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ABSTRACT

H. R. Ebrahimi Vishki et al, conjectured in [1], tha.t if every
Jordan higher derivation on a trivial generalized matrix algebra
G = (A, M,N,B) is a higher derivation, then either M = 0 or
N = 0. In this note, we will give a class of counter examples. Let A
be a unital R-algebra and M be a unital A-bimodule. It is shown
that every Jordan derivation of the trivial extension of A by M,
under some conditions, is the sum of a derivation and an

antiderivation.




1. Introduction

Generalized matrix algebras were introduced by Morita in [12] to
study Morita duality theory in 1958. They are natural
generalizations of triangular algebras. All associative algebras with
nontrivial idempotents are isomorphic to generalized matrix
algebras. When both the pairings are zero, a generalized matrix
algebra is called trivial. A class of trivial generalized matrix
algebras is the so-called generalized one-point extension algebras
introduced in [7] by Li and Wei. In [2]' Haghany studied hopfcity

and co-hopfcity for trivial generalized matrix algebras.

Recent years, it has been an active research area to study
various mappings on generalized matrix algebras, such as
commuting mappings, Lie derivations, Jordan derivations, higher
derivations and so on. We refer the reader to [5, 6, 7, 8, 9, 10, 11,
13, 15] for details. Note that Jordan derivations are related to the
problem of the decomposition of Jordan homomorphisms [4]. The
standard problem for Jordan derivations is to find out whether a

Jordan derivation degenerate to a derivation. In [3]' Herstein




showed that every Jordan derivation from a 2-torsion free prime
ring into itself is a derivation. Zhang and Yu proved in [18] that all
Jordan derivations of a triangular algebra with the faithful condition
are derivations. More examples include incidence algebras [14]

and dual extension algebras [8]. It is helpful to point out that the

problem has the following higher version: to find out whether a
Jordan higher derivation degenerate to a higher derivation. We

refer the reader to [16, 17] for some results on it.

H. R. Ebrahimi Vishki et al. conjectured in [1] that if every Jordan
higher derivation on a trivial generalized matrix algebra G =
(A,M, N, B) is a higher derivation, then either M = 0 or N = 0. In

this note, we will give a class of counter examples.

Throughout is research R will denote a commutative ring with
unity. Let A be an algebra over R. Recall that an R-linear map A
from A into an A-bimodule M is said to be a Jordan derivation if
A(ab + ba) = A(a)b + aA(b) + A(b)a + bA(a) for all a,b € A. It is
called a derivation if A(ab) = A(a)b + aA(b) for all a,b € A. Each
map of the form a — am — ma, where m € M, is a derivation which
will be called an inner derivation. Also A is called an antiderivation
if A (ab) = A(b)a + bA(a) for all a,b € A. We shall say that an
antiderivation A is improper if it is a derivation; otherwise we shall
say that A is proper. Clearly, each derivation or anti derivation is a

Jordan derivation. The converse is, in general, not true (see [6]).

It is natural and very interesting to find some conditions under
which a Jordan derivation is a derivation. Herstein [14] proved that
every Jordan derivation from a 2-torsion free prime ring into itself is

a derivation and that there are no nonzero antiderivations on a




prime ring. Brcsar [8] showed that every additive Jordan derivation
from a 2-torsion free semiprime ring into itself is a derivation.
Sinclair [18] proved that every continuous linear Jordan derivation
on semisimple Banach algebras is a derivation. Zhang in [21]
proved that every linear Jordan derivation on nest algebras is an
inner derivation. Lu [17] proved that every additive Jordan
derivation on reflexive algebras is a derivation which generalized
the result in [21]. Benkovic [6] determined Jordan derivations on
triangular matrices over commutative rings and proved that every
Jordan derivation from the algebra of all upper triangular matrices
into its arbitrary bimodule is the sum of a derivation and an
antiderivation. Zhang and Yu [23] showed that every Jordan
derivation of triangular algebras is a derivation, so every Jordan
derivation from the algebra of all upper triangular matrices into

itself is a derivation.

