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1. Introduction

[4] M.A Naimark, "Normed Algebras",15* .Ed. Academy of Science
U.S.S.R, springer, 1972. [2] E. Kreyszig, Introductory Functional
Analysis with Applications, John Wiley & Sons, New York,
Chichester, Brisbane, Toronto and Singapore, 1978. [1] R. SAADATI
and S.M. VAEZ POUR, "Some Results on Fuzzy BANACH
SPACES", Korean, (2005). [3] Sorin Nadaban, "on Fuzzy Normed
algebras, University of Timisoara, 2008.

Now , in this paper we study completion of quasi-normal algebra and
completion of module algebra. This paper contains two chapter.

Chapter one consist of three sections, in section one we recall all
definitions and concepts related to quasi-normed space.

In section two we study all concepts related algebra.

In section three we study all definitions and concepts related of symmetric
algebra.

Chapter two concepts of three sections, in section one we study
the definition fuzzy normed spaces and some properties with proofs.
We start this section by the following definition. In section two at first
we define Quotient spaces and give several examples of these spaces,
and then we define Quotient spaces. In section three at first we define
Fuzzy normed algebras and give several examples of these algebras,

and then we define Fuzzy normed algebras.



Section One:

1.1. Basic concepts and Definitions

In this section, we introduce some concepts and definitions related of main
subject.

Definition 1.1.1 [4]: (vector space) : let X be a non-empty set of objects in

which two operation addition(+) and multiplication by scelars(:) are

defined we say that (X,+, -) a vector space if satisfying the following :
1-x + y € X, forall x,ye X

2-x +y =y + x,forallx,ye X

Fx+(y+ 2= +y)+zforallx,y,z € X
4-Thereexists0 € X3 X+0=0 4+ x = x (Called 0 zero vector)

5- Forallx € X,there exists —x € Xsuch thatx + (—x) = (—x) +

x=0.

6-a.x € X, forallx € X,ae R

/-a.(x +y) =a.x + a.y, forallx,y € X, forall a€ R
8-(a+ b).x =a.x + b.x,forallx€ X, foralla,b eR
9-(a.b).x=a.(b.x),forallx € X,a,b€R

10- I . x = x, for all x € X such that I is identity element multiplication.

Definition 1.1.2 [4]: (normed space ): Let X be a vector space over field F.

A function ||.||: X - R is called norm on X if satisfy in the following

conditions:
1-x 1 =0, forall x € X.

2-l xIl= O0ifand only if x = 0.



3-AN=[A NI x]l, forallx € X ,for allA € F.
4-x + ylI<Ux N +lIlyll, forallx,y € X.

The pair (X, II.11) is called normed space. Such that X is a vector space over

the field F and |I.|l a norm on X.
if F = R then X is a real normed space , while

if F = C then X is a complex normed space.

Remark : Every sub space of normed space is normed space.

Theorem1.1.3 [4] : If the X is a normed space, then

-1 01=0

2- l—xll= x|, forallx €X
3-llx—=yll=1ly —xIl, forallx,y€eX

- |1llxll—Nlyll] < llx—yl forallx,y €X
Proof :

Properties (1.2) are concluded from the definition directly .

A-lllxl =Nyl lx—y Il forallx,y€eX

x =x-y)+y

lxl=0(x—y+yl<lx—yl+iyl
Nl = Byl < x =yl 1)
Iyl —lxl <lx—yl
—Uxl=TymD<lx—yl

Tx =0y I= =0 x =yl o (2)

From (1) and (2) we have



—Nx—-—ylIsllxll =llylslx—=yl
[Txl =0yl <lx-—yl.

Remark : Now remember some important inequality

1- (Holder's in equality) If p,q € R such that%+% =1

Z Iyl < [Zw]% [;w]

And special if itis p = 2theng = 2

Y il <[ b [Zw]

i=1

Q|-

N[

Called (Cauchy-Schwar's inequality)

2- ( Min kowsk's inequality ) : If p >

(Z I, + ym’); < (z I |P)5+ (Z | ym’)

Some important examples on normed space

1

52

Example 1.1.4 [4] : The vector space R is be normed space if

lx1l=|x|Vx€X.
Solution:
1-Since |x|= 0= lIx|I =0
2-l x =0 & x| =

S x =0

3-letx € Xand A€ F



| Ax Il = [Ax| = |Allx] = |4 I x |l
4-let x,y € X
lx +y I=lx+yl< |x|+]yl =lxl+1yl.

Example 1.1.4 [4]: Let the function || . |I: R®* — R

n

1

I xl = (Exl?)z.
i=1

Forall x = ((x4,x5, ..., x,,) € R™ then ||. |l is norm on R"

Solution :

1-since x> =20Vi=1,..n=lx =0
1
-l xl= 0= XL, x7)2=0

& ) x2=0

n
i=1
SxP=0vi=1.2,..,n
Sx=0vi=12.,n
x=0
3-letxe R,Ae R

Ax = A(xq, e, X)) = (Axq, .o, AX,)

laxll = O x)?)z = Y 2z = Al

4-let x,y € R"
X4y = (X1, X0) T(V1s s Yu)= (X1 + Y1y, X+ )

I x +y =k, (x; + yl-)z)% (by Min Kowk's inequality)



n n
1 1
I x +y 1< Qa7+ y2)2 = lxll+ Iyl
i=1 i=1

Examplel.1.5 [4]: Let||.|| : R®™ — R be a function defined

I x I = max {|x{|,|x,],...,|x,|} for all x = (xq,...,x,,) then || .|| is a

norm on R".
1-since |x;| = 0,forall i =1,..,.n= ||x||=0
2- |l x = 0 & max {|x,]|,....|x,]}= 0
< x| =0, foralli=1,2,...,n
S x;=0,foralli=12,..,n
=Sx=0
3-let1e R,xe R"
Ax = A(xq, ) Xy)
= (Axq, ..., Axy)
I Ax ll= max {|Ax,]|, ..., |Ax,|}
= max {|A||x], ..., |x, |}
= [Al max {|x], ..., [xn [} = [A]]x].
4-let x,y € R
x +y =000 X0) * V10 V) =1+ Y1, 00, X + V)

Il x +y lI=max {|x; + y.1, ..., [x + Y[}

< max {|x1| + |)’1|u” |xn| + |Yn|}
<max {|xl, ..., 1x, [} + max {{y1|, ..., |y.[}
=lxll+1yl.



