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 هداا الإ

  إلى من جرع الكأس فارغاً ليسقيني قطرة حب

إلى من حصا  إلى من كلّت أنامله ليقام لنا لحظة سعااة

  الأشواك عن اربي ليمها لي طريق العلم

 )والاي العزيز( إلى القلب الكبير

 

  إلى من أرضعتني الحب والحنان

 إلى رمز الحب وبلسم الشفا 

 الحبيبة()والاتي  إلى القلب الناصع بالبياض

 

إلى القلوب الطاهدرة الرقيقة والنفوس البريئة إلى 

  )إخوتي( رياحين حياتي

 

لآن تفتح الأشرعة وترفع المرساة لتنطلق السفينة في ا

عرض بحر واسع مظلم هدو بحر الحياة وفي هدذه 
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الظلمة لا يضي  إلا قنايل الذكريات ذكريات الأخوة 

  قائي()أصا البعياة إلى الذين أحببتهم وأحبوني

 شكر وتقدير

والصلاة  }لئن شكرتم لأزيانكم  {يقول الله في محكم كتابه  الحما لله

 والسلام على اشرف خلق الله سيانا محما )صلى الله عليه واله وسلم (

 القائل: من لم يشكر المخلوق لم يشكر الخالق.

بااية اشكر الله عز وجل الذي ساعاني على اتمام بحثي وتفضل علينا 

 بإتمام هدذا العمل.. وبعا

على ما  شكرا وتقايرا لحضرة الاستاذة الفاضلة  

بذلته من سعة صار وكرم طبعها ورحابة خاطرهدا وارشاا وتوجيه 

 وتسايا لأفكاري 

 فجزاه الله خير جزا  المحسنين
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ABSTRACT 

      H. R. Ebrahimi Vishki et al, conjectured in [1], tha.t if every 

Jordan higher derivation on a trivial generalized matrix algebra 

𝒢 =  (𝐴, 𝑀, 𝑁, 𝐵) is a higher derivation, then either 𝑀 =  0 or 

𝑁 =  0. In this note, we will give a class of counter examples. Let 𝐴 

be a unital 𝑅-algebra and 𝑀 be a unital 𝐴-bimodule. It is shown 

that every Jordan derivation of the trivial extension of A by 𝑀, 

under some conditions, is the sum of a derivation and an 

antiderivation. 
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1. Introduction 

 

Generalized matrix algebras were introduced by Morita in [12] to 

study Morita duality theory in 1958. They are natural 

generalizations of triangular algebras. All associative algebras with 

nontrivial idempotents are isomorphic to generalized matrix 

algebras. When both the pairings are zero, a generalized matrix 

algebra is called trivial. A class of trivial generalized matrix 

algebras is the so-called generalized one-point extension algebras 

introduced in [7] by Li and Wei. In [2]' Haghany studied hopfcity 

and co-hopfcity for trivial generalized matrix algebras.  

Recent years, it has been an active research area to study 

various mappings on generalized matrix algebras, such as 

commuting mappings, Lie derivations, Jordan derivations, higher 

derivations and so on. We refer the reader to [5, 6, 7, 8, 9, 10, 11, 

13, 15] for details. Note that Jordan derivations are related to the 

problem of the decomposition of Jordan homomorphisms [4]. The 

standard problem for Jordan derivations is to find out whether a 

Jordan derivation degenerate to a derivation. In [3]' Herstein 
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showed that every Jordan derivation from a 2-torsion free prime 

ring into itself is a derivation. Zhang and Yu proved in [18] that all 

Jordan derivations of a triangular algebra with the faithful condition 

are derivations. More examples include incidence algebras [14] 

and dual extension algebras [8]. It is helpful to point out that the  

problem has the following higher version: to find out whether a 

Jordan higher derivation degenerate to a higher derivation. We 

refer the reader to [16, 17] for some results on it.  

H. R. Ebrahimi Vishki et al. conjectured in [1] that if every Jordan 

higher derivation on a trivial generalized matrix algebra 𝒢 =

 (𝐴, 𝑀, 𝑁, 𝐵) is a higher derivation, then either 𝑀 =  0 or 𝑁 =  0. In 

this note, we will give a class of counter examples.  

Throughout is research 𝑅 will denote a commutative ring with 

unity.     Let 𝐴 be an algebra over 𝑅. Recall that an 𝑅-linear map ∆ 

from 𝐴 into an 𝐴-bimodule 𝑀 is said to be a Jordan derivation if 

∆(𝑎𝑏 + 𝑏𝑎) =  ∆(𝑎)𝑏 + 𝑎∆(𝑏) + ∆(𝑏)𝑎 + 𝑏∆(𝑎) for all 𝑎, 𝑏 ∈ 𝐴. It is 

called a derivation if ∆(𝑎𝑏) = ∆(𝑎)𝑏 + 𝑎∆(𝑏) for all 𝑎, 𝑏 ∈ 𝐴. Each 

map of the form 𝑎 ⟶ 𝑎𝑚 − 𝑚𝑎, where 𝑚 ∈ 𝑀, is a derivation which 

will be called an inner derivation. Also ∆ is called an antiderivation 

if ∆ (𝑎𝑏) = ∆(𝑏)𝑎 +  𝑏∆(𝑎) for all 𝑎, 𝑏 ∈ 𝐴. We shall say that an 

antiderivation ∆ is improper if it is a derivation; otherwise we shall 

say that ∆ is proper. Clearly, each derivation or anti derivation is a 

Jordan derivation. The converse is, in general, not true (see [6]).  

It is natural and very interesting to find some conditions under 

which a Jordan derivation is a derivation. Herstein [14] proved that 

every Jordan derivation from a 2-torsion free prime ring into itself is 

a derivation and that there are no nonzero antiderivations on a 
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prime ring. Brcsar [8] showed that every additive Jordan derivation 

from a 2-torsion free semiprime ring into itself is a derivation. 

Sinclair [18] proved that every continuous linear Jordan derivation 

on semisimple Banach algebras is a derivation. Zhang in [21] 

proved that every linear Jordan derivation on nest algebras is an 

inner derivation. 𝐿𝑢 [17] proved that every additive Jordan 

derivation on reflexive algebras is a derivation which generalized 

the result in [21]. Benkovic [6] determined Jordan derivations on 

triangular matrices over commutative rings and proved that every 

Jordan derivation from the algebra of all upper triangular matrices 

into its arbitrary bimodule is the sum of a derivation and an 

antiderivation. Zhang and 𝑌𝑢 [23] showed that every Jordan 

derivation of triangular algebras is a derivation, so every Jordan 

derivation from the algebra of all upper triangular matrices into 

itself is a derivation.  