In this note we study the Jordan derivations on trivial extensions

and generalize the Zhang and Yu's result [23].




Preliminaries




Definition(1-1) : (Derivation )
A linear mapping 6 from A is called a derivation if

6 (ab) = 6 (a)b + a8 (b) ,for all
abe A

Definition(1-2) : (Anti-derivation)
A linear mapping 6 from A is called anti-derivation if

6 (ab) = 6 (b)a + bO (a) ,for all
a,be€e A

Definition(1-3) : (Jordan-derivation )
An -linear mapping 8 from A is called a Jordan-derivation if

0 (aob) = 6(a)eb + ao 0 (b) for
alla,b € A

Definition(1-4) : (Higher derivation)

Let N be the set of all non-negative integers. Let D = {dn},cy be a
sequence of R-linear mappings on A with d, = idA (the identity

mapping of A) then {dn},cy is called a higher derivation if

n
dn(xy) =Zdi(x)dj(y) ,Vx,y € A, vn € N

=0




Definition(1-5): ( Jordan higher derivation):

A sequence D is called a Jordan higher derivation of A if

dn(x?) = Z d;(x)d;(x) Vx €A, n€N.

i+j=n

Definition(1-6) : (Module)

Let (R,+,") be aring and let (M, +) abelion group then (M, +) is
called Left-Module if there is a mapping - : R X M - M Such that

Dr-M,+M,)=rM;+rM, 5r€R, MeEM
2) (n+rpy) M=rM+r,MeM>3r,n, ERMEM
3) (Tl'TZ)'M=T‘1'(T'2'M)EM3T1,T2ER,MEM.

Definition(1-7) : (Bi Module)

an abelian group that is both a left and a right Module such that the

left and right multiplication compliable.

Definition(1-8) : (Unital algebra)

An algebra that contains a multiplicative identity element.
Definition(1-9) : (Tensor Product of Matrices)

If 5:RM — RM™ and T: RY — RY are Matrices , we define the linear
extension of QT (e; ® e;) = (de;) ® (Te;). The linear mapping

6QT is called tensor product of the matrices S and T.




Definition(1-10) : (Generalized Matrix algebras)

The definition of generalized matrix algebras is given by a Morita
context . A Morita context consists of two R-algebras A and B, two
bi modules ,Mz and gzN, , and two bi module homomorphism
called the pairings @y M®zN - Aand Yyy : NQ, M —

B satisfying the following commutative diagrams:

Pun®lu

Yyu®I
M NOM ———> 4@, MandN @,MRN — " S p@,N
In®Ynu ~ IN®Py N ~
M®;B = M N®,A — N.

Let us write this Morita context as

(A,B, 4Mpg, gNy, Pyn, Yym)- 1f (A B, aMp, gNy, Py, Yy ) iS @
Morita context, then the set

A M

N B]={[z TZ]|aEA,mEM,nEN,bEB}

forms an R-algebra under matrix-like addition and matrix-like
multiplication. There are possibly equal to zeros. Such an R-

algebra is called a generalized matrix algebra of order 2 and is,
usually denoted by G = [1‘3 IBVI] orG = (A, M,N,B) in brief. When

the pairings are both zero, we call G a trivial generalized matrix

algebra.




Definition(1-11) : (Triangular algebra)

Let Tri(A, M, B) is an R-algebra of the form
Tri(AM,B) ={(; ' )la € Ame Mbe B}

under the usual matrix operations, where A and B are unital
algebras over Rand M is a unital (4, B)-bimodule which is faithful

as a left Amodule as well as a right B-module.
Definition(1-12) : (The trivial extension)
Let A be a unital algebra over R and M be a unital A-bimodule.

A x M as an R-module together with the algebra product defined

by:
(a,m).(b,n) = (ab,an + mb) (a,b € A, mn € M)

is an R-algebra with unity (1,0), which is called the trivial extension
of A by M and denoted by T (4, M).