Definition 1.1.6 [4]: Let X be a linear space A quasi-norm is a real valued

function on X satisfying the following :
1- |[x|] = 0 forall x € X and ||x|| =0 ifand only if x =0
2- ||Ax]| = |A||lx]| forall A€ Rand all x € X .

3- There is constant k > 1 such that ||x + y|| < k(llx]| + |ly]) for all
x,y € X. The pair (X ,||.]]) is called a quasi-normed space if ||. || is a quasi-

normon X.
* A (uasi-Banach space is a complete quasi-normed space .
A quasi-norm ||. || is called ap-norm (0 <p < 1 if

llxx + 1P < [P + [yl

For all x,y € X . In this case , a quasi-Banach space is called a p-Banach

space.



Section Two:

1.2. Normed Algebra

In this section, we recal and definitions related to linear algebra, normed
algebra and topological algebra.

Definition 1.2.1 [4]: (linear algebra) : we shall say that X is a linear algebra

if X is a linear space with an operation of multiplication () (which in

general is not commutative) satisfying the following conditions:-
1-(x.y).z=x.(y.z) forallx,y,z €R

2-x. (y+z)=x.y + x.z forallx,y,z €R
3-A(x.y)=@Acex).y=x.(Aoy) forallx,y,z ER,AEF.
Then (X, +,0,") is algebra space.

Definition 1.2.2 [4]: In element x, y in the algebra X are said to commute

if xy = yx an algebra is said to be commutative if any two of it's elements
commute.

Definition 1.2.3 [4]: let (X, +,0,7) is linear algebra and let @ + M < X then

(M, +,0,") is called sub algebra if (M, +,0,") Is itself algebra.

Definition 1.2.4 [4]: Let M be a commutative sub algebra of the algebra

(X,+,0,) and M # X then (M, +,0,7) is called maximal if is not contained

in any element a commutative sub algebra.

Theorem 1.2.5 [4]: Every commutative sub algebra is contained in a

maximal commutative sub algebra.

Theorem 1.2.6 [4]: Every element X is contains in a maximal commutative

sub algebra.



Definition 1.2.7 [4]: (linear algebra)

Let X be a linear space. Then X is said to be algebra if there exist operation
on X (-: XXX = X) its called The multiplication operation if the

following axioms are realized;,
1-z - (ax+ By)= a(z - x)+ By - z), forallx,y,z €X

foralla,f €R

2-(ax+ By)- z = alx - z2)+ By - z), forallx,y,z €X
foralla,f €ER

z(ax)=a(z-x)=(az)-x ©p =0

x+y)-z=x-z+y- -z
z - (x+y) =z -x+z-y
It is said about algebra X as
1- Associative algebra if
x-(y-2)=x-y) z forallx,y,z € X
2- Algebra with identity if there exist I € X
Suchthat! - x = x - I ,x € X, then I is called identity element

3- Commutative algebraif x - y=y - x,x,y € X.

Definition 1.2.8 [4]: (Algebra with identity)

An algebra X is called an algebra with identity if X contains an element

which satisfies the condition ex = xe = x forall x € X.



The element e itself which condition (7) is called an identity of the algebra
X.

Theorem 1.2.9 [4]: Every algebra X with out identity can be considered as

a sub algebra of an algebra with X identity.

Definition 1.2.10 [4]: An element y € X is called a left quasi — inverse of

the element e + x in X e + y is a left inverse of the element e + x in X
that mean if (e +y) (e +x) =e.

Definition 1.2.11 [4]: The center of algebra X is the set of those element

a € X which commutative with all the element of X, The center a
commutative sub algebra of the algebra X.

Definition 1.2.12 [4]: A set I, of element of the algebra X is called a left
ideal X if

1' 11 ¢ X
2- 1. i1s asub space of the linear space X
3-Ifxel,aeXthenax €1

Theorem 1.2.13 [4]: An element x of the algebra with identity has a left

(right) invers if and only if it is not contained in any left (right) ideal

Theorem 1.2.14 [4]: Every left (right) ideal of the algebra with identity is
contained in a maximal left (right) ideal.

Theorem 1.2.15 [4]: An element x of an algebra with identity has a left

(right) inverse if and only if it is not contained in any maximal left (right)

ideal.

Theorem 1.2.16 [4]: Every two-sided ideal of an algebra with identity is

contained in a maximal left (right) ideal.



Theorem 1.2.17 [4]: Every regular (right, left , two-said) ideal can be

extended to a maximal (right, left, respectively, two-said) ideal (which is
obviously regular also).

Theorem 1.2.18 [4]: An element X in the algebra X has a left quasi-inverse

if and only if for arbitrary maximal regular left ideal M, there exist element
suchthat x + y + yx € M.

Theorem 1.2.19 [4]: An element X in the algebra X dose not have a left a

quasi-inverse ifand only if I, = {z + z,},z € X.

Definition 1.2.20 [4]: An element x, in the algebra X with identity is said

to be generalized nilpotent if (e +yx,)™! exist for an arbitrary element
y € X . the set of all generalized nilpotent element in the algebra X is called
it's (Jacobson /radical).

