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Abstract                             

      In this paper, the quantile minimum average variance estimator 

method (QMAVE) and the sparse quantile minimum average variance 

estimator with lasso penalty (LQMAVE) were proposed. In addition, 

this paper introduced an inclusive study of QMAVE and LQMAVE. 

Efficient algorithms proposed to solve QMAVE and LQMAVE 

minimization problems. The real data analysis and simulations were 

used to examine the performance of QMAVE and LQMAVE, 

respectively. From the numerical results, it is clear that the QMAVE 

and LQMAVE are useful methods in practice. Where its achieved the 

best and finest results of other methods.           .                                  

                         

Keywords:Dimension regression, Quantile regression, MAVE, Quantile 

MAVE, Lasso.                                                                                        

1.Introduction                                                                      

      In some applications of multiple regression, the number of the 

predictors   in the data matrix   became large and therefore the 

analysis of this data becomes difficult. In order to cope with this 

problem, we need to reduce the dimension of   while preserving full 

regression information and imposing few assumptions. Sufficient 

dimension reduction (SDR) theory (Cook, 1998) was developed to 

achieve this aim. Many methods were suggested to estimate the SDR 

space. Some of them focuses on finding the central subspace SY/Х. 

Examples for these methods are graphical regression (Cook, 1994) and 

sliced inverse regression (SIR) (Li, 1991) among others.                        

                                               

       For regression problems and when the mean function is of 

interest, Cook and Li (2002) introduced the concept of the Central 

Mean Subspace (CMS) for reducing the dimension. Many dimension 

reduction methods were suggested under this concept, for examples, 

Principal Hessian Direction (PHD) (Li, 1992) and the minimum average 

variance estimation (MAVE) (Xia et al., 2002) among others. MAVE is 

powerful dimension reduction method and it is effective in dealing 

with high-dimensional data. The MAVE was proven to be an efficient 

method to deal with the dimensionality problem in conditional mean 

regression.                    

  Quantile regression (QR) is a good tool to explain the relationship of 

the outcome variable   and the predictors  . It gives a whole picture of 
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the relationships among variables. It used in many areas.  For 

examples, economics, microarrays and other fields. It is robust to 

non–normal errors and outliers (Yu et al., 2003).                            .     

                                 .                                                           

      Let      be a response variable and    a     vector of predictors 

for the     observation,    (  ) is the inverse cumulative distribution 

function (    ) of   /    Then,   (  ) can be modeled as   (  ) 

=  
         is a vector of 𝜌 unknown parameters and 𝜏 is the quantile 

level. Koenker and Bassett (1978) suggest to obtain     as minimizes of 

the following:                                     .                                                 

  

∑ 𝜌 
 
   (  -  

   )                                        (1)   

                                                                                                           

where 𝜌 ( ) is the check loss function  

𝜌 ( )  𝜏  ,   )( )  (  𝜏)  (    )( )                                    (2) 

 

      The first contribution in this paper is quantile regression MAVE 

(QMAVE) has proposed. QMAVE combines the strength of QR with the 

effective method MAVE under the sufficient dimension reduction 

framework. The details of QMAVE have reported in Section 3. Later we 

will also compare the proposed method (QMAVE) with the two 

methods quantile regression (QR) and sliced inverse quantile 

regression(SIQR).            .                                                                    

                          

      QMAVE method gives us a good tool to obtain sufficient 

dimensions reduction under quantile regression settings, however, 

this method suffers from that each dimension reduction component is 

a linear combination (L.C) of the predictors, which may be difficult to 

explain the resulting estimates.                      .                                     

                                                                                                            

      Variable selection(V.S) is necessary for construct the model of  

multiple regression. It works on the improving the prediction of the 

models, providing model with low cost (Guyon and Elisseeff, 2003). 

V.S methods such as stepwise selection (Efroymson, 1960), Akaike 

information criteria (AIC) (Akaike, 1973) and Bayesian information 

criteria (BIC) (Schwarz, 1978) may suffer from instability, 

(Brieman,1996). In order to deal with the instability, regularization 

techniques can also implement V.S. Regularization methods can be 

𝑚𝑖𝑛 

𝛽𝜏 
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formed by adding penalty to the loss functions. In regularization 

methods, the V.S is implemented through the parameter estimation 

process. Examples of regularization methods are the Least absolute 

shrinkage and selection operator (Lasso) (Tibshirani, 1996), the 

adaptive lasso (Zou, 2006) and Smoothly clipped absolute deviation 

(SCAD) (Fan and Li, 2001), among others.                        .                   