Definition(1-13) : (The direct sum)

Let Tri(A, M, B) be a triangular algebra over R. Denote by A@B the
direct sum of A and Bas R-algebra, and view M as an A®B

bimodule with the module actions given by
(a,b).m = am,m.(a,b) = mb, a€A bEB, meM.

Let Tri(A, M, B) is isomorphic to T(A@B,M) as an R-algebra. So

triangular algebras are examples of trivial extensions.




Definition(1-16) : (The left annihilator)

Let A be an R-algebra and M be an A-bimodule, define the left
annihilator of M by .ann,M = {a € A: ;M = {0}}. Similarly, we
define the right annihilator of M by r.ann,M = {a € A: M, = {0}}.
Also we denote the unity and zero of T(A,M) by 1 and 0,

respectively.

In order to give the main result of this note, we need the
following lemmas about derivations and Jordan derivations of

generalized matrix algebras.







Lemma 2.1: ([5, Proposition 4.2]).

An additive map 6 from G into itself is a derivation. if and only

if it has the form

9( a m]) _ [61(61) —mny —myn amgy— myb + t,(M)
n b noa — bng +v3(n) negm+nmy+ pu(b) !’

Vo Bles
wherem, € M, n, € N and
61:A—-> A, .M > M, v N> N, u,:B->B
are all R-linear mappings satisfying the following conditions:
(1) 6, is a derivation of A with §; (mn) = 7,(m)n + mvs(n);
(2) uy is a derivation of B with u,(nm) = nt,(m) + vs(n)m;
(3) 7,(am) = at,(m) + 6;(a)ym and t,(mb) = t,(m)b + mu,(b);

(4) v3(na) = v3(n)a + nd,(a) and v3(bn) = bV3(n) + pus(b)n.

Lemma 2.2 : ([9, Proposition 4.2]).

An additive map 6 from G into itself is a Jordan derivation if
and only if it is of the form

()




6,(a) —mny —myn amgy — myb + t,(m) + t3(n)
nya — bny + v,(m) + v3(n) nom + nmgy + s (b)

Ylw bl€S

wherem, € M, n, € N and
61:A—> A, 1,:M—->M, 73:N = N,
v,:M - N, v3:N—> N, u,:B—> B
are all R-linear mappings satisfying the following conditions:

(1) 6, is a Jordan derivation on A and §;(mn) = t,(m)n +
mvs(n);

(2) u4 is a Jordan derivation on B and u,(nm) = nt,(m) +
v3(m)m;

(3) 7y(am) = ar,(m) + 6; (a)m and t, (mb) =t,(Mm)b +

miy (b);

(4) v3(bn) = bvs(n) + uy(b)n and vz(na) = vy(n)a + néd; (a);
(5) t3(na) = arz(n), 13(bn) = 13(n)b,nt3(n) = 0,73(n)n = 0;

(6)vo(am) = v,(m)a, v,(mb) = bv,(m),

mv,(m) = 0, v,(m)m = 0.

Clearly, the mappings 7; and v, in (2) play an important role for a

Jordan derivation. Let us 'study them now.

Lemma 2.3:




Let K be a field and A a finite dimensional K -algebra. Let M
be a simple left A-module and N a simple right A-module with

dimg M # dimgN.
Then we have:

(1) Let v be a K -linear map from M to N. If

v(am) = v(m)a for alla € A,m € M, thenv = 0.

(2) Let tbe a K -linear map from N to M. If
t(na) = ar(n)foralla € A,n € N,thent = 0.

Proof.

Since dimy M # dimgN, without loss of generality, suppose that

dimg M < dimgN

(1) If v # 0, then there exists some m € M such that v(m) # 0. It
follows from v(am) = wv(m)a that the cyclic module (v(m))
generated by v(m) is contained in Im v, the image of v. Note that
N is a simple as a right A-module. This implies that (v(m)) = N
and consequently, Im v = N. However, this is impossible for

dimg M < dimgN.