Theorem 1.2.21 [4]: The radical of an algebra with identity coincides with

intersection of all it's maximal left ideal.

Theorem 1.2.22 J4]: The intersection of all maximal left ideal coincides

with the intersection of all maximal right ideal and is the radical of the
algebra.

Definition 1. 2.23 [4]: An algebra is said to be semi simple if it radical

consist of only the zero element.

Definition 1.2.24 [4]: An element x, is said to be generalized nilpotent

x x,+ zx, has a left quasi-inverse for arbitrary z € X and arbitrary
numbers X in this definition X is no large necessarily an algebra with
identity.

Definition 1.2.25 [4]: A mapping X — X' of the algebra X into an arbitrary

algebra X' if x - x" , y = y" imply that Ax — Ax’,



x+y-ox"+y'", xy—>x'y if is the image of algebra X , then the

homomorphism is called a homomorphism of X on to X'.

Definition 1.2.26 [4]: Two algebra X and X' are said to be isomorphic if

there exist isomorphism of X onto X'

Theorem 1.2.27 [4]: Under a homomorphism of the algebra X into the

algebra X', the inverse image I of the zero of X is a two sides ideal in X,

Definition 1.2.28 [4]: (topological algebra )

X is called a topological algebra if :
1- X is an algebra.
2- X is a locally convex topological linear space.

3- The product xy is a continuous function of each of the factors x,y

provided other factor is fixed .

Definition 1.2.29 [4]: A mapping x — x' of the topological algebra X into

the topological algebra X' is called a continuous homomorphism if :
1- x — x" is a homomorphism of the algebra X in to the algebra X'.

2- x = x' is continuous in mapping of the topological space X into the

topological space X'.

Definition 1.2.30[4]: Asubset A € X is said to be a closed sub algebra of
the algebra X if :

1- A'is a sub algebra of the algebra X.

2- A is a closed sub space of the topological space X.

Theorem 1.2.31 [4]: If A is a sub algebra of the algebra X then it's closer

2

is closed sub algebra of X.



Theorem 1.2.32 [4]: The algebra R, (s) is the closer of the algebra R, (s):
Ra(s) = Ra(s)-

Theorem 1.2.33 [4]: The closer of a commutative sub algebra of the

topological algebra is commutative.

Theorem 1.2.34 [4]: A maximal commutative sub algebra of a topological

algebra is closed.

Theorem 1.2.35 [4]: The center z of a topological algebra X is closed

commutative sub algebra in X.

Theorem 1.2.36 [4]: The closer of a ( left , right , two-said ) ideal in a
topological algebra which dose not coincide with the entire algebra is also
(left, right, two-said) ideal in this algebra.

Definition 1.2.37 [4]: (normed algebra ) :

X is called normal algebra if
1- X is algebra.
2- X is normed space.
3- For any two element x,y € X
lxyl = |x]lyl.
4- if X is contains an identity e , then |e| =1

The norm in a normed X defines a topology in X in natural manner recall
that in this topology, the open balls |x — x,| < r with center at x, from a
neighborhood basis of the element x, € X.

Definition 1.2.38 [2]: Let (X,]. ||) be a quasi-normed space.




The quasi-normed space (X, |.]]) is called a quasi-normed algebra if X is an
algebra and there is a constant ¢ > 0 such that ||xy]|| < Cllx|l.[ly|| for all

X,y € X.
A quasi-Banach algebra is a complete quasi-normed algebra.

 If the quasi-norm ||. || is a p-norm then the quasi-Banach algebra is called

a p-Banach algebra.

Definition 1.2.39 [2]: Let (4,|.]) be a Banach algebra and X a module over

A quasi-norm is a real-valued function on X satisfying the following:

1- |[x|| = 0, forall x € X and ||x]|| = 0 ifand only if x = 0.

2- | Ax]|| = |Alllx]|l, for allA € Aand all x € X.

3- There exist constant k > 1 s.t |[x + y|| < k l|x|| + ||lyll, for allx,y € X.

The pair (X, ||.]) is called a quasi-normed module over A if ||. | is a quasi-

normon X.
A quasi-banach module over A is a complete quasi-normed module over A.

Definition 1.2.40 [4]: Let (X,[|.[l,) and (y,[I.l,) be a quasi-normed

algebras.

1- A mapping L: X = Y is said to be isometric or an isometric if for all

x,y €X.
ILx — Lyll, = llx—yll, .

2- The algebra X is said to be isometric with algebra Y if there exist a
bijective isometry of X onto Y . The algebra X and Y are called isometric
algebras.



Definition 1.2.41 [2]: (Banach space )

Said that the normative space X is a complete space if it is all sequential of

couchy is converge in X.

Full normative space is called Banach space .

Example 1.1.42 [2]: The space F™ = {x: (x4, X;,..X,),x; € F, for all

[ =1,2,...n} with norm

1
n 2
x|l = (lei|2> Vx = (X, %y, X,) € F7

i=1
It is a Banach space .
Solution :
Itis clear F™ is a normed space.
Let {x,,,} is elementary sequence ina F"
X € F" = X, = {Ximmy ver Xy }-
Lete>03k € Z* such that
|x,,, —x, | <EVM,L >k

- lxy, —x /12 < e2VmL>k = x,, — X, = (X1 — X1Lyeeer Xpym — Xnp)

n
It = 212 = [ = 0
i=1

From (1) : (2 we get



n
leim —x; | <e*vm, L=k

i=1
1% — x| < €2YM,L =k = |x, — x| <EVML =k
For you, the van {x,, } is couchy sequence. In a F forally

Since F is complete space= To each i there exist x; € F such that

Xim = X1 = x = (x4,...,X,) = x € F" To proof x,, — x

Let E>0VmMm>k then
n
ot = 6112 = ) Jxim = 5,17 < €
i=1

lx,, —x|| <EVM > L
~ {x,,} is converg = F™ complete space

~ F™ normed space = F™ Banach space.