In this note we study the Jordan derivations on trivial extensions 

and generalize the Zhang and 𝑌𝑢's result [23].  
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Definition(1-1) : (Derivation ) 

A linear mapping 𝜃 from A is called a derivation if  

                                               𝜃 (𝑎𝑏)  =  𝜃 (𝑎)𝑏 +  𝑎 𝜃 (𝑏) ,for all 

𝑎, 𝑏 ∈  𝐴 

Definition(1-2) : (Anti-derivation ) 

A linear mapping 𝜃 from A is called anti-derivation if 

                                               𝜃 (𝑎𝑏)  =  𝜃 (𝑏)𝑎 + 𝑏𝜃 (𝑎) ,for all 

𝑎, 𝑏 ∈  𝐴 

Definition(1-3) : (Jordan-derivation ) 

An -linear mapping 𝜃 from A is called a Jordan-derivation if 

                                               𝜃 (𝑎 ∘ 𝑏)  =  𝜃 (𝑎) ∘ 𝑏 +  𝑎 ∘  𝜃 (𝑏) ,for 

all 𝑎, 𝑏 ∈  𝐴 

 

Definition(1-4) : (Higher derivation) 

Let 𝑁 be the set of all non-negative integers. Let 𝐷 = {𝑑𝑛}𝑛∈𝑁  be a 

sequence of R-linear mappings on A with 𝑑0  =  𝑖𝑑𝐴 (the identity 

mapping of 𝐴) then {𝑑𝑛}𝑛∈𝑁 is called a higher derivation if 

 𝑑𝑛(𝑥𝑦) = ∑ 𝑑𝑖(𝑥)𝑑𝑗(𝑦)

𝑛

𝑖=0

    , ∀ 𝑥, 𝑦 ∈  𝐴, ∀ 𝑛 ∈  𝑁 
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Definition(1-5): ( Jordan higher derivation): 

A sequence 𝐷 is called a Jordan higher derivation of 𝐴 if  

𝑑𝑛(𝑥2) =  ∑ 𝑑𝑖(𝑥)𝑑𝑗(𝑥)

 

𝑖+𝑗=𝑛

 ∀𝑥 ∈ 𝐴,   𝑛 ∈ 𝑁. 

 

Definition(1-6) : (Module) 

Let (𝑅, +,⋅) be a ring and let (𝑀, +) abelion group then (𝑀, +) is 

called Left-Module if there is a mapping ⋅ ∶ 𝑅 × 𝑀 → 𝑀 Such that  

1) 𝑟 ∙ (𝑀1 + 𝑀2) = 𝑟𝑀1 + 𝑟𝑀2  ∋ 𝑟 ∈ 𝑅, 𝑀 ∈ 𝑀 

2) (𝑟1 + 𝑟2) ∙ 𝑀 = 𝑟1𝑀 + 𝑟2𝑀 ∈ 𝑀 ∋ 𝑟1, 𝑟2 ∈ 𝑅, 𝑀 ∈ 𝑀 

3) (𝑟1 ∙ 𝑟2) ∙ 𝑀 = 𝑟1 ∙ (𝑟2 ∙ 𝑀) ∈ 𝑀 ∋ 𝑟1, 𝑟2 ∈ 𝑅, 𝑀 ∈ 𝑀. 

 

Definition(1-7) : (Bi Module) 

an abelian group that is both a left and a right Module such that the 

left and right multiplication compliable. 

 Definition(1-8) : (Unital algebra) 

An algebra that contains a multiplicative identity element. 

Definition(1-9) : (Tensor Product of Matrices) 

If  𝛿: 𝑅𝑀 ⟶ 𝑅𝑀 and 𝑇: 𝑅𝑁 ⟶ 𝑅𝑁 are Matrices , we define the linear 

extension of 𝛿⨂𝑇 (𝑒𝑖 ⊗ 𝑒𝑗) = (𝛿𝑒𝑖) ⊗ (𝑇𝑒𝑗). The linear mapping 

𝛿⨂𝑇 is called tensor product of the matrices 𝑆 and 𝑇. 
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Definition(1-10) : (Generalized Matrix algebras) 

The definition of generalized matrix algebras is given by a Morita 

context . A Morita context consists of two R-algebras 𝐴 and 𝐵, two 

bi modules  𝐴𝑀𝐵 and  𝐵𝑁𝐴 , and two bi module homomorphism 

called the pairings 𝛷𝑀𝑁: 𝑀⨂𝐵𝑁 → 𝐴 and 𝜓𝑁𝑀  ∶  𝑁 ⨂𝐴 𝑀 →

 𝐵 satisfying the following commutative diagrams: 

 

 

 

  

  

  

Let us write this Morita context as 

(𝐴, 𝐵,  𝐴𝑀𝐵, 𝐵𝑁𝐴, 𝛷𝑀𝑁 , 𝜓𝑁𝑀).  𝐼𝑓 (𝐴, 𝐵,  𝐴𝑀𝐵,  𝐵𝑁𝐴, 𝛷𝑀𝑁 , 𝜓𝑁𝑀) is a 

Morita context, then the set  

[
𝐴 𝑀
𝑁 𝐵

] = {[
𝑎 𝑚
𝑛 𝑏

] |𝑎 ∈ 𝐴, 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁, 𝑏 ∈ 𝐵} 

forms an R-algebra under matrix-like addition and matrix-like 

multiplication. There are possibly equal to zeros. Such an R-

algebra is called a generalized matrix algebra of order 2 and is, 

usually denoted by 𝒢 = [
𝐴 𝑀
𝑁 𝐵

] or 𝒢 =  (𝐴, 𝑀, 𝑁, 𝐵) in brief. When 

the pairings are both zero, we call 𝒢 a trivial generalized matrix 

algebra. 

 

𝑀⨂𝐵𝑁⨂𝐴𝑀 

𝛷𝑀𝑁⨂𝐼𝑀 

𝑀⨂𝐵𝐵 
≅ 

𝐼𝑀⨂𝜓𝑁𝑀 
≅ 

𝐴 ⨂𝐴𝑀 and 𝑁 ⨂𝐴𝑀⨂𝐵𝑁 

𝑀 

𝜓𝑁𝑀⨂𝐼𝑁 

 

𝐼𝑁⨂𝛷𝑀𝑁 

 

 

≅ 

𝑁⨂𝐴𝐴 

 

 

 𝑁. 

𝐵⨂𝐵𝑁 

 

 

≅ 
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Definition(1-11) : (Triangular algebra) 

Let 𝑇𝑟𝑖(𝐴, 𝑀, 𝐵) is an 𝑅-algebra of the form  

𝑇𝑟𝑖(𝐴, 𝑀, 𝐵)  = {(
𝑎 𝑚
0 𝑏

) | 𝑎 ∈  𝐴, 𝑚 ∈  𝑀, 𝑏 ∈  𝐵} 

under the usual matrix operations, where 𝐴 and 𝐵 are unital 

algebras over Rand 𝑀 is a unital (𝐴, 𝐵)-bimodule which is faithful 

as a left Amodule as well as a right 𝐵-module. 

Definition(1-12) : (The trivial extension) 

Let 𝐴 be a unital algebra over 𝑅 and 𝑀 be a unital 𝐴-bimodule.  

