 

MMSE 0.0071 0.0079 0.0093 

 

 

 

𝜏       

 

Mean|r| 0.9139 0.9077 0.8954 

SD|r| 0.0951 0.0972 0.1100 

MMSE 0.0062 0.0069 0.0080 

 

 

 

𝜏       

 

 
 
 

 

Mean|r|   0.9101 0.9060 0.8807 

SD|r| 0.0966 0.0989 0.1120 

MMSE 0.0067 0.0073 0.0087 
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Table 4. The comparison of QMAVE, SIQR and NQR was depended on example 4 

 QMAVE SIQR NQR 

 

 

 

𝜏       

 

Mean|r| 
0.8386 0.8366 0.8320 

SD|r| 
0.1105 0.1221 0.1240 

MMSE 
0.0121 0.0136 0.0142 

 

 

 

𝜏       

 

Mean|r| 
0.8668 0.8406 0.8398 

SD|r| 
0.1001 0.1122 0.1199 

MMSE 
0.0098 0.0120 0.0131 

 

 

 

𝜏       

 

 
 
 

 

Mean|r| 
0.8445 0.8381 0.8334 

SD|r| 
0.0988 0.1197 0.1222 

MMSE 
0.0101 0.0120 0.0140 

 

                                                                             .             
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Table 5. The comparison of LQMAVE, LSIQR and LQR was depended on example 5 model 1.  

 

 LQMAVE LSIQR LQR 

𝜏        

 

    

Ave  s 10.5900 10.5800 2.6636 

Mean|r| 0.9910 0.9899 0.9760 

SD|r| 0.0023 0.0027 0.0078 

MMSE 0.0017 0.0021 0.0032 

 

    

Ave  s 9.9500 9.1000 9.5433 

Mean|r| 0.9667 0.9522 0.8644 

SD|r| 0.0177 0.0189 0.0250 

MMSE 0.0023 0.0028 0.0224 

𝜏        

 

    

Ave  s 10.600 10.500 3.9800 

Mean|r| 0.9935 0.9900 0.9780 

SD|r| 0.0024 0.0028 0.0044 

MMSE 0.0006 0.0007 0.0013 

 

    

Ave  s 9.9900 9.9800 8.8500 

Mean|r| 0.9708 0.9588 0.8990 

SD|r| 0.01911 0.0200 0.0233 

MMSE 0.0008 0.0009 0.0016 

𝜏        

 

    

Ave  s 10.5800 10.5300 2.8400 

Mean|r| 0.9922 0.9900 0.9788 

SD|r| 0.0021 0.0024 0.0073 

MMSE 0.0015 0.0017 0.0029 

    Ave  s       9.9700 9.5500 9.5000 

Mean|r| 0.9699 0.9673 0.8654 

SD|r| 0.0179 0.0169 0.0241 

MMSE 0.0021 0.0024 0.0210 
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Table 6. The comparison of LQMAVE, LSIQR and LQR was depended on example 5 model 2.   

                                                         

 LQMAVE LSIQR LQR 

𝜏        

 

    

Ave  s 10.200 9.5500 3.1000 

Mean|r| 0.9915 0.9833 0.9785 

SD|r| 0.0018 0.0022 0.0053 

MMSE 0.0014 0.0017 0.0047 

 

    

Ave  s 11.000 11.600 7.7998 

Mean|r| 9.6600 0.9577 0.8900 

SD|r| 0.0144 0.0175 0.0449 

MMSE 0.0098 0.0111 0.0390 

𝜏        

 

    

Ave  s 11.100 10.900 4.1000 

Mean|r| 0.9955 0.9898 0.9888 

SD|r| 0.0011 0.0017 0.0033 

MMSE 0.0001 0.0005 0.0020 

 

    

Ave  s 9.9000 9.6000 7.7500 

Mean|r| 0.9700 0.9666 0.0942 

SD|r| 0.0092 0.0101 0.0170 

MMSE 0.0007 0.0009 0.0018 

𝜏        

 

    

Ave  s 10.700 9.6000 3.3550 

Mean|r| 0.9945 0.9840 0.9844 

SD|r| 0.0014 0.0021 0.0043 

MMSE 0.0009 0.0013 0.0029 

    Ave  s 10.500 10.400 8.7889 

Mean|r| 0.9666 0.9611 0.9225 

SD|r| 0.0133 0.0141 0.0361 

MMSE 0.0028 0.0039 0.0067 
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Table 7. The comparison of LQMAVE, LSIQR and LQR was depended on example 5 model 3./  

 LQMAVE LSIQR LQR 

𝜏        

 

    

Ave  s 10.410 10.400 3.3000 

Mean|r| 0.9889 0.9866 0.9799 

SD|r| 0.0029 0.0038 0.0052 

MMSE 0.0009 0.0013 0.0038 

 

    