Section Three:

1.3. Symmetric Algebra

In this section, we introduce some definitions and concepts related of
symmetric algebra.

Definition 1.3.1. [4]: R is called a symmetric algebra if:

1) R is an algebra

2) an operation is defined in R which assigns to each element x in R the
element x* in R in such a way that the following conditions are satisfies:-

a) (Ax + AY)* = Ax* + uy”

b) x** =x

c) (xy)” = x"y”

An element x is said to be Hermitian if x* = x.

Theorem 1.3.2 [4]: Every element x of a symmetric algebra can be

uniquely represented in the form x =x; + ix,, where x;,x, are

Hermitian elements.
In fact, if such a representation holds, then x* = x; — ix,consequently

x+x* X —X
X, = >

Thus, this representation is unique. Conversely, the elements x, ,x, defined

by equalities (1) are Hermitian and x = x; + ix,.

These elements x, ,x, will be called the Hermitian components of the

element X an element x is called normal if x*x = xx*.



Theorem 1.3.3. [4]: Every element of the form x*x is Hermitian.

In fact, in virtue of c and b). (x*x)* = x"x™ = x"x.

Theorem 1.3.4. [4]: The identity e is a Hermitian element. In fact e* =

e”e is a Hermitian element. Consequently, e* = e.

If R is asymmetric algebra without identity and R’ is the algebra obtained
from R by adjunction of the identity, then setting (le + x)* = Ae+ x*
for x € R.

Theorem 1.3.5. [4]: If x™1 exists, then (x*)~1 also exists and (x*)™! =
(1

Theorem 1.3.6.[4]: If R is a maximal commutative symmetric sub algebra

containing a normal element x and if x~! exists, then x~* € R. In fact since

x and x* commute with all elements in R,x! and x* = (x~1)*

Definition 1.3.7. [4]: The mapping x — x' of a symmetric algebra R into

the symmetric algebra R’ is called a symmetric homomorphism if
B) x — x'is a homomorphism
a) x — x' implies that x* — x'*.

Theorem 1.3.8. [4]: The radical of a symmetric two- sided ideal.

Example 1.3.9. [4]:

1) The algebra C(T) is a symmetric algebra if we set x* = X(t) for

X = X(t) (where the vinculum denotes conjugate complex number).

2) Suppose R is a Hilbert space. the algebra R(R) that mean R(x) with
X = R is a symmetric algebra if involution is under stood to be passage

over to the adjoint operator.

3) The algebra W is asymmetric algebra if we set



x* =Y _C,e™Mforx = X% _C,e™

Definition 1.3.10. [4]: (Positive functional)

A linear functional f in the symmetric algebra R is said to be real- valued if

f assumes real value on all Hemitian elements of the algebra R.

Theorem 1.3.11. [4]: Every linear functional in a symmetric algebra can be

represented in the form f =f, +if, where f,,f, are real valued
functional. Namely it suffices to set

I 1 N
L) =1 + )] (0 =51/ = fF(xI)].

Then f,, f, are real valued functional and f(x) = f;(x) + if,(x) these

functional f;, f, are called the real components.

Theorem 1.3.12. [4]: If f is a real- valued functional then f(x*) = f(x) for

an arbitrary x € R. In fact setting x = x; +ix, where x;,x, are Hermitian

we have f(x") = f(x; —ixy) = f(x1) +1f (x2) = f(%).

Inasmuch as f(x;),f(x,) are real- valued by assumption. A linear
functional f is said to be positive if f(x*x) > 0 for an arbitrary element x

of the algebra R.

Theorem 1.3.13. [4]: For every positive functional f in the symmetric

algebra R.

D) frx) =f(xy)

2 Ifol? < frry)f(x"x)

3) fF(Ax +uy) - (Ax +uy)) >0

) AP f(xrx) + Auf (v x) + Auf (x*y) + |ul* f(y*y) = 0.



Theorem 1.3.14. [4]: Every positive functional t in a symmetric algebra R
with identity is real and |f(x)?| < f(e)f(x*x).

Theorem 1.3.15. [4]: Suppose R is a symmetric algebra without identity

and that R’ is the symmetric algebra obtained from R by adjunction of the
identity. A positive functional f in R can be extended to a positive

functional in R' if and only if f is real and satisfies inequality
|f(x)?| < cf (x*x) for all x € R where ¢ is some constant.

Theorem 1.3.16 [4]: If in a symmetric normed algebra R

a) x| = |x|

b) There exists a set {e, } approximating the identity, then every continuous

positive functional in R can be extended to a positive functional in R'.

Definition 1.3.17. [4]: R is called a normed symmetric algebra if

a) R is a normed algebra
b) R is a symmetric algebra
c) [x*.

Definition 1.3.18. [4]: A binary operation *: [0,1] x [0,1] — [0,1]
Is said to be a continuous t-norm if ([0,1],*) is a topological monoid

with unit 1 such that a * b < ¢ = d whenever a < cand b < d
(a,b,c,d € [0,1]).

It is clear that if we define axb = abora*b = min(a,b) then x is a
continuous t-norm.



Section One:

2.1. Definition

In this section we study the definition fuzzy normed spaces and
some properties with proofs. We start this section by the following
definition.