(2) Since dimM < dimN, the kernel of 7 is not zero. Let 0 #n €

Ker t.

Then the condition 7(na) = at(n) gives that 0 # (n) € Ker 7 and

hence Ker t = N for N is simple as a right A-module, that is, T = 0.

Now we are in: a place to give the main result of this note.

Theorem 2.4 :




Let A and B be two finite dimensional K-algebras and let
G = (4, 4Mg, 5Ny, B) be a trivial generalized matrix algebra.

Suppose that G satisfies the following conditions:
(1) All Jordan derivations of A and B are derivations.

(2) M is simple as a left A-module and N is simple as a right A-

module; (3) dimxg M # dimgN.
Then each Jordan derivation of G is a derivation.
Proof

Since all Jordan derivations of A and B are derivations,
comparing the form (1) of Lemma (2.1) with that (2) of Lemma
(2.2) yields that we only need to prove v, =0 and t; = 0. By

(Lemma 2.3) this is clear and we complete the proof now.

In order to give a counter example for [1, Conjecture 3.2]' let us

recall a result of Xiao and Wei on Jordan higher derivations.

Lemma 2.5: ([17, Proposition 3.1]):

Let A be an associative algebra over a field of characteristic
zero. If every Jorddn derivation on A is a derivation, then every

Jordan higher derivation on A is a higher derivation.




The main result of the paper is the

following theorem




Theorem 3.1.

Let A be a unital algebra over the 2-torsion free
commutative ring Rand M be a unital A-bimodule. Suppose that E

is a non-trivial idempotent elementin A and E' = 1 — E such that
EAE'AE = {0}, E'AEAE' = {0},
E(l.ann,M)E = {0}, E'(r.ann,M)E' = {0},

and EME' =M forall M e M. LetU =T(A,M)and A: u — u be a
Jordan derivation and let P = (E,0) and Q = (E’,0). Then there
exists a derivation § : u — u and an antiderivation J: u — u
such that A= 6 +J, J(PXP) =0 and J(QXQ) = O for any X € u.

Moreover, § and J are uniquely determined.

To prove the theorem we need some lemmas. We consider the
conditions of this theorem in the lemmas. Note that, P and Q are

idempotents of u suchthatP + Q = 1 and PQ = 0.

We will show that the Jordan derivation A is a sum of an
antiderivation J (see Lemma 3.3), an inner derivation I (see

Lemma 3.5) and a derivation D (see Lemma 3.8).

Lemma 3.2:

For every X,Y € u, we have

PXQYP = 0 and QXPYQ = 0.

21




Proof.
ForallM € M, since EM E' = M, we have
EME = 0, E'ME = 0, E'ME" = 0,
EM =M, ME' =M, ME = 0, E'M = 0.

LetX = (4, M) andY = (B,N). So PXQYP = (EAE'BE,EAE'NE +
EME'BE) = 0 as ECE = 0 for all C € M and EAE' AE = {0}.
Similarly, QXPYQ = O.

Lemma 3.3:

The mapping J : u — u defined by

J(X) = PAQXP)Q + QA(PXQ)P

is an antiderivation. Also J(PXP) = 0 and J(QXQ) =0 for all X €

u.
Proof.

Clearly, J is an R-linear map. Since A is a Jordan derivation, for all

X,Y € u we have
A(QXPYP) = A(QXPPYP)
= A(QXPPYP + PYPQXP)
(3.1) = A(QXP)PYP + QXPA(PYP)
+PYPA(QXP) + A(PYP)QXP.