𝐴 𝑥 𝑀 as an 𝑅-module together with the algebra product defined 

by:  

 (𝑎, 𝑚). (𝑏, 𝑛)  =  (𝑎𝑏, 𝑎𝑛 +  𝑚𝑏) (𝑎, 𝑏 ∈  𝐴,    𝑚, 𝑛 ∈  𝑀)  

is an 𝑅-algebra with unity (1,0), which is called the trivial extension 

of 𝐴 by 𝑀 and denoted by 𝑇(𝐴, 𝑀). 

Definition(1-13) : (The direct sum) 

Let 𝑇𝑟𝑖(𝐴, 𝑀, 𝐵) be a triangular algebra over 𝑅. Denote by 𝐴⨁𝐵 the 

direct sum of 𝐴 and Bas 𝑅-algebra, and view 𝑀 as an 𝐴⨁𝐵 

bimodule with the module actions given by  

 (𝑎, 𝑏). 𝑚 =  𝑎𝑚, 𝑚. (𝑎, 𝑏) = 𝑚𝑏,         𝑎 ∈ 𝐴,    𝑏 ∈ 𝐵,    𝑚 ∈ 𝑀.  

Let 𝑇𝑟𝑖(𝐴, 𝑀, 𝐵) is isomorphic to 𝑇(𝐴⨁𝐵 , 𝑀) as an 𝑅-algebra. So 

triangular algebras are examples of trivial extensions. 
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Definition(1-16) : (The left annihilator) 

Let 𝐴 be an 𝑅-algebra and 𝑀 be an 𝐴-bimodule, define the left 

annihilator of 𝑀 by . 𝑎𝑛𝑛 𝑀𝐴
  =  {𝑎 ∈ 𝐴 ∶ 𝑀𝑎

 = {𝑂}}. Similarly, we 

define the right annihilator of 𝑀 by 𝑟. 𝑎𝑛𝑛 𝑀𝐴
 = {𝑎 ∈ 𝐴 ∶  𝑀𝑎 = {𝑂}}. 

Also we denote the unity and zero of 𝑇(𝐴, 𝑀) by 1 and 0, 

respectively.  

    In order to give the main result of this note, we need the 

following lemmas about derivations and Jordan derivations of 

generalized matrix algebras.  
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Lemma 2.1: ([5, Proposition 4.2]).  

An additive map 𝜃 from 𝒢 into itself is a derivation. if and only 

if it has the form  

𝜃 ([
𝑎 𝑚
𝑛 𝑏

]) = [
𝛿1(𝑎) − 𝑚𝑛0 − 𝑚0𝑛 𝑎𝑚0 − 𝑚0𝑏 + 𝜏2(𝑚)
𝑛0𝑎 − 𝑏𝑛0 + 𝑣3(𝑛) 𝑛0𝑚 + 𝑛𝑚0 + 𝜇4(𝑏)

],   

∀ [
𝑎 𝑚
𝑛 𝑏

] ∈ 𝒢 

where𝑚0 ∈ 𝑀, 𝑛0  ∈  𝑁 and  

𝛿1: 𝐴 → 𝐴,   𝜏2: 𝑀 → 𝑀,   𝑣3: 𝑁 → 𝑁,   𝜇4: 𝐵 → 𝐵 

are all R-linear mappings satisfying the following conditions:  

 (1) 𝛿1 is a derivation of 𝐴 with 𝛿1 (𝑚𝑛)  = 𝜏2(𝑚)𝑛 +  𝑚𝑣3(𝑛); 

 (2) 𝜇4 is a derivation of 𝐵 with 𝜇4(𝑛𝑚)  =  𝑛𝜏2(𝑚)  + 𝑣3(𝑛)𝑚; 

 (3) 𝜏2(𝑎𝑚)  =  𝑎𝜏2(𝑚) + 𝛿1(𝑎)𝑚 𝑎𝑛𝑑 𝜏2(𝑚𝑏) = 𝜏2(𝑚)𝑏 +  𝑚𝜇4(𝑏);  

(4) 𝑣3(𝑛𝑎)  =  𝑣3(𝑛)𝑎 +  𝑛𝛿1(𝑎) 𝑎𝑛𝑑 𝑣3(𝑏𝑛)  =  𝑏𝑉3(𝑛)  + 𝜇4(𝑏)𝑛.  

 

Lemma 2.2 : ([9, Proposition 4.2]).  

An additive map 𝜃 from 𝒢 into itself is a Jordan derivation if 

and only if it is of the form  

                  𝜃 ([
𝑎 𝑚
𝑛 𝑏

]) 
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=  [
𝛿1(𝑎) − 𝑚𝑛0 − 𝑚0𝑛 𝑎𝑚0 − 𝑚0𝑏 + 𝜏2(𝑚) + 𝜏3(𝑛)

𝑛0𝑎 − 𝑏𝑛0 + 𝑣2(𝑚) + 𝑣3(𝑛) 𝑛0𝑚 + 𝑛𝑚0 + 𝜇4(𝑏)
],  

∀ [
𝑎 𝑚
𝑛 𝑏

] ∈ 𝒢 

where𝑚0 ∈ 𝑀, 𝑛0  ∈  𝑁 and  

𝛿1: 𝐴 → 𝐴,   𝜏2: 𝑀 → 𝑀,   𝜏3: 𝑁 → 𝑁, 

𝑣2: 𝑀 → 𝑁,    𝑣3: 𝑁 → 𝑁,   𝜇4: 𝐵 → 𝐵 

are all R-linear mappings satisfying the following conditions:  

 (1) 𝛿1 is a Jordan derivation on 𝐴 and 𝛿1(𝑚𝑛)  = 𝜏2(𝑚)𝑛 +

 𝑚𝑣3(𝑛);  

(2) 𝜇4 is a Jordan derivation on 𝐵 and 𝜇4(𝑛𝑚)  =  𝑛𝜏2(𝑚) +

 𝑣3(𝑛)𝑚; 

 (3) 𝜏2(𝑎𝑚)  =  𝑎𝜏2(𝑚) + 𝛿1 (𝑎)𝑚 𝑎𝑛𝑑 𝜏2 (𝑚𝑏)  = 𝜏2(𝑚)𝑏 +

 𝑚𝜇4(𝑏);  

 (4) 𝑣3(𝑏𝑛)  =  𝑏𝑣3(𝑛)  + 𝜇4(𝑏)𝑛 𝑎𝑛𝑑 𝑣3(𝑛𝑎)  =  𝑣3(𝑛)𝑎 +  𝑛𝛿1 (𝑎);  

 (5) 𝜏3(𝑛𝑎)  =  𝑎𝜏3(𝑛),  𝜏3(𝑏𝑛)  = 𝜏3(𝑛)𝑏, 𝑛𝜏3(𝑛)  =  0, 𝜏3(𝑛)𝑛 =  0;  

(6)𝑣2(𝑎𝑚) =  𝑣2(𝑚)𝑎,  𝑣2(𝑚𝑏) =  𝑏𝑣2(𝑚),

𝑚𝑣2(𝑚)  =  0,  𝑣2(𝑚)𝑚 =  0. 