Definition 2.1.1 [1]:The 3-tuple (X, M,*) is said to be a fuzzy metric

space if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy
set on
X? x (0,) satisfying the following conditions for all x,y,z € X and
t,s > 0,
® M(xy,0) >0,
i) M(x,y,t) =1forallt > Oifandonlyif x = vy,
i) M(x,y,t) = M(y,x,t),
i) M(x,y,t) * M(y,z,s) < M(x,z,t +s) for al ¢s >
0,(v) M(x,y,.): (0,00) —— [0,1] is continuous.

Definition 2.1.2 [1]: A sequence {x,}, in a fuzzy metric space

(X, M,*) is a Cauchy sequence if and only if for each 0 < € < 1 and

t > 0 there exist n, € N such that for all n,m > n, we have,
M(xy, X t) >1 —e.

A fuzzy metric space is said be complete if and only if every Cauchy

sequence is convergent.

At last we state the following lemma which will be used later.



Definition 2.1.3 [1]: The 3-tuple (X, N,*) is said to be a fuzzy normed

space if X is a vector space, * is a continuous t-norm and N is a fuzzy
set on X X (0,00) satisfying the following conditions for every
x,y € Xand t,s > O:

) N(x,t) > 0,

(ii) N(x,t) = 1liffx =0,

i)  N(ax,t) = N(x,t/|a|),for alla 6 = 0,

) N(xt)* N(y,s) < N(x + y,t + s3),

) N(x,.): (0,00) — [0,1] is continuous,

wi) limt—-ooN(x,t) = 1.

Lemma 2.1.4 [1]: Let N be a fuzzy norm. Then

@ N(x,t) is non-decreasing with respect to t for each x € X.

i) N(x — y,t) = N(y — x,t). We need the proof of above lemma.

Proof:

Let t<s. Thenk=s—t> 0and we have
N(x,t) = N(x,t) = 1

= N(x,t) * N(0,k)

< N(x,5s).

This proves the (i). To prove (ii) we have
N —y,t) =N((=1)(y —x),t)

_ _ L

=N (y x’—l)

= N(y —x,t).



Lemma 2.1.5 [1]: Let (X, N,*) be a fuzzy normed space. If we define

M(x,y,t) = N(x — y,t),

then M is a fuzzy metric on X, which is called the fuzzy metric induced

by the fuzzy norm N.

Lemma 2.1.6 [1]: A fuzzy metric M which is induced by a fuzzy norm

on a fuzzy normed space (X, N,*) has the following properties for all
x,y,z € X and every scalar o # 0:
(OM(x+z,y+2zt) =M(xy,t).

. _ t
(i) M(ax, ay, t) = M(x'y'|a|)
Proof:

M(x + z,y + zt) = N((x + z) — (y + 2),t)
N(x — y,t) = M(x,y,t)

Also,

M(ax,ay,t) = N(ax — ay,t)
=N (x = y1)
=M (x, y,ﬁ) .

Example 2.2.7 [1]: Let (x,]l.]]) be a normed space. We define

a*xb =abora * b =min(a, b) and

ki™
N(x,t) = kmmneRr.*
(x0) ki™ + m||x||

Then (X, N,*) is a fuzzy normed space. In particular if k = n = m

= 1 we have



N(x,t) =
t+ x|l

which is called the standard fuzzy norm induced by norm ||. ||.

Example 2.2.8 [1]: Let (x,]|.]]) be a normed space. We define

a * b =aband

N(x,t) = (exp@)‘1

forx € Xandt € (0,0). Then (X, N,*) is a fuzzy normed space.

Definition 2.2.9 [1]: Let (X, N,*) be a fuzzy normed space. We define

the open ball B(x, r, t) and the closed ball B[x,r, t] with center x € X
andradius 0 < r < 1,t > 0 as follows:

B(x,r,t) ={y € X: Nx —y,t) >1 -1}

Bx,rt]={y € X: Nx —y,t) =21 —r}.

Lemma 2.2.10 [1]: If (X, N,*) is a fuzzy normed space, then

(@) The function (x,y) = x + y is continuous,

(b) The function (a, x) — ox is continuous.

Proof:

Ifx, - xandy, — y,thenasn — oo,

1 1
N((x,+y,) —(x+y),t) =N (xn — x5> * N(yn - yi) -1
This proves (a).

Now if x,, = x, o,— a and a, # 0 then



N(a,x, —ax,t) = N(a,(x,, —x) + x(a,, — a),t)

e 0.

t t
=N —X,— |*N|x,—/—— 1,
(x" X Zan) " (x 2(a, — a)) ”

as n — oo, and this proves (b).

Definition 2.1.11 [1]: The fuzzy normed space (X, N,*) is said to be a

fuzzy Banach space whenever X is complete with respect to the fuzzy

metric induced by fuzzy norm.



Section Two:

2.2 Quotient spaces

In this section at first we define Quotient spaces and give several
examples of these spaces, and then we define Quotient spaces.

Definition 2.2.1[1]: Let (X, N,*) be a fuzzy normed space, M be a
linear manifold in X and let Q: X — X/M be the natural map,
Qx = x + M. We define

N(x + M,t) =sup{N(x + y,t): y € M}, t > 0.

Theorem?2.2.2[1]: If M is a closed subspace of fuzzy normed space X

and N(x + M, t) is defined as above then

(a) N is a fuzzy normon X /M.
(b) N(Qx,t) = N(x,t).
©) If (X, N,*) is a fuzzy Banach space, then so is (X/M, N,*).

