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Introduction 

 
   Through this paper all rings are associative with unity and all modules are 

unitary right modules. We recall some relevant notions and results. A 

submodule N of an R-module M is essential in M (briefly N      M) if N ∩ W 

= (0), W ≤ M implies W = (0) . as generalization of essential the concept of t-

essential is introduced by Asgari and Haghany in 2011 they said that a 

submodule   of an  -module   is t-essential in  (written         if 

whenever       (       implies     (   where    (   is the 

second singular submodule of  , and      (   is  (or Goldi torsion) defined by 

 (
 

 (  
 ) =   

  (    

 (  
  where  (           (   for some essential ideal of 

 }. A submodule   of   is called a small submodule of   if whenever 

          ,   is a submodule of     implies    . 

In [5] Truong and Phan studied some properties of e-supplemented  and e-lifting  

modules . in their work introduced e-small submodule in  , a submodule   of 

  is called e-small in   if       with        implies    . Also, they 

studied e-lifting module , a module   is called e-lifting if for any    , there 

exista a decomposition       such that     and     e-small in    and 

they investigated properties of e-lifting. Moreover, they studied e-supplement 

module, a module   is called e-supplemented  if every submodule of   has an 

e-supplement in  . Let  ,   be submodule of   .   is called an e-supplement of 

  in  , if       and     is e-small in  . 
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This work consists of two chapters. In chapter one we deal with certain knows 

result about some properties of e-supplemented and e-lifting modules which 

introduced by Truong  and  Phan in [5] . In chapter two we define and study t-

lifting module and t-supplemented module. A module   is called t-liting if for 

any     there exists a decomposition       such that      and      

t-small   , a submodule   of   is called to be t-small in  ( denoted by 

    ) if       with        implies    . A module   is called t-

supplemented if every submodule of   has a t-supplemented in  . Let     be 

submodules of  ,   is called t-supplement  of   in    if       and  

      . 

 

 

 

 

 

 

 

 



 

  
 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                                                  
 

4 
 

Definition 1-1 [6]:  Let R be a commutative  ring  with unity and let M be a 

unitary  right R- module. A submodule N of M is said to be essential submodule  

in M (denoted by N  ess M) if for any submodule K of M, N   K = 0 implies 

that K=0 , or N  ess M  if N   K   0   K   M. 

Definition 1-2 [5] :  Let R be a ring and let M be a right R-module. A 

submodule N of M is said to be small submodule (denoted by N   M) if for any 

submodule K of M such that N+K = M , implies  K=M . 

Definition 1-3 [6]:  A submodule N of M is said to be direct summand ( 

denoted by N  M)  if for any submodule K of M such that N   K = 0 then 

N+K=M. 

Definition 1-4 [5]:  Let U a submodule of M , a submodule V of M is called a 

supplement of  U if V is a minimal submodule of M with the property U+V=M . 

Definition 1-5 [5]:  Let M be an R-module and M is called lifting module if   

N  M,   K ,  ́   M , such that K   N and K   ́= M  and N    ́    ́ . 

Definition 1-6 [5]:  A submodule  N of M  is said to be  e – small in M ( 

denoted by  N <<ess M ) , if  N+L = M with L ≤ess M implies L = M . 

Definition 1-7 [5]: A module M is called e-lifting if, for any N ≤ M, there 

exists a decomposition M=A  B such that A ≤ N and N B <<ess M. 
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Definition 1-8 [5]:  A module M is called duo, if every submodule of M is 

fully invariant. 

Definition 1-9 [5]: Let N , L be submodule of M . L is called an e-supplement 

of N in M if M= N+L and N   L is e-small in L . A module M is called e-

supplemented  if every submodule of M  has an e-supplement  in M. 

Definition 1-10 [5]:  A module M is called amply  e-supplemented  if, for 

any submodules A , B of  M with M = A+B, there exists an e-supplement  P of 

A such that P   B . 

Definition 1-11 [4]: A module M is said to be π-Projective  if, for every  

two submodules U , V of  M with U +V = M, there exists ƒ   End(M) with 

Im(ƒ )   U and Im(1 – ƒ )   V .  