Clearly, the mappings 𝜏3 and  𝑣2 in (2) play an important role for a 

Jordan derivation. Let us 'study them now.  

 

Lemma 2.3:  
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Let 𝐾 be a field and 𝐴 a finite dimensional 𝐾 -algebra. Let 𝑀 

be a simple left A-module and 𝑁 a simple right 𝐴-module with 

𝑑𝑖𝑚𝐾  𝑀 ≠ 𝑑𝑖𝑚𝐾𝑁. 

Then we have:  

(1) Let 𝑣 be a 𝐾 -linear map from 𝑀 to 𝑁. If 

𝑣(𝑎𝑚) = 𝑣(𝑚)𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐴, 𝑚 ∈ 𝑀, 𝑡ℎ𝑒𝑛𝑣 = 𝑂.  

 (2) Let 𝜏be a 𝐾 -linear map from 𝑁 to 𝑀. If 

𝜏( 𝑛𝑎) = 𝑎𝑟( 𝑛)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐴, 𝑛 ∈ 𝑁, 𝑡ℎ𝑒𝑛 𝜏 = 𝑂.  

Proof. 

 Since 𝑑𝑖𝑚𝐾  𝑀 ≠ 𝑑𝑖𝑚𝐾𝑁, without loss of generality, suppose that 

𝑑𝑖𝑚𝐾  𝑀 < 𝑑𝑖𝑚𝐾𝑁 

(1) If 𝑣 ≠ 0, then there exists some 𝑚 ∈ 𝑀 such that 𝑣(𝑚) ≠ 𝑂. It 

follows from 𝑣(𝑎𝑚)  =  𝑣(𝑚)a that the cyclic module 〈𝑣(𝑚)〉 

generated by 𝑣(𝑚) is contained in Im 𝑣, the image of 𝑣. Note that 

𝑁 is a simple as a right A-module. This implies that  〈𝑣(𝑚)〉 =  𝑁 

and consequently, Im 𝑣 =  𝑁. However, this is impossible for 

𝑑𝑖𝑚𝐾  𝑀 < 𝑑𝑖𝑚𝐾𝑁. 

(2) Since 𝑑𝑖𝑚𝑀 <  𝑑𝑖𝑚𝑁, the kernel of 𝜏 is not zero. Let 0 ≠ 𝑛 ∈

𝐾𝑒𝑟 𝜏.  

Then the condition 𝜏(𝑛𝑎) = 𝑎𝜏(𝑛) gives that 0 ≠ 〈𝑛〉  ⊆ 𝐾𝑒𝑟 𝜏 and 

hence 𝐾𝑒𝑟 𝜏 = 𝑁 for 𝑁 is simple as a right A-module, that is, 𝜏 = 0.  

Now we are in: a place to give the main result of this note.  

 

Theorem 2.4 : 
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Let 𝐴 and 𝐵 be two finite dimensional 𝐾-alqebras and let 

𝒢 = (𝐴,  𝐴𝑀𝐵,  𝐵𝑁𝐴, 𝐵) be a trivial generalized matrix algebra. 

Suppose that 𝒢 satisfies the following conditions:  

 (1) All Jordan derivations of 𝐴 and 𝐵 are derivations.  

 (2) 𝑀 is simple as a left A-module and 𝑁 is simple as a right A-

module; (3) 𝑑𝑖𝑚𝐾  𝑀 ≠ 𝑑𝑖𝑚𝐾𝑁. 

Then each Jordan derivation of 𝒢 is a derivation.  

Proof 

Since all Jordan derivations of 𝐴 and 𝐵 are derivations, 

comparing the form (1) of Lemma (2.1) with that (2) of Lemma 

(2.2) yields that we only need to prove  𝑣2 = 0 and 𝜏3 = 0 . By 

(Lemma 2.3) this is clear and we complete the proof now. 

In order to give a counter example for [1, Conjecture 3.2]' let us 

recall a result of Xiao and Wei on Jordan higher derivations.  

 

Lemma 2.5: ([17, Proposition 3.1]): 

Let 𝐴 be an associative algebra over a field of characteristic 

zero. If every Jorddn derivation on 𝐴 is a derivation, then every 

Jordan higher derivation on 𝐴 is a higher derivation.  
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The main result of the paper is the 

following theorem 
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Theorem 3.1. 

 Let 𝐴 be a unital algebra over the 2-torsion free 

commutative ring Rand 𝑀 be a unital 𝐴-bimodule. Suppose that 𝐸 

is a non-trivial idempotent element in 𝐴 and 𝐸′ = 1 − 𝐸 such that  

𝐸𝐴𝐸′𝐴𝐸 = {𝑂},            𝐸′𝐴𝐸𝐴𝐸′ =  {𝑂}, 

𝐸(𝑙. 𝑎𝑛𝑛 𝑀𝐴
 )𝐸 = {𝑂},             𝐸′(𝑟. 𝑎𝑛𝑛 𝑀𝐴

 )𝐸′ = {𝑂}, 

and 𝐸𝑀𝐸′ = 𝑀 for all 𝑀 ∈ 𝑀. Let 𝑈 = 𝑇(𝐴, 𝑀) and ∆ ∶  𝑢 ⟶ 𝑢 be a 

Jordan derivation and let 𝑃 = (𝐸, 𝑂) and 𝑄 = (𝐸′, 0). Then there 

exists a derivation 𝛿 ∶  𝑢 ⟶  𝑢 and an antiderivation 𝐽 ∶  𝑢 ⟶  𝑢 

such that ∆ =  𝛿 + 𝐽, 𝐽(𝑃𝑋𝑃) = 𝑂 and 𝐽(𝑄𝑋𝑄) = 𝑂 for any 𝑋 ∈  𝑢. 

Moreover, 𝛿 and 𝐽 are uniquely determined.  

To prove the theorem we need some lemmas. We consider the 

conditions of this theorem in the lemmas. Note that, 𝑃 and 𝑄 are 

idempotents of 𝑢 such that 𝑃 +  𝑄 =  1 and 𝑃𝑄 = 0.  

We will show that the Jordan derivation ∆  is a sum of an 

antiderivation 𝐽 (see Lemma 3.3), an inner derivation 𝐼 (see 

Lemma 3.5) and a derivation D (see Lemma 3.8).  

 

Lemma 3.2: 

 For every 𝑋, 𝑌 ∈ 𝑢, we have  

𝑃𝑋𝑄𝑌𝑃 =  0    𝑎𝑛𝑑     𝑄𝑋𝑃𝑌𝑄 = 0. 
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Proof. 

 For all 𝑀 ∈  𝑀, since 𝐸𝑀 𝐸′ =  𝑀, we have  

𝐸𝑀𝐸 =  0,      𝐸′𝑀𝐸 =  0, 𝐸′𝑀𝐸′ =  0,  

𝐸𝑀 = 𝑀, 𝑀𝐸′ = 𝑀, 𝑀𝐸 = 𝑂, 𝐸′𝑀 = 𝑂. 