Proof:

It is clear that N(x + M,t) = 0. Let N(x + M,t) = 1. By
definition there is a sequence {x,, } in M such that N(x + x,,,t) — 1.
Sox +x, — 0or equivalently x,, - (—x) and since M is closed so
x €M and x + M = M, the zero element of X/M. On the other

hand we have,

N((x + M)+ (y + M),t) = N({(x +y) + M1t

\Y

N((x + m) + (y + m),t)
> N(x + m,ty)) » N(y + m,t,)



formmn € M,x,y € Xand t, +t, = t. Now if we take sup on both
sides, we have,

N((x + M)+ (y+ M), t) = N(x + M,t;) * N(y + M,t,).
Also we have,
N(a(x + M),t) = N(ax + M,t)
=sup {N(ax + ay,t): y € M}

=SUp{N(x + y,t/|a|): y € M}

=N <x + M, t/|a|>

Therefore (X, N,*) is a fuzzy normed space.

To prove (b) we have,

N(Qx,t) = N(x + M,t)

=sup{N(x + y,t): y € M}

> N(x,t).

Let {x,, + M} be a Cauchy sequence in X/M. Then there exists €,, >0

such that €,, = 0 and,

N(Gep+ M) — (xppy + M), t) 2 1—¢,.
Let y, = 0. We choose y, € M such that,

N(x; — (x; —y),t) = N((xl —x;) + M»t) *(1—€y).
But N((x; —x,) + M,t) = (1 — €,). Therefore,

N(x; —(x; —y),t) 2 (1 —€)(1—€q).

Now suppose y,, — 1 has been chosen, y,, € M can be chosen such that

N((xn—l + yn—l) - (xn + Yn)f t)
> N((xn_1 —x,) + M, t) *(1—€,-1).



and therefore,

N((xn—l + Yn-1) — Oy + ), t) 2 (1—€p_q)x (1 —€p_q).
Thus, {x,, + y,} is a Cauchy sequence in X. Since X is complete, there
IS an x, in X such that x,, + y,, — x,in X. On the other hand

Xnt+ M = Q(x, + yn) — Q(xp) = xo+ M.
Therefore every Cauchy sequence { x,, + M} is convergent in X/M and

so X/M is complete and (X/M, N,*) is a fuzzy Banach space.

Theorem 2.2.3 [1]: Let M be a closed subspace of a fuzzy normed

space X. If x € X and e € [0, N(x + M, t)), then there is an x° in X
suchthat, xX°+ M = x + Mand N(x%¢t) > N(x+ M, t) * €.

Proof:
By (1.4) there always exists y € M such that,
N(x+y,t) >N(x+ M,t) *€.

Now it is enough to putx°® = x + y.

Theorem 2.2.4 [1]: Let M be a closed subspace of a fuzzy normed

space (X, N, t). If acouple of the spaces X, M, X/M are complete, so is
the third one.

Proof:

If X is a fuzzy Banach space, so are X/M and M. Therefore all that
needs to be checked is that X is complete whenever both M and X /M
are complete. Suppose M and X/M are fuzzy Banach spaces and let
{x,}bea

Cauchy sequence in X. Since



N((x, — x,,) + M,t) = N(x,, — x,,t)

whenever m,n € N, the sequence {x, + M} is Cauchy in X/M and so
converges to y + M for some y € M. So there exists a sequence ¢,

such that €,, = 0 and
N((x, —y) +M,t) > 1—¢, foreacht> 0.

Now by last theorem there exists a sequence {y,} in X such that
Yo+ M =(x,, —y) + M and

N t) > ((, =9) + M, t) * (1= €,).
So lim, N(y,,t) = 1 and lim,y,, = 0. Therefore {x,, — y,,— y}isa
Cauchy sequence in M and thus is convergent to a point z € M and

this implies that {x,,} converges to z + y and X is complete.

Theorem 2.2.5 [1]: (Open mapping theorem) If T is a continuous

linear operator from the fuzzy Banach space (X, N;,*) onto the fuzzy

Banach space (X, N,,*), then T is an open mapping.



Section Three:

2.3. Fuzzy normed algebras

In this section at first we define Fuzzy normed algebras and give
several examples of these algebras, and then we define Fuzzy normed
algebras.

Definition 2.3.1 [3]: It is called fuzzy nonned algebra-the quadruplet
(X, N,*,0) if we have

(A1) *, 0 are continuous t-norms;

(A2) X is an algebra;

(A3) (X, N,*) is a fuzzy normed linear space;

(Ad4) N(xy,ts) = N(x,t)o N(y,s) forall x,y € X,forallt,s > 0.

If (X,N,x) is a fuzzy Banach space, then (X, N,x,0) will be called fuzzy
Banach algebra.

Example 2.3.2. [3]: Let (X, ||-||) be a normed algebra, *, o be continuous t-

norms and

0, t<|lxl

N: X X [0,00) — [0,1] defined by N(x,t) = {1 > x|l

Then (X, N,*,0) is a fuzzy-normed algebra.

Proof.

It is easy to check (N1)-(N3) and (N5). We verify the condition (N4). Let
x,YEX, t,s €[0,00).If|lx+yl|=>t+s, then t<|x|| or s<]|yll
(contrarily t > ||x|| and s > ||yll, thus t +s > ||x||+ |lyll = llx + yll,
contradiction). If t > ||x]|, then N(x,t) = 0. If s < ||y]|, then N(y,s) = 0.



Thus N(x,t) * N(y,s) = 0. Therefore the inequality N(x + y,t + s) =
N(x,t) * N(y,s) holds. If |[x|| + [lyll| < t + s,then N(x + y,t +5) =
1 and the inequality N(x+ 1y, t+s) > N(x,t) * N(y,s) holds.

It remains to verify (A4). Let x,y € X,t,s € [0,00). If ||xy|| = ts, then
t <|lx|| or s<||yll (contrarily t > ||x|]land s > ||yll, thus ts > ||x]| -
llyll = |lxyll, contradiction). If t < ||x||, then N(x,t) = 0 If s < ||y||, then
N(y,s) =0. Thus N(x,t)oN(y,s) = 0. Therefore the inequality
N(xy,ts) = N(x,t) o N(y,s) holds. If ||xy|l =ts, then N(xy,ts) = 1
and the inequality N (xy,ts) = N(x,t) o N(y,s) holds.

