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 الإهذاء

إىهٍ لا َطُب اىيُو إلا بشنشك ولا َطُب اىْهاس إىً بطاعخل.. ولا حطُب اىيذظاث إلا بزمشك.. 

 ولا حطُب اِخشة إلا بعفىك.. ولا حطُب اىجْت إلا بشؤَخل

 الله جل جلاله 

 اىً ٍِ بيغ اىشساىت وأدي الأٍاّت.. وّصخ الأٍت.. اىً ّبٍ اىشدَت وّىس اىعاىَُِ..

 سُذّا محمد صيً الله عيُه واىه وسيٌ 

اىً ٍِ مييه الله باىهُبت واىىقاس.. اىً ٍِ عيٍَْ اىعطاء بذوُ اّخظاس.. اىً ٍِ أدَو أسَه بنو 

ىخشي ثَاساً قذ داُ قطافها بعذ طىه اّخظاس وسخبقً افخخاس.. اسجى ٍِ الله أُ ََذ فٍ عَشك 

 ميَاحل ّجىً أهخذٌ بها اىُىً وفٍ اىغذ واىً الأبذ..

 واىذٌ اىعزَز

اىً ٍلامٍ فٍ اىذُاة.. اىً ٍعًْ اىذب واىً ٍعًْ اىذْاُ واىخفاٍّ.. اىً بسَت اىذُاة وسش 

 يً اىذباَب اىىجىد.. اىً ٍِ ماُ دعائها سش ّجادٍ ودْاّها بيسٌ جشادٍ إىً أغ

 أٍٍ اىذبُبت 

 اىً ٍِ به أمبش وعيُه أعخَذ .. اىً شَعت ٍخقذة حُْش ظيَت دُاحٍ ..

اىً ٍِ بىجىدها أمخسب قىة وٍذبت لا دذود ىها ..اىً ٍِ عشفج ٍعها ٍعًْ اىذُاة اىً ٍِ 

 سعاّا ودافع عيُْا, اىً ٍِ وقف اىً جاّبْا عْذٍا ضييْا اىطشَق...

 

 

 

 

 

 

 

 

 



 

 شنش وحقذَش

اىبىح بنيَت اىشنش لأّها لا حذذ عطاء اساحزحٍ اىزَِ حعيَج عيً اَذَهٌ واخص  ٍِ اىصعب

 فُهٌ باىزمش اىجَُو واىثْاء اىىفُش 

 اسخارٌ اىَششف أ.ً.د. بششي َىسف دسُِ 

 فجزاها الله خُش جزاء اىَذسُِْ
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 الإهداء

تطٌب اللحظات إلا بذكرك.. ولا  ٌطٌب النهار إلى بطاعتك.. ولا اللٌل إلا بشكرك ولا بلا ٌطٌإلهً 

 . ولا تطٌب الجنة إلا برؤٌتكبعفوك.تطٌب الآخرة إلا 

  الله جل جلاله

 .العالمٌن.لى نبً الرحمة ونور الى من بلغ الرسالة وأدى الأمانة.. ونصح الأمة.. ا

  سلماله وصلى الله علٌه وسٌدنا محمد 

لى من أحمل أسمه بكل الى من علمنً العطاء بدون انتظار.. الى من كلله الله بالهٌبة والوقار.. ا

رجو من الله أن ٌمد فً عمرك لترى ثماراً قد حان قطافها بعد طول انتظار وستبقى اافتخار.. 

 لى الأبد..اكلماتك نجوم أهتدي بها الٌوم وفً الغد و

 العزٌزوالدي 

لى بسمة الحٌاة وسر الى معنى الحنان والتفانً.. الى معنى الحب والى ملاكً فً الحٌاة.. ا

  لى من كان دعائها سر نجاحً وحنانها بلسم جراحً إلى أغلى الحباٌبا.. الوجود

  أمً الحبٌبة

 لى شمعة متقدة تنٌر ظلمة حٌاتً ..الى من به أكبر وعلٌه أعتمد .. ا

الى من رعانا  لى من عرفت معها معنى الحٌاةاأكتسب قوة ومحبة لا حدود لها ..لى من بوجودها ا

 وحافظ علٌنا, الى من وقف الى جانبنا عندما ضللنا الطرٌق...

 

 

 

 



 شكر وتقدير
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1. Introduction 

[4] M.A Naimark, ''Normed Algebras'',    .Ed. Academy of Science 

U.S.S.R, springer, 1972. [2] E. Kreyszig, Introductory Functional 

Analysis with Applications, John Wiley & Sons, New York, 

Chichester, Brisbane, Toronto and Singapore, 1978. [1] R. SAADATI 

and S.M. VAEZ POUR, ''Some Results on Fuzzy BANACH 

SPACES'', Korean, (2005). [3] Sorin Nadaban, ''on Fuzzy Normed 

algebras, University of Timisoara, 2008. 

Now , in this paper we study completion of quasi-normal algebra and 

completion of module algebra. This paper contains two chapter. 

Chapter one consist of three sections, in section one we recall all 

definitions and concepts related to quasi-normed space. 

In section two we study all concepts related algebra.  

In section three we study all definitions and concepts related of symmetric 

algebra.  

 Chapter two concepts of three sections, in section one we study 

the definition fuzzy normed spaces and some properties with proofs. 