Similarly

22




A(QXQYP) = A(QXQ)QYP + QXQA(QYP)
(3.2) + QYPA(QXQ) + A(QYP)QXQ.
A(PXPYQ) = A(PXP)PYQ + PXPA(PYQ)
(3.3) + PYQA(PXP) + A(PYQ)PXP.
A(PXQYQ) = A(PXQ)QYQ + PXQA(QYQ)
(3.4) + QYQA(PXQ) + A(QYQ)PXQ.
Thus,
PA(QXPYP)Q = PYPA(QXP)Q;
PA(QXQYP)Q = PA(QYP)QXQ;
QA(PXPYQ)P = QA(PYQ)PXP;
QA(P XQYQ)P = QYQA(P XQ)P.
From these relations and Lemma 3.2 we arrive at
J(XY) = PA(QXYP)Q + QA(PXYQ)P
= PA(QXPYP)Q + PA(QXQYP)Q
+QA(PXPYQ)P + QA(PXQYQ)P
= PYPA(QXP)Q + PA(QYP)QXQ
+QA(PYQ)PXP + QYQA(PXQ)P
= YPA(QXP)Q + PA(QYP)QX
+QA(PYQ)PX + YQA(PXQ)P

= YJ(X) + J(D)X.

23




So J is an anti-derivation. By the definition of J it is clear
that J(PXP) =0 and J(QXQ) = Ofor all X € u. The proof is now

complete.

Lemma 3.4:

If ] : u— wuis an improper antiderivation, J(P X P) = 0 and
J(QXQ) = OforallX € u,thenj =0.

Proof.

First, observe that J(P) = J(PPP) = 0. Similarly, we have
J(Q) = 0. Then, since J is a derivation and an antiderivation, we

have
J(PXQ) = PJ(XQ) + J(P)XQ = PJ(XQ)
= P(QJ(X) + J(Q)X) = 0.
Similarly, J( QX P) = 0. So
J(X) = J(PXP) + J(PXQ) + J(QXP) + J(QXQ) = 0

forall X € u.

Lemma 3.5:

LetT = PA(P)Q — QA(P)P and the mapping I : u — u be
defined by

I(X) = PA(PXP + QXQ)Q + QA(PXP + QXQ)P.

Then for every X € u we have

24




I(X) = XT — TX.

Proof.
AllY € u satisfy
0= A((PYP)(QYQ) + (QYQ)(PYP))
(3.5) = PYPA(QYQ) + A(PYP)QYQ
+QYQA(PYP) + A(QYQ)PYP.

From this, for every Y € u, we obtain

(3.6) PYPA(QYQ)Q + PA(PYP)QYQ = 0
and
(3.7) QYQA(PYP)P + QA(QYQ)PYP = 0.

Forany X € ureplaceY by X + P in (3.6). This gives

PXPA(QXQ)Q + PA(QXQ)Q + PA(PXP)QXQ + PA(P)QXQ = 0.
Hence, replacing X by QXQ in the previous equation, we get that
PA(QXQ)Q + PA(P)QXQ = O foranyX € u.lf X = Q

In this relation, then PA(Q)Q + PA(P)Q = O.
Now, for any X € ureplace Y by PXP + Q in (3.6) we obtain
PXPA(Q)Q + PA(PXP)Q = 0.

According to these relations we have —PXPA(P)Q + PA(PXP)Q =

0. Similarly, we can obtain from relation (3.7) that

QA(QXQ)P + QXQA(P)P = 0 and — QA(P)PXP + QA(PXP)P = 0

25




forall X € u. These relations and Lemma 3.2 imply

1(X) = PA(PXP)Q + PA(QXQ)Q + QA(PXP)P + QA(QXQ)P
= PXPA(P)Q — PA(P)QXQ + QA(P)PXP — QXQA(P)P
= XPA(P)Q — PA(P)QX + QA(P)PX — XQA(P)P
= XT — TX.

Lemma 3.6:

Let X € u. Then
(@) If PXPZQ =0 for allZ € u,then PXP = 0;

(b) If PZQXQ = O forall Z € u,then QXQ = 0.

Proof.

(&) Write X = (A,N). Let M € M, and set Z = (0,M). We have
EME' =M by assumption and EN = N for all N e M from the

proof of Lemma 3.2. Hence,
ENE = 0Oand 0= PXPZQ = (O,EAEME") = (0,AM),

so A €l.ann,M. Hence, by assumptions we obtain EAE = 0,
therefore PXP = (EAE,ENE) = O.