Definition 1-12 [4] :For R – modules  N  and A. N is said to be A – 

projective , if every submodule  X  of  A , any homomorphism  ∅: N   A / X 

 can be lifted to a homorphism ,  𝜑 : N   A , that is if                 , be 

the natural epimorphism , then there exists a homorphism  𝜑 : N   A such 

that    °  𝜑=   ∅   

Definition 1-13 [4] :A module  M is called  projective if  M  is  N – 

projective for every  R – module  N . If M  is  M – projective , M  is called 

self – projective . 
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Definition 1-14 [4]:  Z2(M) or ( Goldi torsion) is defined  by  Z (M / Z(M)) = 

Z2(M) / Z(M) where Z(M) = {x   M : xI = (0) for some essential ideal of R } .In 

fact  Z(M) = { x   M : ann(x)  ess R } where  ann (x) = {r    R : xr = 0 } . 

Definition 1-15 [4]:  A module  M  is called singular  ( nonsingular )  if  

Z(M) = M(Z(M)= 0) . 

* Z2(M) = {x   M : xI = (0) for some t-essential ideal I of R } .    

Definition 1-16 [4]: A  module  M  is  called Z2- torsion if Z2(M) = M  and a 

ring  R  is called  right Z2 – torsion if  Z2(RR) = RR . 

Definition 1-17 [1]: A submodule  A of  M  is said to be  t- essential in  M ( 

denoted by  A  tes  M )  if for every submodule  B  of  M , A   B   Z2(M)  

implies that  B   Z2(M). 

* Z2(M) = { x   M : annR  (x)  tes R } , where annR (x) = { r   R : xr = 0} . 

Example 1-18 [4]: Consider  Z12  as  Z-module . It is clear that Z12  is 

singular  module . Hence  Z12  is  Z2- torsion , that is  Z2(Z12) = Z12 . 

* Every essential  submodule  is t- essential ,but the invers is not  true in 

general.  

Example 1-19 [1]:  Let  A  = ( ̅)   Z12 . Then for all B   Z12 and ( ̅)   B   

Z2(Z12) = Z12 then B    Z2(Z12) = Z12 . Hence ( ̅)   tes  M, but  ( ̅)  is not 

essential of Z12 . 
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Proposition 1-20 [1]:The following  statements are equivalent for a 

submodule A of an R – module M .   

1- A is t- essential in M .  

2- A +Z2(M) / Z2(M) is essential in M / Z2(M). 

3- A + Z2(M) is essential in M . 

4- M / A is Z2 – torson . 
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Definition 2-1 [5]: A submodule  N of M  is said to be  e – small in M ( 

denoted by  N <<ess M ) , if  N+L = M with L ≤ess M implies L = M. 

Lemma 2-2 [8]: Let M be a right R- module. Then  

 1. If N <<ess M and K ≤ N , then K <<ess  M and N / K <<ess  M / K . 

2. Let N <<ess   M and  M=X+N. Then M =X  Y for some semisimple 

submodule Y of M. 

 3. If K <<ess  M  and ƒ : M  N is a homomorphism , then 

ƒ (K) <<ess N . In Particular, if  K <<ess M ≤ N , then K <<ess N . 

4. Let K1 ≤ M1 ≤ M , K2≤ M2 ≤ M and M= M1   M2 . 

Then K1   K2 is e- small in M1   M2  if and only if K1 <<ess  M1 and K2 <<ess  M2.  

Definition 2-3 [5]: A module M is called e-lifting if, for any N ≤ M, there 

exists a decomposition M=A  B such that A ≤ N and N B <<ess M. 

Lemma 2-4 [8]: The following  condition are  equivalent for  a module M.    

(1) M is e-lifting .  

(2) for any N  M , there exists a decomposition N = A B such that A is a 

direct summand of M and B  ess  M. 
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(3) For every submodule N of M, there exists a direct summand A of M such 

that  A≤ N and N /A <<ess M /A.                                                                              

Proof (1)    (2) by definition . 

(2)   (3). Let N be a submodule of M. we have a decomposition N=A  B 

,where  A  is a direct summand of M and B <<ess M by (2).Let  π : M M 

/A be the natural  map. since B <<ess M , π(B) <<ess M /A by Lemma 2-2, i.e. 

N /A <<ess M /A . 

(3) (1) . For every submodule N of M , there exists a decomposition M=A

B such that A ≤ N and N/A<<ess M /A by (3) . So N= A  (N B) .Then M /A 

  B and  N/A   N B. 

It follows from N /A <<ess M /A that N B <<ess B . Hence, N B <<ess M. 

Lemma 2-5  [5]: Every direct summand of an e- lifting  module is also an 

e- lifting  module. 