Example 2.3.3.[3]: Let (X, || - ||) be a normed algebra and N: X X [0,0) —
[0,1] defined by

t

NQC,t) =3t + ||x]||’
0, t=20

t>0

Then (X, N,A,-) is a fuzzy Harmed algebra.

Proof.

By [4] (X,N,A) is a fuzzy normed linear space. It remains to verify (A4),
that is

N(xy,ts) = N(x,t) .N(y,s), forall x,y € X, forallt,s €[0,0).

For t = 0 or s = 0 the inequality is obvious. For t # 0 and s # 0, the
inequality is equivalent to

ts t S
2 ° )
ts+ |lxyll — t+ x|l s+ ||yl

namely ts + tllyll + slix|l + [Ix]l - llyll =ts + |lxyll, which is evidently
true.



Example 2.3.4.[3]: Let (X, ||-||) be a normed algebraand N: X x [0,0) —
[0,1] defined by

t

N(x,t) =it + |||’
0, t=0

t>0

Then (X, N,-,-) is a fuzzy normed algebra.

Proof.

We will prove that (X, N,-) is a fuzzy normed linear space. According to
[4], conditions (N1)-(N3) and (N5) are verified. It remains to prove (N4),
that is,

N(x+y,t+s)=N(xt) N(ys) for all x,y € X,for allt,s > 0.

Indeed, for t = 0 or s = 0 the inequality is obviously true. For t # 0 and

s # 0, the inequality is equivalent to

t+s . S
t+s+|lx+yll  t+]xll s+ Iyl

namely (t+s)(t+ llxID(s+ lyl) = ts(t+s+ llx +yll), which is
equivalent to

ts(llxll + llyID + s2llxll + 21yl + ¢ + Iyl = tsllx + yl.

Because ts(||x|| + [lx]]) = ts||x+ y|| and all the other terms from the left
member are positive, the inequality follows. Therefore (X,N,-) is a fuzzy
normed linear space. Moreover, conditions (Al)-(A4) are satisfied similar
to the proof from the previous example. It follows (X,N,--) is a fuzzy
normed algebra.



Theorem 2.3.5. [3]:

A fuzzy normed algebra (X, N,*,0) is with continuous product if and only if
Forall « € (0,1),38 = B(a) € (0,1),IM = M(a) > 0 such that

For all

x,y € X,Foralls,t > 0:N(x,s) >f,N(y,t) > = N(xy,Mst) >«

Proof.

(=) Let a€(0,1) and V:={u€eX:N(u,1)>a} be an open
neighbourhood of zero. As X X X 3 (x,y) = x -y € X is continuous at
(0,0), there exist €; = €,(@) > 0, €, = €,(a) >0, y; =y, () € (0,1),
¥, =7V, (a) € (0,1) such that

For all wu,,u, € X:N(u,€;) >y;N(uy,e,) >y, Wwe have that
N(uiu,,1) > a.

Let B = max{y,;,»,}€(0,1), M = !

>0. Let x,y €X, s,t >0

€162

such that N(x,s)>pB, N(y,t)>pB Then N(x/s,1)>B =y, and

€1X

Ny/t1)>B 2y, Letu, =2 u, = %We note that

N(uy,€,) = N(ui/€,1) = N(x/s,1) >y,

N(uj€;) = N(uz/€;,1) =N(u/t,1) >y, -
Hence N(u,u,,1) > a, ie.,, N (%C% 1) > a, namely N (xy,i;) >
a.Thus N(xy,Mst) > a.
(<) First we will prove that for each y, € X, the mapping

XeExpry, €X

IS continuous.



Let € >0, a € (0,1). Thus there exist f = B(a) € (0,1), M = M(a) >0
such that

N(x,s) > [,N(y,t) > = N(xy,Mst) > a.

As lim,_, ., N(y,,t) = 1, there exists t, > 0 such that N(y,, t,) > B. Let

§=6(a¢€) = T and B(a,€) = B. Let

oM

x €X such that N(x,6)>pB. As N(y, t,) >, we obtain that
N(xy,, Mt,8) > a, namely N(xy,, €) > a.

Similarly, we can establish that, for each x, € X, the mapping
X3 ypx,yeEX
IS continuous.

Now, we will prove that (X, N,*,0) is with continuous product. Let
Xp — Xg, VYo — Voo ThUS x,V, — XpV, and x,y, — Xx,),. Hence
lim,, o, N(x,,Yo — X¢Vo,S) = 1, lim, o N(xoy, — X0V, t) =1 for all
s, t > 0. Therefore

N(xnyn — XoYo» t)

= N((xp —x0) W —Yo) + (X —%0)Yo + %00 —¥0), 1)

=N ((xn — %) OV — %)»%) * N <(xn - xo)Yo:%) * N (xo W — 3’0);£>

3
t t t
= | N{ x, — xo, § o N| ¥n — Yo § * N (xn_xo)J’Or§

t
N (x0n —0)5) =1

Hence x,,y,, — Xy



Lemma 2.3.6. [3]: Any continuous t-norm x* satisfies:

Forally € (0,1),3a,8 € (0,1)suchthata = g =y.

Proof.

Let y € (0,1). Choose a >y Let g: [0,1] — [0,1] defined by g(y) =
a * y. As * iIs continuous, we have that g is continuous. As g(0) = a *
0=0and g(1)=ax* 1=a, for y € (0,a) there exists f € (0,1) such
that g(B) =y, namely a = g = y.