Similarly, we can show that (b) holds.

26




Lemma 3.7:

For every X € u we have

PA(QXQ)P = 0, QA(PXP)Q = 0, PA(PXQ)P = 0,

QA(PXQ)Q = 0, PA(QXP)P = 0, QA(QXP)Q = 0.

Proof. Using (3.5) we see that for all Y € u, we have
PYPA(QYQ)P + PA(QYQ)PYP = 0.

For any X € u replace Y by QXQ + P, so PA(QXQ)P = O.
Similarly, replacing Y by PX P + Q in (3.5), and multiplying the
resulting equation by Q both on the left and on the right, yields
QA(PXP)Q = 0,forall X € u.

If we multiply (3.1) by P and replace Y by P, we obtain
PA(QXP)P =0 for all X € u, since Lemma 3.2 holds. Similarly,
multiplying (3.1) by Q and replacing Y by P, we get QA(QXP)Q =
O0forallX € u.

As above, from (3.4) and Lemma 3.2, we have PA(P XQ)P = 0
and

QA(PXQ)Q = 0, forallX € u.

Lemma 3.8:

The mapping D : u — u defined by D(X) = PA(P X P)P +
PA(PXQ)Q + QA(QXP)P + QA(QXQ)Q is aderivation.

27




Proof.

D is an R-linear map. From (3.3) and Lemma 3.7 it follows

immediately that
PA(PXPYQ)Q = PXPA(PYQ)Q + PA(PXP)PYQ

for all X, Yy € u. So for every X,Y,Z € u we have
PA(PXPYPZQ)Q = PXPYPA(PZQ)Q + PA(PXPYP)PZQ.

On the other hand,
PA(PXPYPZQ)Q = PXPYPA(PZQ)Q
+PXPA(PYP)PZQ + PA(PXP)PYPZQ.

By comparing the two expressions for PA(PXPYPZQ)Q, we arrive
at P(A(PXPYP) — A(PXP)PY — XPA(PYP))PZQ = 0.

for any Z € u. Therefore, by Lemma 3.6, we have
PA(PXPYP)P = PA(PXP)PYP + PXPA(PYP))P.
Similarly, from (3.4) we get
PA(PXQYQ)Q = PA(PXQ)QYQ + PXQA(QYQ)Q
and
QA(QRXQYQ)Q = QA(RXQ)QYQ + QXQA(QYQ)Q
forall X,Y € wu.
Similarly, we can obtain from (3.1), (3.2) and Lemma 3.6 that

QA(QXPYP)P = QA(QXP)PYP + QXPA(PYP)P

28




and
QA(QXQYP)P = QXQA(QYP)P + QA(QXQ)QYP
forall X,Y € u.

These relations with Lemma 3.2 gives us that D(XY) = X D(Y) +

D(X)Y forall X,Y € u. Thatis, D is a derivation from u into itself.
Proof of Theorem 3.1. For any X € uwe have
X = PXP + PXQ + QXP + QXQ

so, by Lemmas 3.3, 3.5, 3.7 and 3.8 it follows immediately that
AX) =JX) + I(X) + D(X) forall X euwhere§ =D + Iisa
derivation and J is an antiderivation from u into itself such that

J(PXP) = 0and J(QXQ) = 0 forany X € u.

Let §:u— u be a derivation and J': u— u be an
antiderivation such that A=6§ + J',J'(PXP) = 0Oand J'(QxQ) = 0
for any X €eu. So §+ ] =6 +J and hence §—-8"=]—J'.
Therefore, ] — J' is an improper antiderivation such that (J —

JH(PXP) = 0 and

(J —JH(QxQ) = 0. Thus, by Lemma 3.4, we have ] =]’ and hence
d = ¢'. So we have that § and J are uniquely determined. The

proof of Theorem 3.1 is thus complete.

Note that if /] # 0, then J is a proper antiderivation (by Lemma
3.4).
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Remark 3.9.