Proof: Let M be an e- lifting module and N be a direct summand of M with 

M=N  L for some submodule L of M. Let A   N. There exists a direct 

summand K of M Such that K   A, M=K  T and A T <<ess T. Then N=K  

(N T), and by Lemma 2-2, A T <<ess  N T. 

Definition 2-6 [5]: A module M is called distributive if its lattice of 

submodules is a distributive lattice , that is A (B+C)=(A B)+(A C) for any 

submodules A, B and C of M.  
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**we give sufficient conditions for a factor module of an e- lifting module to 

be e- lifting. 

Proposition 2-7 [3]: Let M be an e- lifting module and X  M .If one of 

the following conditions are satisfied : 

1-for every direct summand K of M,(K+X) / X is a direct summand of  M / X 

. 

 2- M is a distributive module . 

 3- for any e
2
 = e   End (M), eX       X,  and in particular , X is a fully 

invariant submodule of M , then M / X is an e- lifting  module . 

Proof:1- Let A / X   M / X . Since M is e- lifting , there exists a direct 

summand K of M such that K   A and A / K <<ess  M / K by Lemma 2-4. By 

hypothesis , (K+X)/X  is a direct summand of M / X. Clearly, (K+X ) / X  

 A / X . Since A / K <<ess M / K, A / (K+X) <<ess M / (K+X) by Lemma 2-2. 

Hence, M / X is e- lifting .  

 2- Let M=K  L .We have M / X = ((K+X) / X) + ((L+X) / X) and  X=X+ 

(K L) =  (X+K)   (X+L) .  So  M / X = ((K+X) / X)  ((L+X) / X) . Then 

by (1) ,  M / X  is e- lifting .  

 3- Let M = K   L . Then  K = e M  and  L = (1 – e)M for some  e
2
= e   End 

(M) .  By hypothesis, eX   X  and ( 1-e )X = X.  Hence, e X  = X    K and  

(1 -  e)X = X L . 
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Therefore , X  =( X    K)  (X   L) . Now  (K+X) / X = (K  ( X    L)) / X 

and (L+X) / X=(L  (X K)) / X . Hence, M = K+X+L+X= (K  (X L))+L 

+ X  implies that  M / X = (K  (X    L)) = X+ (L+X ) / X . Since ( k  (X   

L))   (L + X ) = (X   L)    (X   K ) = X,  M / X = ( k  (X   L)) / X  ( L 

+ X ) / X . Thus,  by part  1 . M / X  is an  e- lifting module. 

Lemma 2-8 [4] : The following conditions are equivalent for a module M 

=     . 

1-     is    - projective.                                                                                     

2- For every submodule N of M with M=N+      there exists a submodule N  

of N such that M= N       . 

**[1] A direct sum of  two e-lifting modules is not sure an e-lifting  module . 

Indeed , let R=Z8 , then 2Z8  / 4Z8 and RR are e –lifting modules , but (2Z8  / 

4Z8)  RR is not e-lifting .Now, we show sufficient conditions for a direct sum 

of  two e-lefting  modules to be e-lifting. 

Theorem 2-9 [8]: Let M=M1  M2. If M1 and M2 are e-lifting modules 

such that M1 is quasi- projective and M2- projective, then M is an e- lifting  

module. 

Proof: Let N be a submodule of M. Since M1 is an e-lifting module , there 

exists K   M1   (N+M2) such that M1= K  K  and K   (N+M2)  ess 

M1.Therefore M= K   K   M2= N+( K    2) . Since M1 is quasi-projective 
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and M2-projective, K is K   M2-projective . By Lemma 2-8, there exists a 

submodule N1 of N such that M= N1  (K   2).It follows that N (L+ K  )  

=L (N+ K  ) for any submodule L of M2 . On the other hand , M2 is e-lifting, 

there is a submodule X of M2 (N+ K )=N (M2  K  ) such that M2=X  Y 

and Y   (N+ K )  ess  M2 for some Y  M2 . Hence M= (N1  X)  (Y   

K ).We have N1  X   N and N   (Y   K )=Y   (N+ K ). But Y   (N + K  ) 

 ess Y. Then N   ( Y  K )  ess Y  K  .Thus M is an e-lifting module . 

Corollary 2-10 [7]: If M1 is a semisimple module and M2 is an e-lifting 

module , and they are relatively projective with M1, then M=M1  M2 is an e-

lifting  module. 

**A module M is called duo, if every submodule of M is fully invariant.   

Proposition 2-11 [5]: Let M= M1  M2 be a duo module . If M1 and M2 

are e-lifting  modules, then M is also an e-lifting  module.  