                                                        

      Under the framework of the SDR, Ni et al. (2005) proposed a 

penalized SIR.  Li and Nachtsheim (2006) suggested another version of 

the sparse SIR. Wang and Yin (2008) proposed the sparse MAVE 

(SMAVE) method. Alkenani and Yu (2013) proposed the SMAVE with 

adaptive lasso, SCAD and MCP penalties. Alkenani and Reisan (2016) 

proposed the sparse sliced inverse quantile regression.                 .   

      The second contribution is sparse QMAVE with Lasso penalty 

which is proposed in order to solve the problem of that each 

dimension reduction component was produced through QMAVE is a 

L.C of all the predictors. Later we will also compare the proposed 

method (LQMAVE) with the two methods sparse quantile regression 

(LQR) and sparse sliced inverse quantile regression(LSIQR).              .  

                                         .                                                           

     The rest of the paper is organized as follows: In Section 2, a short 

review of MAVE is given. QMAVE and Sparse QMAVE (LQMAVE) are 

proposed in Section3 and 4, respectively. Numerical experiments and 

real data were reported in Sections 5 and 6 respectively. The 

conclusions were reported in sections7.                                            .  

      

2. Short Review of MAVE                                  :              

     Xia et al., (2002)  proposed MAVE which was employed to estimate 

the CMS. MAVE such that   is the solution of:                       .             

                       .                                                                                    

                              

{    E[ - E( |  B)]2} ,                 

                                                                                                            

   where    =  .  

  The variance given   B is        

  
B (   )= E[{ -E( |  B)}2|  B].         

      

 𝑚𝑖𝑛 

B 
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 Thu 

        E[ -E( |  B)]2 =             E{  
B(  B)}.                                            

          

 For given X0,   
 (  B) can be approximated as follows:                         

                                                                    

  
  (X0B)  ∑ *    (  |  

  )+    
 
    

    ∑ ,   *   (     )
    +-

  
       ,where   +(   -  )

т b0 is the local 

linear expansion of E(  |  
 B) at   , and ωi0    are  the kernel weights 

centered at   
 B with ∑      

 
                                                                 

   can be obtained from solving (3):                                                       

(∑ ∑ ,   *   (     )
    +-

     
  

   
 
   )         (3) .  

   

 

The algorithm of MAVE was  explained as follows: 

1. Let     and B=  , any arbitrary     vector. 

2. For known B, solve (  ,  ) where          from the minimization 

below:                                                                                                   

 

(∑ ∑ ,   *   (     )
    +-

     
  

   
 
   )          

  

3. For a given ( ̂   ̂ )          solve    from the constrained 

quadratic minimization below:                           .                                 

                                

  (∑ ∑ ,   ( ̂     (     )
  ̂ 

 ( ̂   ̂     ̂      ))-
  

   
 
      )  

 

4. Now, put  ̂  in the     column of   , and continue step 2 and 3 till 

convergence is attained.                                                                        

5. Update   by ( ̂   ̂     ̂    )  and let   to be      

𝑚𝑖𝑛 

B 

𝑚𝑖𝑛 

B

 

𝑚𝑖𝑛 

𝑎𝑗𝑏𝑗 𝑗     𝑛 

𝑚𝑖𝑛 Β: 𝛣𝑇Β  I 

𝑚𝑖𝑛 

Β: 𝛣𝑇Β  𝐼 

 

𝑎𝑗 𝑏𝑗 𝑗     𝑛   

𝑚𝑖𝑛 
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6. If      go to steps 2 to 5 till                                            .         

                                 

Xia et. al. (2002) suggested to employ the refined multidimensional 

Gaussian kernel to compute the weights for MAVE as follows:               

   =    { ̂
 (     )} ∑ { ̂ (     )}

 
   ⁄ 

 

3. Quantile MAVE (QMAVE) 

      In this section, we are propose QMAVE method. QMAVE gives us a 

good tool to obtain sufficient dimension reduction under quantile 

settings. QMAVE estimates can be obtained according to solve the 

following algorithm:                                         .                                    