Let 𝑋 =  (𝐴, 𝑀) and 𝑌 = (𝐵, 𝑁). So 𝑃𝑋𝑄𝑌𝑃 =  (𝐸𝐴𝐸′𝐵𝐸, 𝐸𝐴𝐸′𝑁𝐸 +

 𝐸𝑀 𝐸′ 𝐵𝐸)  =  0 as 𝐸𝐶𝐸 =  0 for all 𝐶 ∈  𝑀 and 𝐸𝐴𝐸′ 𝐴𝐸 =  {𝑂}. 

Similarly, 𝑄𝑋𝑃𝑌𝑄 =  𝑂.  

 

Lemma 3.3:  

The mapping  𝐽 ∶  𝑢 ⟶  𝑢 defined by  

𝐽(𝑋)  =  𝑃∆(𝑄𝑋𝑃)𝑄 +  𝑄∆(𝑃𝑋𝑄)𝑃  

is an antiderivation. Also 𝐽(𝑃𝑋𝑃) = 𝑂 and 𝐽(𝑄𝑋𝑄) = 0 for all 𝑋 ∈

 𝑢.  

Proof. 

 Clearly, 𝐽 is an 𝑅-linear map. Since 𝐴 is a Jordan derivation, for all 

𝑋, 𝑌 ∈ 𝑢 we have  

∆(𝑄𝑋𝑃𝑌𝑃)  = ∆(𝑄𝑋𝑃𝑃𝑌𝑃)  

=  ∆(𝑄𝑋𝑃𝑃𝑌𝑃 +  𝑃𝑌𝑃𝑄𝑋𝑃)  

(3.1)                              = ∆(𝑄𝑋𝑃)𝑃𝑌𝑃 +  𝑄𝑋𝑃∆(𝑃𝑌𝑃)  

+𝑃𝑌𝑃∆(𝑄𝑋𝑃) + ∆(𝑃𝑌𝑃)𝑄𝑋𝑃. 

Similarly  
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∆(𝑄𝑋𝑄𝑌𝑃)  = ∆(𝑄𝑋𝑄)𝑄𝑌𝑃 +  𝑄𝑋𝑄∆(𝑄𝑌𝑃)  

 (3.2)                                          + 𝑄𝑌𝑃∆(𝑄𝑋𝑄) + ∆(𝑄𝑌𝑃)𝑄𝑋𝑄. 

∆(𝑃𝑋𝑃𝑌𝑄)  =  ∆(𝑃𝑋𝑃)𝑃𝑌𝑄 +  𝑃𝑋𝑃∆(𝑃𝑌𝑄)  

 (3.3)                                           + 𝑃𝑌𝑄∆(𝑃𝑋𝑃)  + ∆(𝑃𝑌𝑄)𝑃𝑋𝑃. 

∆(𝑃𝑋𝑄𝑌𝑄)  = ∆(𝑃𝑋𝑄)𝑄𝑌𝑄 +  𝑃𝑋𝑄∆(𝑄𝑌𝑄)  

 (3.4)                                           + 𝑄𝑌𝑄∆(𝑃𝑋𝑄) + ∆(𝑄𝑌𝑄)𝑃𝑋𝑄. 

Thus,  

𝑃∆(𝑄𝑋𝑃𝑌𝑃)𝑄 =  𝑃𝑌𝑃∆(𝑄𝑋𝑃)𝑄;  

𝑃∆(𝑄𝑋𝑄𝑌𝑃)𝑄 =  𝑃∆(𝑄𝑌𝑃)𝑄𝑋𝑄;  

𝑄∆(𝑃𝑋𝑃𝑌𝑄)𝑃 =  𝑄∆(𝑃𝑌𝑄)𝑃𝑋𝑃; 

 𝑄∆(𝑃 𝑋𝑄𝑌𝑄)𝑃 =  𝑄𝑌𝑄∆(𝑃 𝑋𝑄)𝑃. 

From these relations and Lemma 3.2 we arrive at  

𝐽(𝑋𝑌)  =  𝑃∆(𝑄𝑋𝑌𝑃)𝑄 +  𝑄∆(𝑃𝑋𝑌𝑄)𝑃  

                   =  𝑃∆(𝑄𝑋𝑃𝑌𝑃)𝑄 +  𝑃∆(𝑄𝑋𝑄𝑌𝑃)𝑄  

                           +𝑄∆(𝑃𝑋𝑃𝑌𝑄)𝑃 +  𝑄∆(𝑃𝑋𝑄𝑌𝑄)𝑃  

                  =  𝑃𝑌𝑃∆(𝑄𝑋𝑃)𝑄 +  𝑃∆(𝑄𝑌𝑃)𝑄𝑋𝑄  

                           +𝑄∆(𝑃𝑌𝑄)𝑃𝑋𝑃 +  𝑄𝑌𝑄∆(𝑃𝑋𝑄)𝑃  

           =  𝑌𝑃∆(𝑄𝑋𝑃)𝑄 +  𝑃∆(𝑄𝑌𝑃)𝑄𝑋  

                      +𝑄∆(𝑃𝑌𝑄)𝑃𝑋 +  𝑌𝑄∆(𝑃𝑋𝑄)𝑃  

                                         =  𝑌 𝐽(𝑋)  +  𝐽(𝑌)𝑋. 
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So 𝐽 is an anti-derivation. By the definition of 𝐽 it is clear 

that 𝐽(𝑃𝑋𝑃) = 0 and 𝐽(𝑄𝑋𝑄)  =  0 for all 𝑋 ∈  𝑢. The proof is now 

complete.  

Lemma 3.4: 

If 𝐽 ∶  𝑢 ⟶  𝑢 is an improper antiderivation, 𝐽(𝑃 𝑋 𝑃)  =  0 and 

𝐽(𝑄𝑋𝑄)  =  0 for all 𝑋 ∈  𝑢, then 𝐽 = 0.  

 

Proof. 

 First, observe that 𝐽(𝑃)  =  𝐽(𝑃𝑃𝑃)  =  0. Similarly, we have 

𝐽( 𝑄)  = 0. Then, since 𝐽 is a derivation and an antiderivation, we 

have  

𝐽(𝑃𝑋𝑄)  =  𝑃𝐽(𝑋𝑄) +  𝐽(𝑃)𝑋𝑄 =  𝑃𝐽(𝑋𝑄)  

        =  𝑃( 𝑄𝐽(𝑋)  +  𝐽( 𝑄)𝑋)  =  0. 

Similarly,  𝐽( 𝑄𝑋 𝑃)  = 0. So  

𝐽(𝑋)  =  𝐽(𝑃𝑋𝑃) +  𝐽(𝑃𝑋𝑄) +  𝐽(𝑄𝑋𝑃)  +  𝐽(𝑄𝑋𝑄)  =  0  

for all 𝑋 ∈  𝑢. 