Proof: Assume M1 and M2 are e-lifting  modules . Take any submodule L of 

M. Then L= (L   M1)  (L   M2). For each i  {1,2},there exists a direct 

summand Di of Mi such that Mi=Di  Di  with Di   L   Mi and L   D i  ess 

D i .Therefore M= (D1   D 1 )  (D2  D 2 ) = (D1  D2 )  (D 1  D 2 ).We 

have D1  D2   L and L   (D 1  D 2 )  ess D 1    D 2 . 
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Lemma 2-12 [5]: Let M= N + L .The following  conditions are equivalent: 

( 1) N   L  ess L.                                                                                               

(2 ) If for any submodule K of L with K  ess L and M= N+K, then K=L. 

Proof: (1) (2).  If M= N+K , where K   L and K  ess L, then L =( L   N) + 

K. Since L   N  ess L, L=K. This is a contradiction. 

(2) (1). If L = ( N   L ) + K, where K   L and K  ess L , then M= N+L = 

N+K. 

 By (2) , K=L . So N   L  ess L. 

Definition 2-13 [5]: Let N , L be submodule of M . L is called an e-

supplement of N in M if M= N+L and N   L is e-small in L . A module M is 

called e-supplemented if every submodule of M has an e-supplement in M. 

* It is clear to see that every e-lifting module is e-supplemented .The next 

example shows an e-supplemented module that is not e-lifting. 

Example 2-14 [5]: Let R = Z8 .Since R is perfect, every R-module is 

supplemented. Thus M = R  (2R / 4R ) is e-supplemented and not e-lifting. 

Lemma 2-15 [8]: Let N and L be submodules of a module M such that 

N+L has an e-supplement H in M and N   ( H + L ) has an e-supplement G 

in N . Then H + G is an e-supplement of L in M . 



                                                                                                                                                                                  
 

15 
 

Proof : Let H be an e- supplement of N+L in M and G be an e-supplement of 

 N   (H +L) in N .Then M = (N+L)+H with (N+L)   H  ess H and N = [N   

( H+L ) ] + G with (H+L)   G  ess G . Since (H+G)   L   H   (L+G) +G   

(L+H), H+G is an e-supplement of L in M .   

*Let M be a module . Denote Rade(M) =      

                       .Then Rade(M) = ∑               From the 

definition of an e-supplemented  module , we get the following  properties .  

Lemma 2-16 [7]: Let M be an e-supplemented  module .Then :                  

(1) M / Rade(M) is a semisimple module .                                                         

(2) If L a submodule of M with L   Rade(M) = 0, then L is semisimple .  

Proof : (1),  Let Rade (M)   N    M . There exists X   M such that M = 

N+X and N  X  ess X . So N  X ess M .Then M / Rade(M) = N / Rade(M) 

+ ( X+ Rade(M)) / Rade(M) = N / Rade(M)  (X + Rade(M)) / Rade(M) 

because N   (X + Rade(M)) = (N   X ) + Rade(M) = Rade(M).  

 (2) It is clear by (1) , since L   L  Rade(M) / Rade(M)   M / Rade(M). 

Proposition 2-17 [7]: Let M be an e-supplemented module .Then M= M1 

 M2, where M1 is a semisimple module and M2    M with Rade(M2)  essM2. 

Proof : Let M1 be a submodule of M such that Rade(M)  M1  ess M. Since 

M is e-supplemented , there exists a submodule M2 of M such that M = M1 + 

M2 and M1   M2  ess M2. Hence , M1   M2 is a submodule of Rade(M) . It 
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follows that M = M1  M2 and Rade(M) = Rade(M2) is essential in M2 .By 

Lemma 2-16, M1 is a semisimple  module .  

Lemma 2-18 [5]: Let M1 ,   be submodules of M and M1 be an e-

supplemented module . If M1 +   has an e-supplement in M , then so does  . 

Proof : Since M1 +   has an e-supplement in M ,there exists X   M such 

that X + ( M1 +   ) = M and X  ( M1 +   )   ess X . For ( X + U )   M1 , 

since M1 is an e-supplemented module , there exists Y   M1 such that ( X + 

U )   M1 + Y = M1 and ( X + U )   Y  ess Y .We have X + U + Y = M and ( 

X + U )    Y  ess Y , that is Y is an e-supplement of X + U in  M . Next , we 

will show that X +Y is an e-supplement of U in M . It is clear that ( X + Y ) + 

U = M, so it suffices to show that ( X + Y )   U  ess X + Y . Since Y + U   

M1 + U , X   (Y+U)   X   ( M1 + U )  ess X . Thus ( X + Y )   U   X   ( 

Y+U) + Y   (X+U)  ess X + Y by Lemma 2-2, as required. 