                                                        

1. Let     and B     any arbitrary     vector. 

2.For known B, solve (  ,  ) where          from the minimization 

below:  

(∑ ∑ 𝜌 ,   *   (     )
   

   
   

 
   +-   )                 

  

3. For a given( ̂ , ̂ ),          solve     from the following 

minimization: 

  

(∑ ∑ 𝜌 ,   * ̂     (     )
   ̂ 

 ( ̂   ̂     ̂      )}-
 
   

 
      ) 

 

 4. Now, put  ̂   in the     column of B, and continue step 2 

and 3 till convergence is attained. 

5. Update B by ( ̂    ̂      ̂     )  and assume   to be      

6. If      repeat steps 2  to 5 till      

The refined Gaussian kernel which was used for MAVE was employed 

for computing the weights in our proposed method.  

 

 

𝑚𝑖𝑛 

𝑎𝑗𝑏𝑗     𝑛 

𝑚𝑖𝑛 

Β ∶ 𝛣𝑇Β  𝐼  
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4.Sparse QMAVE with Lasso (LQMAVE) 

      In this section, we are propose LQMAVE to obtain sparse 

sufficient dimension reduction under quantile settings. LQMAVE 

proposed according to the following algorithm:                                   . 

               

 The algorithm of LQMAVE was described as follows:              .            

                                                                       

1. Let     and B     any arbitrary     vector. 

2.For known B, solve (  ,  ) where          from the minimization 

below:  

 

(∑ ∑ 𝜌 ,   *   (     )
   

   
   

 
   +-   ) 

 

3.For given( ̂ , ̂ ),          solve      from the constrained  

minimization below:                                                    

(∑ ∑ 𝜌 
 
   

 
   ,   { ̂  (     ) ̂ 

 ( ̂   ̂     ̂     ̂ )
 }]    

               ∑       
 
   ) 

4.Now, put  ̂    in the       column of B, and continue step 2 and 3 

till convergence is attained.   

5.Update B by ( ̂    ̂      ̂      )  and let   to be        

6. If      repeat steps 2  to 5 till      

5. A simulation study          

       A- The effectiveness of QMAVE was examined through a 

numerical examples. QMAVE were compared with  SIQR and QR for  

𝜏  (                   ). The mean and standard deviation (SD) of the 

absolute correlation (| |) between  ̂   and the true index     and the 

median of mean squared errors (MMSE) for  ̂   were reported for the 

sake of comparison.                                         .                                    

      Example 1:     datasets (samples) with size       from   

       were generated. The parameters vector 

  (                   )     (        ) and   were generated from 

𝑚𝑖𝑛 

𝑎𝑗𝑏𝑗     𝑛 

 
 

 

𝐵: 𝐵𝑇𝐵  𝐼   

 

𝑚𝑖𝑛 
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standard normal. In this example, we assumed     and    .           

                                         .                                                             

    Example 2:we generated     data sets (samples) with size       

from:          

     {
 (   )

   
}      

where         (       ),   (               )  √  ,   
√ 

 
 

     

√  
 , 

  
√ 

 
 

     

√  
 ,      Unif(0,1) and     (   )   is estimated with 𝜏  

(                  ).                                    

        B- According to V.S, the efficiency of LQMAVE was checked via a 

numerical examples. The LQMAVE was compared with LSIQR and 

LQR for 𝜏  (                  ). The average number of zero 

coefficients (Ave   s ), the mean and SD of     between  ̂   and     

and MMSE for  ̂   were reported.                          ..                            

                                                                               

      Example 3:we generated      data sets (samples) with       

from            where   as follows:           

Model 1:   (                                       )   

Model 2:   (                                       )   

Model 3:   (                                       )   

The three models true unknown parameters vector,       and 

X (        ) were from  (  ∑) and the (   ) element of ∑ is          . 

The    N(0,1). We assumed     and    .                                        . 
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Table 1. The comparison of QMAVE, SIQR and QR was depended on  

example 1                                                           .                                       

 𝜏       𝜏=0.50 𝜏=0.75 

 
    

 

 QMAVE SIQR QR QMAVE SIQR QR QMAVE SIQR QR 

Mean|r| 
0.9687 0.9654 0.9621 0.9699 0.9677 0.9644 0.9690 0.9662 0.9632 

SD|r| 
0.0004 0.0006 0.0007 0.0002 0.0004 0.0006 0.0003 0.0005 0.0007 

MMSE 
0.0011 0.0019 0.0023 0.0007 0.0013 0.0017 0.0009 0.0016 0.0020 

 
    

 

Mean|r| 
0.9665 0.9633 0.9610 0.9674 0.9654 0.9620 0.9711 0.9642 0.9617 

SD|r| 
0.0005 0.0007 0.0008 0.0003 0.0005 0.0007 0.0004 0.0006 0.0008 

MMSE 
0.0017 0.0025 0.0030 0.0009 0.0019 0.0022 0.0012 0.0022 0.0025 

 

 

 

 

Table 2. The comparison of QMAVE, SIQR and NQR was depended on 

example 2.                                                                            .                