Theorem 2.3.7. [3]: Any fuzzy normed algebra (X,N,x0) is with

continuous product.

Proof.

Let « € (0,1). Then there exists € > 0 such that « + € € (0,1). As o is a
continuous t-norm, by the previous lemma, we obtain that there exist
Ba Y. € (0,1) such that « + € = B, °y,. We suppose that g, =y, (the
case B, <y, Is similar). We choose M = M(a) = 1. Letx,y € X, s,t >0
such that N(x,s) > B,, N(y,t) > B, Then

N (xy,Mst)=N (x,s)oN (y,t) = BpoBa = LeoVe=a+€ >a

Definition 2.3.8. [3]: The fuzzy normed algebra (X, N,x,0) is called with
multiplicatively continuous product if

Forall« € (0,1), forall x,y € X, forall s,t >0: N(x,s) > a,N(y,t) >

a = N(xy,st) = a.

Example 2.3.9. [3]: (Fuzzy normed algebra with multiplicatively

continuous product). The fuzzy normed algebra (X, N,x,) from Example

(2.4.2) is with multiplicatively continuous product.



Proof.

Indeed, let « € (0,1), x,y € X, s,t > 0 such that N(x,s) > a, N(y,t) >
a. Then N(x,s)1, N(y,t) = 1. Thus ||x|| < s,||yll <t. Therefore
llxyll < ||x||.llyl] < st. Hence N(xy,st) =1 > a.

Example 2.3.10. [3]: (Fuzzy normed algebra which is not with

multiplicatively continuous product). We consider the fuzzy normed
algebra from Example 2.4.3, where X = R. and the norm on X is the

absolute value |-|- Then (R, N,A,-) is not with multiplicatively continuous

product.

Proof.

Indeed, for «a :g, ngs,y :Zt,s,t >0 we have that N(x,s) =
S+S|x| = 5%5; = g > i and N(y,t) > i But N(xy,st) = St-:|txy| = Stj%st =

4:9 < g Thus (R, N,A,) is not with multiplicatively
continuous product.

Proposition 2.3.11. [3]: Let (X, N,*,0) be a fuzzy normed algebra such that

aoca=>a for all «a €(0,1). Then (X,N,x0°) is with multiplicatively
continuous product.

Proof.

Leta € (0,1).,x,y €X,s,t >0suchthat N(x,s) > a, N(y,t) > a. Then
N(xy,st) = N(x,s) e N(y,t) = aoa = a.

Remark 2.3.12. [3]: The condition a e @ = a. for all « € (0,1) from the

previous proposition is sufficient but not necessary.




Indeed, the algebra (X, N,x,-) from Example 2.4.2 is with multiplicatively
continuous product, although o=- does not verify aoca > a for all
a € (0,1).

Proposition 2.3.13. [3]: Let (X;,N;,*,0) and (X,,N,,*,0) be two fuzzy normed

algebras. If t-norm " dominates both * and o, then ((X; X X,), N,*',0) is a fuzzy

normed algebra, where N((x; X x;),t) = Ny (x;,t) ¥ N, (x,0).

Proof.

According to [13], it remains to be proved that: r :
N((x1)1,%22), 5t) 2 N ((%1,%2),5) © N((¥1,¥2), 1),
forall x,,x, € Xy, y;,¥, €Y,, forall S,t € (0,00).
We have
N((x1y1,%3¥,),St) = N;(x,y,,St) * N,(x,,¥,,St)
2 [Ny (x1,8) o Ny (y1,8)] *' [Ny (x2,5) o Ny (1, )]
= [N1(x1,5) *" Ny (x3,8)] © [Ny (1, 1) %" No (3, )]
= N((x1,x2),5) e N((V1,¥2), )
forall x,,x, € X;, y,,y, €Y,, forall S,t € (0,00)

Proposition 2.3.14. [3]: Let * be a t-norm satisfying a * a = a for all
a€(0;1) and let (X;,N;,*0)and (X,,N,,*,0) be two fuzzy normed
algebras with multiplicatively continuous product. If =’ is a t-norm that

dominates both * and o then ((X; X X,),N,*",0) is a fuzzy normed algebra

with multiplicatively continuous product.

Proof.

Let « € (0,1),(x1,%x,) € X; X X,,and (y4,¥,) € X; X X,,s,t > a such that
N((xy,x,),s) > aand N((y1,¥,),t) > a. Then we have successively:



N((x1y1,%2y2), st) = Ny (x1,¥1, 5) *" Np (X2, ¥, 5t)
2 [N1(x1,5) o Ny (71, 8)] #' [N (x2,5) © N (32, )]
> [Ny(x1,8) * Ny (xz,8)] o [Ny V1, 8) " Ny (3, )]
= N((x1,%2),8) e N((¥1,¥2),1)
Zaoa
=«

Example 2.3.15. [3]: Let (X,N,x°) be a fuzzy normed algebra with

multiplicatively continuous product and let S € X be a linear closed sub
algebra of X. Then (S§,N,x0) is a fuzzy normed algebra with
multiplicatively continuous product.

Example 2.3.16. [3]: (Cartesian product of fuzzy normed algebras with

multiplicatively continuous product that is not with multiplicatively
continuous product). Let (X,N,.,) be the fuzzy normed algebra from
Example 2.4.2, where X = R. The fuzzy normed algebra (X X X,N',-,"),

where

N’((xl,xz),t) = N(x,t).N(x,,t),for all (x;,x,) € XX X,forallt >0 is

not with multiplicatively continuous product.

Proof.

Taking into account that

N’((xl,xz),t) = N(x,,t).N(x,,t)

{1, t > |x| {1, t = |x,|
0, fortherest, = (0, for the rest,

{1, t = max{|x, [, [x,[},
0, for the rest,
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