Ave  s 10.000 9.9000 8.6500 

Mean|r| 0.9410 0.9390 0.8712 

SD|r| 0.0245 0.0270 0.0511 

MMSE 0.0023 0.0026 0.0166 

𝜏        

 

    

Ave  s 10.9900 10.9500 2.9000 

Mean|r| 0.9975 0.9911 0.9834 

SD|r| 0.0012 0.0018 0.0033 

MMSE 0.0001 0.0003 0.0025 

 

    

Ave  s 10.500 10.400 8.7800 

Mean|r| 0.9660 0.9535 0.9005 

SD|r| 0.0173 0.0180 0.0280 

MMSE 0.0006 0.0006 0.0023 

𝜏        

 

    

Ave  s 10.6000 9.8800 3.1500 

Mean|r| 0.9900 0.9924 0.9811 

SD|r| 0.0017 0.0020 0.0034 

MMSE 0.0006 0.0008 0.0025 

     Ave  s 9.4800 9.4600 8.7700 

Mean|r| 0.9355 0.9420 0.8999 

SD|r| 0.0195 0.0210 0.0301 

MMSE 0.0017 0.0022 0.0023 
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      Depending on the mean and SD of     between  ̂ 
   and   

    and MMSE of 

 ̂   with different quantile levels and different values for   .                                    

         

       From Tables 1,2, contains information about results for the QMAVE, SIQR 

and QR based on the linear model,  it can be seen that QMAVE has a better 

performance than the SIQR and QR..                                              From Tables 1 

and 2, contains information about results for the Q 

       From Tables 3,4, contains information about results for the QMAVE, SIQR 

and QR based on the nonlinear models,  it can be seen that QMAVE has a better 

performance than the SIQR and QR.. R based on the linear and nonlinear models,  

it                                                                            .                                                      

      From Tables 5-7, contains information about results for the LQMAVE, LSIQR 

and LQR based on the linear models, it is obvious that LQMAVE gives values of 

MMSE and SD less than that for LSIQR and LQR. Also the results show that the 

MMSE for the LQMAVE, LSIQR and LQR increase when    increase for all 

quantiles values.                                                                                                                             
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Chapter four 
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Real data 

      To check the performance of QMAVE and LQMAVE, we employed the 

Newborn Jaundice (NJ) data. The data was collected by the authors from the 

women's and children hospital in Al-Diwaniya to achieve this aim.                      

              

- Newborn Jaundice (NJ) data 

      In this chapter, the considered methods were applied on NJ data. Newborn 

Jaundice is one of the most popular diseases seen in new babies. It often develops 

in the second or third day of life and reaches its peak around the fourth day. but 

jaundice can occur within the first 24 hours after birth, but this is rare. Many babies 

become jaundiced because new born babies have a bigger number of red blood 

cells, which are also breaking down more quickly, therefore more bilirubin is 

released into the blood.  Jaundice disappears by the time your baby is 10 days old , 

however a small number of babies do need some treatment depending on how 

much bilirubin there is in the blood.                                                                       

NJ data contains       observations. The dataset was collected from the 

Women's and children’s hospital in AL Diwaniya. The response Y is TSB mg/dl 

(JAUNDICE). The eight predictors are the baby's age (number of days) (X1), baby 

weight kg (X2), PCV to baby g/dl Hematocrit or (Packed Cell Volume) (X3), Hb 

to baby g/dl (Hemoglobin)(X4), PCV to mother g/dl Hematocrit or (Packed Cell 

Volume) (X5), Hb to mother g/dl (Hemoglobin) (X6), RBS to baby mg/dl (blood's 

sugar) (X7), number of brothers infected(X8).                                                             
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 Now  we compered proposed methods with others by used of the adjusted   , 

where it gives the percentage of variation explained by only  those independent 

variables than in reality affect the dependent variable, also it can be interpreted as 

an unbiased and it is more appropriate through the formula:                         .            

                                                 

                            adjusted    =  
      ⁄

      ⁄
 ,    

 

           ,    =n-1  

 

      later we compered between this methods by used prediction error through the 

formula:                                                                                                                        

prediction error=      ̂                                                   .                     .                     

                                    

 

 

 

 

 

 

 



 

42 
 

                    4.1. Non sparse methods 

Table 8: The adjusted R-square values for the model fit for NJ data with 

𝜏                     .       .                                                                                               

                                

  

 

Model fit 

𝜏       𝜏        𝜏       

SIQR      QMAVE QR SIQR QMAVE QR SIQR QMAVE QR 

Linear 0.798 0.817 0.729 0.822 0.851 0.745 0.801 0.821 0.733 

Quadratic 0.828 0.879 0.807 0.843 0.895 0.813 0.834 0.885 0.811 

Cubic 0.856 0.879 0.837 0.871 0.895 0.850 0.862 0.885 0.841 

Quartic 0.856 0.879 0.837 0.871 0.895 0.850 0.862 0.885 0.841 

 