 

Lemma 3.5: 

Let 𝑇 =  𝑃 ∆(𝑃)𝑄 −  𝑄∆(𝑃)𝑃 and the mapping 𝐼 ∶  𝑢 ⟶  𝑢 be 

defined by  

𝐼(𝑋)  =  𝑃∆(𝑃𝑋𝑃 +  𝑄𝑋𝑄)𝑄 +  𝑄∆(𝑃𝑋𝑃 +  𝑄𝑋𝑄)𝑃. 

Then for every 𝑋 ∈  𝑢 we have  
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𝐼(𝑋)  =  𝑋𝑇 −  𝑇𝑋. 

 

Proof. 

 All 𝑌 ∈ 𝑢 satisfy  

0 =  ∆((𝑃𝑌𝑃)(𝑄𝑌𝑄) + (𝑄𝑌𝑄)(𝑃𝑌𝑃))  

 (3.5)                      =  𝑃𝑌𝑃∆(𝑄𝑌𝑄)  + ∆(𝑃𝑌𝑃)𝑄𝑌𝑄  

+𝑄𝑌𝑄∆(𝑃𝑌𝑃)  + ∆(𝑄𝑌𝑄)𝑃𝑌𝑃. 

From this, for every 𝑌 ∈ 𝑢, we obtain  

 (3.6)                         𝑃𝑌𝑃∆(𝑄𝑌𝑄)𝑄 +  𝑃∆(𝑃𝑌𝑃)𝑄𝑌𝑄 =  0  

and  

 (3.7)                        𝑄𝑌𝑄∆(𝑃𝑌𝑃)𝑃 +  𝑄∆(𝑄𝑌𝑄)𝑃𝑌𝑃 =  𝑂. 

For any 𝑋 ∈  𝑢 replace 𝑌 by 𝑋 + 𝑃 in (3.6). This gives 

 𝑃𝑋𝑃∆(𝑄𝑋𝑄)𝑄 + 𝑃∆(𝑄𝑋𝑄)𝑄 + 𝑃∆(𝑃𝑋𝑃)𝑄𝑋𝑄 + 𝑃∆(𝑃)𝑄𝑋𝑄 = 𝑂. 

Hence, replacing 𝑋 by 𝑄𝑋𝑄 in the previous equation, we get that 

𝑃∆(𝑄𝑋𝑄)𝑄 +  𝑃∆(𝑃)𝑄𝑋𝑄 =  0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑋 ∈  𝑢. 𝐼𝑓 𝑋 =  𝑄  

In this relation, then 𝑃∆(𝑄)𝑄 +  𝑃∆(𝑃)𝑄 =  𝑂.  

Now, for any 𝑋 ∈  𝑢 replace 𝑌 by 𝑃𝑋𝑃 +  𝑄 in (3.6) we obtain  

𝑃𝑋𝑃∆(𝑄)𝑄 +  𝑃∆(𝑃𝑋𝑃)𝑄 = 0. 

According to these relations we have −𝑃𝑋𝑃∆(𝑃)𝑄 + 𝑃∆(𝑃𝑋𝑃)𝑄 =

𝑂. Similarly, we can obtain from relation (3.7) that  

𝑄∆(𝑄𝑋𝑄)𝑃 + 𝑄𝑋𝑄∆(𝑃)𝑃 = 0 𝑎𝑛𝑑 − 𝑄∆(𝑃)𝑃𝑋𝑃 + 𝑄∆(𝑃𝑋𝑃)𝑃 = 0  
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𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋 ∈ 𝑢. These relations and Lemma 3.2 imply  

𝐼(𝑋) = 𝑃∆(𝑃𝑋𝑃)𝑄 + 𝑃∆(𝑄𝑋𝑄)𝑄 + 𝑄∆(𝑃𝑋𝑃)𝑃 + 𝑄∆(𝑄𝑋𝑄)𝑃 

=  𝑃𝑋𝑃∆(𝑃)𝑄 − 𝑃∆(𝑃)𝑄𝑋𝑄 + 𝑄∆(𝑃)𝑃𝑋𝑃 − 𝑄𝑋𝑄∆(𝑃)𝑃 

=  𝑋𝑃∆(𝑃)𝑄 − 𝑃∆(𝑃)𝑄𝑋 +  𝑄∆(𝑃)𝑃𝑋 −  𝑋𝑄∆(𝑃)𝑃 

= 𝑋𝑇 − 𝑇𝑋. 

 

Lemma 3.6: 

 Let 𝑋 ∈ 𝑢. Then  

 (a) 𝐼𝑓 𝑃𝑋𝑃𝑍𝑄 = 𝑂 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑍 ∈ 𝑢, 𝑡ℎ𝑒𝑛 𝑃𝑋𝑃 = 𝑂; 

(b) 𝐼𝑓 𝑃𝑍𝑄𝑋𝑄 = 𝑂 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑍 ∈ 𝑢, 𝑡ℎ𝑒𝑛 𝑄𝑋𝑄 = 𝑂.  

 

Proof. 

 (a) Write 𝑋 =  (𝐴, 𝑁). Let 𝑀 ∈ 𝑀, and set 𝑍 = (0, 𝑀). We have 

𝐸𝑀 𝐸′ = 𝑀 by assumption and 𝐸𝑁 =  𝑁 for all 𝑁 ∈ 𝑀 from the 

proof of Lemma 3.2. Hence,  

𝐸𝑁𝐸 =  0 𝑎𝑛𝑑    0 = 𝑃𝑋𝑃𝑍𝑄 =  (𝑂, 𝐸𝐴𝐸𝑀𝐸′) = (𝑂, 𝐴𝑀), 

so 𝐴 ∈ 𝑙. 𝑎𝑛𝑛 𝑀𝐴
 . Hence, by assumptions we obtain 𝐸𝐴𝐸 =  0, 

therefore 𝑃𝑋𝑃 =  (𝐸𝐴𝐸, 𝐸𝑁𝐸)  =  𝑂.  

Similarly, we can show that (b) holds.  
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Lemma 3.7: 

For every 𝑋 ∈  𝑢 we have  

𝑃∆(𝑄𝑋𝑄)𝑃 =  0,         𝑄∆(𝑃𝑋𝑃)𝑄 =  0,            𝑃∆(𝑃𝑋𝑄)𝑃 =  0,  

𝑄∆(𝑃𝑋𝑄)𝑄 =  0,        𝑃∆(𝑄𝑋𝑃)𝑃 =  0,          𝑄∆(𝑄𝑋𝑃)𝑄 = 0.  

Proof. Using (3.5) we see that for all 𝑌 ∈  𝑢, we have  

𝑃𝑌𝑃∆(𝑄𝑌𝑄)𝑃 +  𝑃∆(𝑄𝑌𝑄)𝑃𝑌𝑃 =  𝑂. 

For any 𝑋 ∈  𝑢 replace 𝑌 by 𝑄𝑋𝑄 + 𝑃, so 𝑃∆(𝑄𝑋𝑄)𝑃 =  𝑂. 