Proposition 2-19 [5]: Let M = M1 +M2 . If M1 and M2 are e-supplemented 

 modules , then M is an e-supplemented  module . 

Proof : Let U be a submodule of M . Since M1 + M2 + U = M trivially has an 

e-supplement  in M , M2 + U  has an e-supplement in M by Lemma 2-18 . 

Thus U has an e-supplement  in M by Lemma 2-18 again. So M is an e-

supplemented  module . 
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Corollary 2-20 [5]: Let M =∑   
 
     . If M1 , M2 , …., Mk are e-

supplemented  modules , then M is an e-supplemented  module .  

Corollary 2-21 [5]:  Let M =    

 

     .Then M is an e-supplemented 

module if and only if M1 , M2 , . . . , Mk are e-supplemented  modules . 

Proposition 2-22 [4]:  If M is an e-supplemented module , then every 

finitely M-generated module is an e-supplemented  module . 

Proof : From corollary 2-20 , we know that every finite sum of e-

supplemented  modules is an e-supplemented  module . Next , we will show 

that every factor module of an e-supplemented  module is again an e-

supplemented  module . Let M be an e-supplemented module and M / N any 

factor  module of M . For any submodule  L of  M containing  N , since M is 

an e-supplemented module , there exists K   M such that L + K = M and L   

K  ess K .Thus M / N = L / N + (N + K) / N and (L / N)   ((N + K ) / N ) = ( 

N + (L    K ))/ N  ess (N + K) / N , that is (N+K) / N is an e-supplement of 

L / N in M / N , as required . 

* A module M is called amply  e-supplemented if, for any submodules  A , B 

of  M with M = A+B, there exists an e-supplement P of A such that P   B . 

* we consider the relation of e-supplemented modules and  amply e-

supplemented  modules . 
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Proposition 2-23 [5]: Let M be an amply e-supplemented  module . Then 

any homomorphic image of M is an amply e-supplemented  module . 

Proof : Assume M is an amply e-supplemented module  and ƒ : M   N is 

any epimorphism . We want to show that N is amply e-supplemented . Let N 

= A + B . Then M =ƒ
-1

(A) + ƒ
-1

(B) . Since M is amply e-supplemented, there 

exists a submodule  X  of  M such that M = ƒ
-1

(A) + X,  ƒ
-1

(A)   X   X    

ƒ
-1

(B). Now, N = A + ƒ(X) and A    ƒ(X) = ƒ (ƒ
-1

(A)   X)  ess ƒ(X). Clearly 

 ƒ(X)   B . 

Proposition 2-24 [5]: Let M be a module . If every submodule of M is an 

e-supplemented  module, then M is an amply e-supplemented  module . 

Proof : Let L , N   M and M = N + L . By assumption , there is H   L such 

that (L   N) + H = L and (L   N)   H = N   H  ess H. Thus L = H + ( L   

N)   H + N and hence M = (N + L)   H + N. Therefore, M = H + N as 

desired. 

Corollary2-25 [5]: The following  statements are equivalent  for  a ring R. 

 1*Every  module is amply e-supplemented .  

 2* Every  module  is e-supplemented .    

*[5]A module M is said to be π-Projective if, for every  two submodules U , V 

of  M with U + V = M, there exists ƒ   End(M) with Im( ƒ )   U and Im(1 –

ƒ )   V .  
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Theorem 2-26 [4]: Let M  be a module .If M is a π-projective e-

supplemented  module , then M  is an amply e-supplemented  module. 

Proof : Let A , B be submodules  of  M such that M = A + B. By the 

hypothesis  M  is π-projective, there exists an endomorphism  e of M such 

that e(M)   A and (1 – e)(M)   B. Note that (1 –  e )(A)    A .Let C be an e-

supplement of A in M. Then M = e(M) + (1– e)(M) = e(M) + (1 – e)(A + C) 

  A + (1 – e)(C)    M, so M = A +(1– e)(C). We see that (1 – e)(C) is a 

submodule of B. Let  y   A   (1 – e)(C). Then y   A and y = (1– e)(x) = x – 

e(x) for some x   C . Next, x = y + e(x)    A, so y   (1– e)(A   C). But, A   

C  ess C, which gives A   (1–e)(C) = (1 –e)(A  C)  ess (1–e)(C). Thus (1–

e)(C) is an e-supplement of A in M .Thus M is an amply e-supplemented 

module. 