  

𝜏       𝜏=0.50 𝜏=0.75 

 QMAVE SIQR NQR QMAVE SIQR NQR QMAVE SIQR NQR 

Mean|r| 

0.8887 0.8854 0.8721 0.9139 0.9077 0.8954 0.9101 0.9060 0.8807 

SD|r| 

0.0977 0.0998 0.1137 0.0951 0.0972 0.1100 0.0966 0.0989 0.1120 

MMSE 

0.0071 0.0079 0.0093 0.0062 0.0069 0.0080 0.0067 0.0073 0.0087 
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Table 3. The comparison the LQMAVE, LSIQR and LQR was depended on 

example 3 model 1.                                             .                                          

                                                          

 LQMAVE LSIQR LQR 

𝜏        

 
    

Ave  s 
10.5900 10.5800 2.6636 

Mean|r| 0.9910 0.9899 0.9760 

SD|r| 0.0023 0.0027 0.0078 

MMSE 0.0017 0.0021 0.0032 

 

    
Ave  s 

9.9500 9.1000 9.5433 

Mean|r| 0.9667 0.9522 0.8644 

SD|r| 0.0177 0.0189 0.0250 

MMSE 0.0023 0.0028 0.0224 

𝜏        

 
    

Ave  s 
10.600 10.500 3.9800 

Mean|r| 0.9935 0.9900 0.9780 

SD|r| 0.0024 0.0028 0.0044 

MMSE 0.0006 0.0007 0.0013 

 
    

Ave  s 
9.9900 9.9800 8.8500 

Mean|r| 0.9708 0.9588 0.8990 

SD|r| 0.01911 0.0200 0.0233 

MMSE 0.0008 0.0009 0.0016 

𝜏        

 
    

Ave  s 
10.5800 10.5300 2.8400 

Mean|r| 0.9922 0.9900 0.9788 

SD|r| 0.0021 0.0024 0.0073 

MMSE 0.0015 0.0017 0.0029 

    Ave  s       
9.9700 9.5500 9.5000 

Mean|r| 0.9699 0.9673 0.8654 

SD|r| 0.0179 0.0169 0.0241 

MMSE 0.0021 0.0024 0.0210 
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Table 4. The comparison of LQMAVE, LSIQR and LQR was depended on 

example 3 model 2.                                                                             .          

                                                                               

 LQMAVE LSIQR LQR 

𝜏        

 
    

Ave  s 
10.200 9.5500 3.1000 

Mean|r| 0.9915 0.9833 0.9785 

SD|r| 0.0018 0.0022 0.0053 

MMSE 0.0014 0.0017 0.0047 

 
    

Ave  s 
11.000 11.600 7.7998 

Mean|r| 9.6600 0.9577 0.8900 

SD|r| 0.0144 0.0175 0.0449 

MMSE 0.0098 0.0111 0.0390 

𝜏        

 
    

Ave  s 
11.100 10.900 4.1000 

Mean|r| 0.9955 0.9898 0.9888 

SD|r| 0.0011 0.0017 0.0033 

MMSE 0.0001 0.0005 0.0020 

 
    

Ave  s 
9.9000 9.6000 7.7500 

Mean|r| 0.9700 0.9666 0.0942 

SD|r| 0.0092 0.0101 0.0170 

MMSE 0.0007 0.0009 0.0018 

𝜏        

 
    

Ave  s 
10.700 9.6000 3.3550 

Mean|r| 0.9945 0.9840 0.9844 

SD|r| 0.0014 0.0021 0.0043 

MMSE 0.0009 0.0013 0.0029 

    Ave  s 
10.500 10.400 8.7889 

Mean|r| 0.9666 0.9611 0.9225 

SD|r| 0.0133 0.0141 0.0361 

MMSE 0.0028 0.0039 0.0067 
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Table 5. The comparison of the LQMAVE, LSIQR and LQR was depended on  

example 3 model 3.                                            .                                           

                                                    /  

 LQMAVE LSIQR LQR 

𝜏        

 

    