By the above lemmas and the proof of Theorem 3.1, one
observes that if A: u— u is a Jordan derivation, then the

following are equivalent.

(a) A is a derivation.

(b) PA(QXP)Q = 0 and QA(PXQ)P = 0 forall X € u.
(c) A(PUQ) S PUQ and A(QUP) S QUP.

We have the following corollary, which was proved by a different
method in [23].

Corollary 3.10.

Let A, B be unital algebras over the 2-torsion free
commutative ring R, M be a unital (4, B)-bimodule that is faithful as
a left A-module and also as a right B-module. Let T = Tri(A, M, B)
be the triangular algebra. Then every Jordan derivation from T into

itself is a derivation.

Proof.

Let A@ B be the direct sum of A and B as R-algebras and
E = (1,0). Consider T(A® B,M) as defined in introduction. So
this trivial extension satisfies all the requirements in Theorem 3.1
and therefore any Jordan derivation on it satisfies condition (b) of

Remark 3.9. Therefore, every Jordan derivation on T(A @ B, M) is
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a derivation. By the isomorphism given in the introduction we have

the result.

Remark 3.11.

Let T = Tri(A,M,B) be a triangular algebra satisfying the

1 0
0 0

idempotent of T and Q = 1 — P. Suppose that N is a unital T-
bimodule such that QNP = {0} and, let for N € N, the condition
PNPTQ = {0} implies PNP = 0 and the condition PTQNQ = {0}
implies QNQ = 0. Then (P,0) and (Q,0) are idempotent of T(T, N)

such that

conditions of Corollary 3.10, P =( ) be the standard

(@ OT(T,N)(P,0) = {(0,0)}.

Let (S§,N) E T(T, N) such that

(P,0)(S, N)(P,0)T(T,N)(Q,0) = {(0,0)}.

So for each S’ € T we have (P,0)(S,N)(P,0)(S,0)(Q,0) = (0,0)
and hence (PSPS'Q,PNPS'Q) = (0,0). Therefore, PSPTQ = {0}
and PNPTQ = {0}. By assumption, we have PSP = 0 and
PNP = 0. So (P,0)(S,N)(P,0) = 0. Similarly, if
(P,0)T(T,N)(Q,0)(S,N)(Q,0) = {(0,0)}, then (Q,0)(S,N)(Q,0) =
0. Therefore

T(T,N) = ((P, 0)T(T,N)(P,0) (P,0)T(T,N)(Q, 0)) .

0 (Q,0)T(T,N)(Q,0)

Thus, T(T,N) is a triangular algebra. So by Corollary 3.10 every

Jordan derivation from T(T, N) into itself is a derivation.
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Let A be a unital algebra over R and M be a unital A-bimodule.

An R-linear map 6 from A into M is a Jordan derivation (derivation)
if and only if the R-linear map A: T(4,M) — T(A,M), given by
A(A,M) = (0,5(A4)), is a Jordan derivation (derivation). From this
result and Remark 3.11, we have the next corollary which is a

generalization of Corollary 3.10.

Corollary 3.12.

Let T = Tri(A,M,B) be a triangular algebra satisfying the
conditions of Corollary 3.10 and N be a unital T-bimodule as in the
Remark 3.11. Then every Jordan derivation from Tinto N is a

derivation.
We now provide an example of trivial extension which satisfies

conditions of Theorem 3.1, but is not a triangular algebra.

Example 3.13.

Let R be a 2-torsion free commutative ring with unity and A
be the R-algebra of 2 x 2 lower triangular matrices over R. We
make R into an A-bimodule by defining RA = RA,, and AR =
AR for all R € R,A € A. Let E = E;;. Then the conditions of
Theorem 3.1 hold for T(4,R) but this trivial extension is not a
triangular algebra because the map A: T(4,R) — T(A4,R) defined
by A(A,R) = (RE,1,A,,) IS a proper antiderivation, while by the
above corollary, triangular algebras have no nonzero proper

antiderivation. (We denote E;; for the matrix units, for all i, .)
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