Definition 2-27 [1]:A submodule  N of M is  said to be t-small in M 

(denoted by N   t M) if  N+L = M  with  L   tes  M  implies  L = M . 

Definition 2-28 [1]: A module M  is called t-lifting if for any N   M then 

exists a decomposition M = A  B such that A   N and N   B  t M . 

Definition 2-29 [1]: Let  N , L be a submodule  of  M  , L is called  t-

supplement of  N in M if M = N+L then  N   L  t L  . A module M is called  t-

supplemented of every submodule of M  has a  t-supplement in M . 
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Lemma 2-30 [2]:1- If  N   t M  and K    N then K  t M  and  N / K  t  M / 

K.  2-N  + L  t  M if and only if  N  t M and L  t M . 

3-If  K t M and ƒ :M   N is a homomorphism  then ƒ(K)  t N. In  particular  

if  K   t  M   N , then K   t N . 

4- Let  K1     M1     M, K2      M2 and M = M1  M2  then K1  K2   t  M1  M2 

 if and only if  K1  t M1 and K2  t M2.  

Proof 1: Suppose  L   tes  M and L+K = M , then N+L = M , thus  L=M  for N 

 t M , so K  t  M .  

If  L   M with  L / K    tes  M / K and L / K +  N / K = M / K , then N + L = M  

and L   tes M . Hence  L = M and  L / K = M / K . Thus N / K   t  M / K . 

Proof 2 :Suppose N + L  t M,  to prove N  t M and L  t M.  Let N + L  t M  

and N   N + L and  L   N + L , by (1) N  t M and L  t M . 

Suppose N  t M and L  t M , to prove N + L  t M . Let  N  t M and L  t M , 

N + L + K = M  with K  tes M , since N  t M then L + K = M  also L   t  M  

then K = M . Hence N +  L  t M . 

Proof 3:Suppose A   tes N and A + ƒ(K) = N , ƒ
-1

(A)  tes M  by [Asqar , 2014 ], 

and ƒ
-1

(A) + K = M and since K  t M , we have ƒ
-1

(A) = M  then A = ƒ(M) = N . 
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Proof 4 :Let K1  K2  t M , to prove K1  t M and K2  t M , Let K1 + T1 = M1 

and K2 + T2 = M2 with T1  tes M1 and T2  tes M2 . K1 + T1 + K2 +T2 = M1 + M2 

  K1 +K2 + T1 + T2 = M1 + M2 then T1 + T2 = M1 + M2 and T1 = M1 , T2 = M2 . 

Let  K1  t M and K2  t M  to prove  K1  K2  t M, K1 + K2 + T = M1 + M2 such 

that T = T1 + T2 , T1  tes M1 and T2  tes M2 . K1 + T1 + K2 + T2 = M1 + M2 , then 

K1 + T1= M1 and K2 + T2 = M2 , but K1  t M , then T1 = M1 and K2  t M2 , then 

T2 = M2 , we got T1 + T2 = M1 + M2 thus  K1  K2  t M1 + M2 . 

Lemma 2-31 [2]:The following  statements are equivalent : 

1- M is t- lifting .  

2- For any N   M , there exist  N = A  B such that A   M and B  t M . 

3- For each submodule N of M , there exist A   M such that A   N and N / A 

 t  M / A . 

Proof : 1 2 by definition. 

2 3 Let N  M , we have a decomposition N = A B , where A  M and B  t M 

by (2) π:M   M/A be the natural map , since B  t M , π(B)  t M by Lemma 2-

30 , i.e N / A   t M / A . 

3 1For each N  M there exists a decomposition M = A  B such that A   N 

and N / A  t M / A by (3). So N=N  M=N (A  B )=(N  A)  (N   B)=A  (N 
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 B) then M / A   B and N / A   N   B . It follows form N / A  t M / A that N 

  B  t B . Hence N   B  t M .  

Lemma 2-32 [1]:  Every direct summand of a t – lifting  module is also a t-

lifting  module .  

Proof :Let M be a t-lifting module and N   M with M = N  L for some L  M 

, let A   N , there exist  K   M such that K   A , M = K  T and A   T  t T , 

then N = N  M , N = N  (K  T )= (N  K)  (N  T) = K  (N  T) and by 

Lemma 2-30  A  T  t N  T .  
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