Ave  s 
10.410 10.400 3.3000 

Mean|r| 0.9889 0.9866 0.9799 

SD|r| 0.0029 0.0038 0.0052 

MMSE 0.0009 0.0013 0.0038 

 

    

Ave  s 
10.000 9.9000 8.6500 

Mean|r| 0.9410 0.9390 0.8712 

SD|r| 0.0245 0.0270 0.0511 

MMSE 0.0023 0.0026 0.0166 

𝜏        

 

    

Ave  s 
10.9900 10.9500 2.9000 

Mean|r| 0.9975 0.9911 0.9834 

SD|r| 0.0012 0.0018 0.0033 

MMSE 0.0001 0.0003 0.0025 

 

    

Ave  s 
10.500 10.400 8.7800 

Mean|r| 0.9660 0.9535 0.9005 

SD|r| 0.0173 0.0180 0.0280 

MMSE 0.0006 0.0006 0.0023 

𝜏        

 

    

Ave  s 
10.6000 9.8800 3.1500 

Mean|r| 0.9900 0.9924 0.9811 

SD|r| 0.0017 0.0020 0.0034 

MMSE 0.0006 0.0008 0.0025 

     Ave  s 
9.4800 9.4600 8.7700 

Mean|r| 0.9355 0.9420 0.8999 

SD|r| 0.0195 0.0210 0.0301 

MMSE 0.0017 0.0022 0.0023 
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      Depending on the mean and SD of     between  ̂ 
   and   

    and 

MMSE of  ̂   with different quantile levels and different values for   . 

      From Tables 1 and 2, it can be see that QMAVE has a better 

performance than the SIQR and QR, also from Tables 3,4 and 5, it is 

clear that the performance of LQMAVE is better than the performance 

of LSIQR and LQR for all cases.                             .                              

     From Tables 3-5, it is obvious that LQMAVE gives values of  MMSE 

and SD less than that for LSIQR and LQR, also the results show that 

the MMSE for the LQMAVE, LSIQR and LQR increase when   increase 

for all quantiles values.                           . .                                          

                             .                

6. Real data                                                         .            

      To check  the performance of QMAVE and LQMAVE, we employed 

the Newborn Jaundice (NJ) data. We collect  The data by the authors 

from the women's and children hospital in Al-Diwaniya to achieve this 

aim.                                   .                                                                 

  

- Newborn Jaundice (NJ) data                                                 

      In this section, the considered methods were applied in NJ data. 

Newborn Jaundice is one of the most popular diseases seen in new 

babies. It often develops in the second or third day of life and reaches 

its peak around the fourth day, but jaundice can occur within the first 

24 hours after birth in rare cases. NJ data contains       

observations. We collectv The dataset from the Women's and 

children’s hospital in AL Diwaniya. response Y is TSB mg/dl 

(JAUNDICE). The eight predictors are the baby's age (number of days) 

(X1), baby weight kg (X2), PCV to baby g/dl Hematocrit or (Packed Cell 

Volume) (X3), Hb to baby g/dl (Hemoglobin)(X4), PCV to mother g/dl 

Hematocrit or (Packed Volume) (X5), Hb to mother g/dl (Hemoglobin) 

(X6), RBS to baby mg/dl (blood's sugar) (X7), number of brothers 

infected(X8).                                                                                          

      Now  we compered proposed methods with others by used of the 

adjusted   , where it gives the percentage of variation explained by 

only  those independent variables than in reality affect the dependent 

variable, also it can be interpreted as an unbiased and it is more 

appropriate through the formula:                                                          

.                                    adjusted    =  
      ⁄

      ⁄
 ,    
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           ,    =n-1  

      later we compered between this methods by used prediction error 

through the formula: 

prediction error=      ̂  

                    6.1: Non sparse methods 

Table 6: The adjusted R-square values  for the model fit for NJ data 

with 𝜏                     .                                                                    

  
 
Model fit 

𝜏       𝜏        𝜏       

SIQR      QMAVE QR SIQR QMAVE QR SIQR QMAVE QR 

Linear 0.798 0.817 0.729 0.822 0.851 0.745 0.801 0.821 0.733 

Quadratic 0.828 0.879 0.807 0.843 0.895 0.813 0.834 0.885 0.811 

Cubic 0.856 0.879 0.837 0.871 0.895 0.850 0.862 0.885 0.841 

Quartic 0.856 0.879 0.837 0.871 0.895 0.850 0.862 0.885 0.841 

  

Table 7: The prediction error (P.E) of the cubic fit for SIQR, QMAVE 

and QR for NJ data  with 𝜏                    .                                   . 