Similarly, replacing 𝑌 by 𝑃 𝑋 𝑃 + 𝑄 in (3.5), and multiplying the 

resulting equation by 𝑄 both on the left and on the right, yields 

𝑄∆(𝑃 𝑋 𝑃)𝑄 =  0, for all 𝑋 ∈  𝑢.  

If we multiply (3.1) by 𝑃 and replace 𝑌 by 𝑃, we obtain 

𝑃∆(𝑄𝑋𝑃)𝑃 = 0 for all 𝑋 ∈  𝑢, since Lemma 3.2 holds. Similarly, 

multiplying (3.1) by 𝑄 and replacing 𝑌 by 𝑃, we get 𝑄∆(𝑄𝑋𝑃)𝑄 =

 0 for all 𝑋 ∈  𝑢.  

As above, from (3.4) and Lemma 3.2, we have 𝑃∆(𝑃 𝑋𝑄)𝑃 =  0 

and  

𝑄∆(𝑃𝑋𝑄)𝑄 =  0,            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋 ∈  𝑢. 

 

Lemma 3.8: 

The mapping 𝐷 ∶ 𝑢 ⟶  𝑢 defined by 𝐷(𝑋) = 𝑃∆(𝑃 𝑋 𝑃)𝑃 +

 𝑃∆(𝑃𝑋𝑄)𝑄 +  𝑄∆(𝑄𝑋𝑃)𝑃 +  𝑄∆(𝑄𝑋𝑄)𝑄   is a derivation.  
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Proof. 

 𝐷 is an 𝑅-linear map. From (3.3) and Lemma 3.7 it follows 

immediately that  

𝑃∆(𝑃𝑋𝑃𝑌𝑄)𝑄 =  𝑃𝑋𝑃∆(𝑃𝑌𝑄)𝑄 +  𝑃∆(𝑃𝑋𝑃)𝑃𝑌𝑄  

for all 𝑋, 𝑌 ∈  𝑢. So for every 𝑋, 𝑌, 𝑍 ∈  𝑢 we have 

𝑃∆(𝑃𝑋𝑃𝑌𝑃𝑍𝑄)𝑄 =  𝑃𝑋𝑃𝑌𝑃∆(𝑃𝑍𝑄)𝑄 +  𝑃∆(𝑃𝑋𝑃𝑌𝑃)𝑃𝑍𝑄.  

On the other hand,  

𝑃∆(𝑃𝑋𝑃𝑌𝑃𝑍𝑄)𝑄 =  𝑃𝑋𝑃𝑌𝑃∆(𝑃𝑍𝑄)𝑄  

                        +𝑃𝑋𝑃∆(𝑃𝑌𝑃)𝑃𝑍𝑄 +  𝑃∆(𝑃𝑋𝑃)𝑃𝑌𝑃𝑍𝑄. 

By comparing the two expressions for 𝑃∆(𝑃𝑋𝑃𝑌𝑃𝑍𝑄)𝑄, we arrive 

at 𝑃(∆(𝑃𝑋𝑃𝑌𝑃) − ∆(𝑃𝑋𝑃)𝑃𝑌 − 𝑋𝑃∆(𝑃𝑌𝑃))𝑃𝑍𝑄 = 0 . 

for any 𝑍 ∈ 𝑢. Therefore, by Lemma 3.6, we have  

𝑃∆(𝑃𝑋𝑃𝑌𝑃)𝑃 =  𝑃∆(𝑃𝑋𝑃)𝑃𝑌𝑃 +  𝑃𝑋𝑃∆(𝑃𝑌𝑃))𝑃. 

Similarly, from (3.4) we get  

𝑃∆(𝑃𝑋𝑄𝑌𝑄)𝑄 =  𝑃∆(𝑃𝑋𝑄)𝑄𝑌𝑄 +  𝑃𝑋𝑄∆(𝑄𝑌𝑄)𝑄  

and  

𝑄∆(𝑄𝑋𝑄𝑌𝑄)𝑄 =  𝑄∆(𝑄𝑋𝑄)𝑄𝑌𝑄 +  𝑄𝑋𝑄∆(𝑄𝑌𝑄)𝑄  

for all 𝑋, 𝑌 ∈ 𝑢.  

Similarly, we can obtain from (3.1), (3.2) and Lemma 3.6 that  

𝑄∆(𝑄𝑋𝑃𝑌𝑃)𝑃 =  𝑄∆(𝑄𝑋𝑃)𝑃𝑌𝑃 +  𝑄𝑋𝑃∆(𝑃𝑌𝑃)𝑃 



 
29 

and  

𝑄∆(𝑄𝑋𝑄𝑌𝑃)𝑃 =  𝑄𝑋𝑄∆(𝑄𝑌𝑃)𝑃 +  𝑄∆(𝑄𝑋𝑄)𝑄𝑌𝑃  

for all 𝑋, 𝑌 ∈ 𝑢.  

These relations with Lemma 3.2 gives us that 𝐷(𝑋𝑌)  =  𝑋 𝐷(𝑌)  +

 𝐷(𝑋)𝑌 for all 𝑋, 𝑌 ∈ 𝑢. That is, 𝐷 is a derivation from 𝑢 into itself. 

Proof of Theorem 3.1. For any 𝑋 ∈ 𝑢we have  

𝑋 =  𝑃𝑋𝑃 + 𝑃𝑋𝑄 + 𝑄𝑋𝑃 + 𝑄𝑋𝑄  

so, by Lemmas 3.3, 3.5, 3.7 and 3.8 it follows immediately that 

∆(𝑋)  =  𝐽(𝑋)  +  𝐼(𝑋)  +  𝐷(𝑋) for all 𝑋 ∈ 𝑢 where 𝛿 =  𝐷 +  𝐼 is a 

derivation and 𝐽 is an antiderivation from 𝑢 into itself such that 

𝐽(𝑃𝑋𝑃)  =  0 𝑎𝑛𝑑 𝐽(𝑄𝑋𝑄)  =  0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑋 ∈ 𝑢.  

Let 𝛿 ∶ 𝑢 ⟶  𝑢   be a derivation and 𝐽′ ∶  𝑢 ⟶  𝑢   be an 

antiderivation such that ∆= 𝛿 +  𝐽′, 𝐽′(𝑃𝑋𝑃)  =  0 and 𝐽′(𝑄𝑥𝑄)  =  0 

for any 𝑋 ∈ 𝑢. So 𝛿 +  𝐽 =  𝛿′ + 𝐽′ and hence 𝛿 − 𝛿′ = 𝐽 −  𝐽′. 

Therefore, 𝐽 −  𝐽′ is an improper antiderivation such that (𝐽 −

𝐽′)(𝑃𝑋𝑃)  =  0 and  

(𝐽 − 𝐽′)(𝑄𝑥𝑄)  = 0. Thus, by Lemma 3.4, we have 𝐽 = 𝐽′ and hence 

𝛿 =  𝛿′. So we have that 𝛿 and 𝐽 are uniquely determined. The 

proof of Theorem 3.1 is thus complete.  