Table 9: The prediction error (PE) of the cubic fit for SIQR, QMAVE and QR for NJ data  with 

𝜏                    .                                             .                                                                                  

                                                                

 

Methods 

Prediction error 

𝜏       𝜏  0.50 𝜏  0.75 

SIQR 0.827 0.792 0.823 

QMAVE 0.814 0.787 0.811 

QR 0.961 0.848 0.955 
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Figure 3: Plot and explanation of the estimated PE for the studied methods based 

on NJ.                                                                      .                                                                        

  

      Table 8 reports the values of adjusted R-squared with 𝜏             and 0.75 

for the four model fit based on the NJ data for all the studied methods. It can be 

seen that the adjusted R-squared for QMAVE is bigger than  the adjusted R-

squared for SIQR method and the adjusted R-squared for SIQR is bigger than its 

value for QR method. This means that QMAVE method is the best among the 

other for all quantile levels.                                                                                      

 .                                                                                                                      ..           

      Table 9 presents the prediction error for all the considered methods which are 

studied based on the NJ data with different quantile levels. It is clear that the 

QMAVE method has a lower prediction error than the SIQR and the QR methods. 

This means that the QMAVE method show a better performance than SIQR and 

QR under different quantile levels.                                                                              

     .                                                                                                   
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       Figure3 explains that the estimated prediction error with 𝜏            and 

0.75, for the QMAVE is less than the estimated prediction error for SIQR and QR, 

where the three different lines in panel represent the P.E for the three methods in 

different quantile 𝜏            and 0.75. The blue line represents the PE at 

𝜏       , the red line is the P.E at 𝜏       and the green line is the P.E at 

𝜏      .                              .                                                                               .      

 

4.2. Sparse methods  

 Table 10: The adjusted R-Square values  for the model fit for NJ data with 𝜏  

                  .                                                .                              

 

Model 

fit 

 

𝜏       𝜏       𝜏         

LSIQR LQMAVE LQR LSIQR LQMAVE LQR LSIQR LQMAVE LQR 

Linear 0.744 0.884 0.741 0.787 0.895 0.777 0.752 0.886 0.744 

Quadratic 0.873 0.902 0.850 0.884 0.918 0.871 0.879 0.907 0.861 

Cubic 0.885 0.902 0.849 0.897 0.918 0.866 0.888 0.907 0.854 

Quartic 0.885 0.902 0.849 0.897 0.918 0.866 0.888 0.907 0.854 
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Table 11: The P.E of the cubic fit for LSIQR, LQMAVE and LQR for BJ data  with 𝜏  

                  .         .                                                                                                                                     

           

Methods 

 

Prediction error 

𝜏       𝜏       𝜏       

LSIQR 0.785 0.762 0.780 

LQMAVE 0.761 0.738 0.757 

LQR 0.817 0.791 0.808 

 

 

 

 

 

Figure 4: Plot and explanation of the estimated P.E for the studied methods based 

on NJ.                                                .                                                                                              
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      Table 10 reports the values of adjusted R-squared with 𝜏            and 0.75 

for the model fit based on the NJ data for all the studied methods. It can be seen 

that the adjusted R-squared for LQMAVE is bigger than the adjusted R-squared for 

LSIQR and LQR. This means that LQMAVE method is the best among the other 

methods under different levels of quantile.                                .                                

                                                                                    

      Table 11 presents the prediction error with  𝜏              and 0.75 of the 

methods which are studied based on the NJ data. The results in the table show that 

LQMAVE method has a lower prediction error than the LSIQR and the LQR 

methods. This means that the LQMAVE method has a better performance than 

LSIQR and LQR for all the quantile levels.                                                                 

                                                    

       From Figure 4, it is obvious that the values of  estimated P.E with 𝜏  

          and 0.75, for the LQMAVE are less than its values for  LSIQR and 

LQR, where the three different lines in panel represent the prediction errors for the 

three methods in different quantile 𝜏                and 0.75. The blue line 

represents the PE at 𝜏       , the red line represents the PE at 𝜏       and the 

green line represents the PE at 𝜏      .                                    .                               
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Chapter five 
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5.1. Conclusions 

      In this thesis, QMAVE and LQMAVE were proposed. The QMAVE and 

LQMAVE were compared with SIQR, QR, LSIQR and LQR. In order to check the 

behavior of the QMAVE and LQMAVE, simulations were employed. Based on the 

simulation studies and NJ data, it is clear that the QMAVE and LQMAVE have 

better behavior in comparison to SIQR, QR, LSIQR and LQR and thus the 

QMAVE and LQMAVE are useful practically..                                           .             

                                                    

  

5.2. Possible Future work       

      Future direction or extension of the current work is sparse quantile MAVE with 

group variable selection penalties, sparse quantile MAVE with adaptive lasso and 

sparse quantile MAVE with elastic net.                                    .                                 
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