                                                           

 
Methods 

Prediction error 

𝜏       𝜏  0.50 𝜏  0.75 

SIQR 0.827 0.792 0.823 

QMAVE 0.814 0.787 0.811 

QR 0.961 0.848 0.955 
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Figure 1: Plot and explanation of the estimated P.E for the studied 
methods based on NJ.                                                 .                        

                                                  

      From table 6, it is clear that the adjusted R-squared for QMAVE is 

bigger than the adjusted R-squared for SIQR method and the adjusted 

R-squared for SIQR is bigger than its value for QR method. This 

means that QMAVE method is the best among the other for all 

quantile levels.                                 ..                                                   

     Table7 we presents the P.E for SIQR, QMAVE and QR  based on 

the NJ data with different quantile levels. It is clear that the QMAVE 

method has a lower P.E value than the SIQR and the QR methods. 

This means the performance of QMAVE method is  better than the 

performance of  SIQR and QR under different quantile levels.               

      

       Figure1explains that the estimated prediction error with 𝜏  

          and 0.75, for the QMAVE is less than the estimated 

prediction error for SIQR and QR, where the three different lines in 

panel represent the P.E for the three methods in different quantile 

𝜏            and 0.75. The blue line represents the PE at 𝜏       , the 

red line represents the PE at 𝜏       and the green line represents the 

PE at 𝜏      .                                                .                                     
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6.2: Sparse methods                                                       
Table 8: The adjusted R-square values  for the model fit for NJ data with 

𝜏                    .                                                .                              

 
Model 

fit 
 

𝜏       𝜏       𝜏         

LSIQR LQMAVE LQR LSIQR LQMAVE LQR LSIQR LQMAVE LQR 

Linear 0.744 0.884 0.741 0.787 0.895 0.777 0.752 0.886 0.744 

Quadratic 0.873 0.902 0.850 0.884 0.918 0.871 0.879 0.907 0.861 

Cubic 0.885 0.902 0.849 0.897 0.918 0.866 0.888 0.907 0.854 

Quartic 0.885 0.902 0.849 0.897 0.918 0.866 0.888 0.907 0.854 

 

Table 9: The P.E of the cubic fit for LSIQR, LQMAVE and LQR for BJ data  

with 𝜏                    .                                                                                                              

Methods 
 

Prediction error 

𝜏       𝜏       𝜏       

LSIQR 0.785 0.762 0.780 

LQMAVE 0.761 0.738 0.757 

LQR 0.817 0.791 0.808 

 

 

 

Figure 2: Plot and explanation of the estimated P.E for the studied 

methods based on NJ.                                                                           

     From table 8, it is clear that the adjusted R-squared values  for 

LQMAVE is bigger than the adjusted R-squared for LSIQR and LQR. 

This means that LQMAVE method is the best among the other 
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methods under different levels of quantile.                                    .      

       

      Table 9 we presents the P.E with  𝜏              and 0.75 of the 

LSIQR, LQMAVE and LQR on the NJ data. The results in the table 

show that LQMAVE method has a lower P.E than the LSIQR and the 

LQR methods. This means that LQMAVE has a better behavior than 

LSIQR and LQR for all the quantile levels.                          .                 

                                                                    

     From Figure 2, it is obvious that the values of  estimated P.E with 

𝜏            and 0.75, for the LQMAVE are less than its values for  

LSIQR and LQR, where the three different lines in panel represent the 

prediction errors for the three methods in different quantile 𝜏  

          and 0.75. The blue line represents the PE at 𝜏       , the red 

line represents the PE at 𝜏       and the green line represents the PE 

at 𝜏      .          .                             .                                                  

              

7.Conclusion and possible future work                

      In this paper, QMAVE and LQMAVE were proposed. The QMAVE 

and LQMAVE were compared with SIQR, QR, LSIQR and LQR. In 

order to check the behavior of the QMAVE and LQMAVE, simulations 

were employed. Based on the simulation studies and NJ data, it is 

clear that the QMAVE and LQMAVE have better behavior in 

comparison to SIQR, QR, LSIQR and LQR and thus the QMAVE and 

LQMAVE are useful practically. Future direction or extension of the 

current work is sparse quantile MAVE with group variable selection 

penalties.           .                                                                                 
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