Note that if 𝐽 ≠  0, then 𝐽 is a proper antiderivation (by Lemma 

3.4).  
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Remark 3.9. 

By the above lemmas and the proof of Theorem 3.1, one 

observes that if ∆ ∶  𝑢 ⟶  𝑢    is a Jordan derivation, then the 

following are equivalent.  

 (a) ∆ is a derivation.  

 (b) 𝑃∆(𝑄𝑋𝑃)𝑄 =  0 𝑎𝑛𝑑 𝑄∆(𝑃𝑋𝑄)𝑃 =  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋 ∈ 𝑢. 

(c) ∆(𝑃𝑈𝑄)  ⊆  𝑃𝑈𝑄 𝑎𝑛𝑑 ∆(𝑄𝑈𝑃)  ⊆  𝑄𝑈𝑃.  

We have the following corollary, which was proved by a different 

method in [23].  

 

Corollary 3.10. 

Let 𝐴, 𝐵 be unital algebras over the 2-torsion free 

commutative ring 𝑅, 𝑀 be a unital (𝐴, 𝐵)-bimodule that is faithful as 

a left 𝐴-module and also as a right 𝐵-module. Let 𝑇 =  𝑇𝑟𝑖(𝐴, 𝑀, 𝐵) 

be the triangular algebra. Then every Jordan derivation from 𝑇 into 

itself is a derivation.  

 

Proof. 

 Let 𝐴 ⨁ 𝐵 be the direct sum of 𝐴 and 𝐵 as 𝑅-algebras and 

𝐸 =  (1,0). Consider 𝑇(𝐴 ⨁ 𝐵, 𝑀) as defined in introduction. So 

this trivial extension satisfies all the requirements in Theorem 3.1 

and therefore any Jordan derivation on it satisfies condition (b) of 

Remark 3.9. Therefore, every Jordan derivation on 𝑇(𝐴 ⨁ 𝐵, 𝑀) is 
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a derivation. By the isomorphism given in the introduction we have 

the result. 

 

Remark 3.11. 

Let 𝑇 =  𝑇𝑟𝑖(𝐴, 𝑀, 𝐵) be a triangular algebra satisfying the 

conditions of Corollary 3.10, 𝑃 =  (
1 0
0 0

) be the standard 

idempotent of 𝑇 and 𝑄 =  1 −  𝑃. Suppose that 𝑁 is a unital 𝑇-

bimodule such that 𝑄𝑁𝑃 =  {𝑂} and, let for 𝑁 ∈ 𝑁, the condition 

𝑃𝑁𝑃𝑇𝑄 =  {𝑂} implies 𝑃𝑁𝑃 =  0 and the condition 𝑃𝑇𝑄𝑁𝑄 =  {𝑂} 

implies 𝑄𝑁𝑄 = 0. Then (𝑃, 0) and (𝑄, 0) are idempotent of 𝑇(𝑇, 𝑁) 

such that  

 (𝑄, 0)𝑇(𝑇, 𝑁)(𝑃, 0)  =  {(0, 0)}. 

Let (𝑆, 𝑁) 𝐸 𝑇(𝑇, 𝑁) such that  

 (𝑃, 0)(𝑆, 𝑁)(𝑃, 0)𝑇(𝑇, 𝑁)(𝑄, 0)  =  {(0, 0)}. 

So for each 𝑆′ ∈  𝑇 we have (𝑃, 0)(𝑆, 𝑁)(𝑃, 0)(𝑆′, 𝑂)(𝑄, 0)  =  (0,0) 

and hence (𝑃𝑆𝑃𝑆′𝑄, 𝑃𝑁𝑃𝑆′𝑄)  =  (0,0). Therefore, 𝑃𝑆𝑃𝑇𝑄 =  {0} 

and 𝑃𝑁𝑃𝑇𝑄 =  {0}. By assumption, we have 𝑃𝑆𝑃 =  0 and 

𝑃𝑁𝑃 =  0. So (𝑃, 0)(𝑆, 𝑁)(𝑃, 0)  =  0. Similarly, if 

(𝑃, 0)𝑇(𝑇, 𝑁)(𝑄, 0)(𝑆, 𝑁)(𝑄, 0) = {(0, 0)}, then (𝑄, 𝑂)(𝑆, 𝑁)(𝑄, 0)  =

0. Therefore  

𝑇(𝑇, 𝑁) ≅  (
(𝑃, 0)𝑇(𝑇, 𝑁)(𝑃, 0) (𝑃, 0)𝑇(𝑇, 𝑁)(𝑄, 0)

0 (𝑄, 0)𝑇(𝑇, 𝑁)(𝑄, 0)
) . 

Thus, 𝑇(𝑇, 𝑁) is a triangular algebra. So by Corollary 3.10 every 

Jordan derivation from 𝑇(𝑇, 𝑁) into itself is a derivation.  
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Let 𝐴 be a unital algebra over 𝑅 and 𝑀 be a unital 𝐴-bimodule.  

An 𝑅-linear map 𝛿 from 𝐴 into 𝑀 is a Jordan derivation (derivation) 

if and only if the 𝑅-linear map ∆∶  𝑇(𝐴, 𝑀) ⟶  𝑇(𝐴, 𝑀), given by 

∆(𝐴, 𝑀)  = (0, 𝛿(𝐴)), is a Jordan derivation (derivation). From this 

result and Remark 3.11, we have the next corollary which is a 

generalization of Corollary 3.10.  

 

Corollary 3.12. 

Let 𝑇 =  𝑇𝑟𝑖(𝐴, 𝑀, 𝐵) be a triangular algebra satisfying the 

conditions of Corollary 3.10 and 𝑁 be a unital 𝑇-bimodule as in the 

Remark 3.11. Then every Jordan derivation from 𝑇 into 𝑁 is a 

derivation.  

We now provide an example of trivial extension which satisfies 

conditions of Theorem 3.1, but is not a triangular algebra.  

 

Example 3.13. 

Let 𝑅 be a 2-torsion free commutative ring with unity and A 

be the 𝑅-algebra of 2 𝑥 2 lower triangular matrices over 𝑅. We 

make 𝑅 into an A-bimodule by defining 𝑅𝐴 =  𝑅𝐴22 and 𝐴𝑅 =

 𝐴11𝑅 for all 𝑅 ∈  𝑅, 𝐴 ∈  𝐴. Let 𝐸 =  𝐸11. Then the conditions of 

Theorem 3.1 hold for 𝑇(𝐴, 𝑅) but this trivial extension is not a 

triangular algebra because the map ∆ ∶  𝑇(𝐴, 𝑅) ⟶  𝑇(𝐴, 𝑅) defined 

by ∆(𝐴, 𝑅)  =  (𝑅𝐸21, 𝐴21) is a proper antiderivation, while by the 

above corollary, triangular algebras have no nonzero proper 

antiderivation. (We denote 𝐸𝑖𝑗 for the matrix units, for all 𝑖, 𝑗. )  
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