We start this section by the following definition. In section two at first 

we define Quotient spaces and give several examples of these spaces, 

and then we define Quotient spaces. In  section three at first we define 

Fuzzy normed algebras and give several examples of these algebras, 

and then we define Fuzzy normed algebras. 
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Section One: 

1.1. Basic concepts and Definitions 

In this section, we introduce some concepts and definitions related of main 

subject. 

Definition 1.1.1 [4]: (vector space) : let   be a non-empty set of objects  in 

which two operation addition( ) and multiplication by scelars( ) are 

defined we say that ( ,+,  ) a vector space if satisfying the following : 

1-                            

2-                               

3-    (      )  (     )                       

4- There exists                  (Called 0 zero vector ) 

5-                  there exists         such that     (  )  (  ) 

   .                         

6-                              

7-   (     )               ,                 ,                

8- (     )                              ,                  

9- (    ) .        (    )                         

10-   .      ,               such that   is  identity element multiplication. 

Definition 1.1.2 [4]: (normed space ): Let   be a vector space over field  . 

A function ‖ ‖:      is called norm on   if satisfy in the following 

conditions: 

1-          ,              . 

2-           if and only if       . 
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3-     =          ,             ,            . 

4-                       ,                  . 

The pair (      ) is called normed space. Such that   is a vector space over 

the field   and  .  a norm on  . 

if        then   is a real normed space , while 

if       then   is a complex normed space. 

Remark : Every sub space of normed space is normed space. 

Theorem1.1.3 [4] : If the   is a normed space, then 

1-            

2-                                 

3-                                           

4-                                                   

Proof : 

Properties (1.2) are concluded from the definition directly . 

4- |              |             ,                   

    (     )     

          (      )                        

                               …………..(1) 

                              

 (            )                

                                  ( ) 

From (1) and (2) we have 
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                             . 

Remark : Now remember some important inequality 

1- (Holder's in equality) If          such that 
 

 
 

 

 
   

∑   

   

    0∑    
 1

 
 
 [∑    

 

   

]

 
 

 

And special if it is       then       

∑   

   

    0∑    
 1

 
 
 [∑    

 

   

]

 
 

 

Called (Cauchy-Schwar's inequality) 

2- ( Min kowsk's inequality ) : If       

(∑   

   

    
 +

 
 

 (∑   

   

  +

 
 

 (∑ 

   

   
 +

 
 

 

Some important examples on normed  space 

Example 1.1.4 [4] : The vector space   is be normed space if    

    =            . 

Solution: 

1- Since                       

2-                     

                                   

3- let       and     
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4- let          

          =            +      =       +       . 

Example 1.1.4 [4]: Let the function   .           

        (∑  
 

 

   

)
 
   

For all     ((          )     then     is norm on    

Solution : 

1- since    
                       

2-           (∑   
  

   )
 

     

                                     ∑  
 

 

   

   

   
                

   
                

    

3- let             

      (       )  (         ) 

‖  ‖  (∑(   
 ) 

 

   

)
 
     (∑  

 

 

   

)
 
     ‖ ‖ 

4- let          

      (       ) +(       )= (             ) 

          (∑ (  
    )

  
   )

 

   (by Min Kowk's inequality) 
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           (∑  
 

 

   

)
 
  (∑  

 

 

   

)
 
  ‖ ‖ ‖ ‖  

Example1.1.5 [4]:  Let ‖ ‖ :       be a function defined  

             {                } for all     (       ) then ‖  ‖ is a 

norm on   . 

1- since                         ‖ ‖     

2-                  *           +     

                                   

                                  

               

3- let             

       (       ) 

        (         ) 

             *             + 

          *              +  

              *           +         . 

4- let            

        (       ) + (       )  (             ) 

             {                 +  

         {                      +  

         *           +       {           +  

                 . 
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Definition 1.1.6 [4]: Let   be a linear space   quasi-norm is a real valued 

function on   satisfying the following : 

1- ‖ ‖    for all      and ‖ ‖    if and only if      

2- ‖  ‖     ‖ ‖ for all     and all      . 

3- There is constant     such that ‖   ‖   (‖ ‖ ‖ ‖) for all 

       . The pair (  ,‖ ‖) is called a quasi-normed space if ‖ ‖ is a quasi-

norm on  . 

  A quasi-Banach space is a complete quasi-normed space . 

A quasi-norm ‖ ‖ is called a p-norm (      if  

 ‖   ‖  ‖ ‖  ‖ ‖  

For  all         . In this case , a quasi-Banach space is called a  -Banach 

space. 
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Section Two: 

1.2. Normed Algebra 

In this section, we recal and definitions related to linear algebra, normed 

algebra and topological algebra. 

Definition 1.2.1 [4]: (linear algebra) : we shall say that   is a linear algebra 

if   is a linear space with an operation of multiplication ( ) (which in 

general is not commutative) satisfying the following conditions:-  

1  (    )          (      )                                         

2-    (     )                                                   

3-   (    )   (   )         (     )                      ,    .  

 Then (       ) is algebra space. 

Definition 1.2.2 [4]: In element      in the algebra   are said to commute 

if         an algebra is said to be commutative if any two of it's  elements 

commute. 

Definition 1.2.3 [4]: let (       )  is linear algebra and let       then  

(       )  is called sub algebra if (       )  is itself algebra. 

Definition 1.2.4 [4]: Let   be a commutative sub algebra of the algebra 

(       )   and     then (       ) is called maximal if is not contained 

in any element a commutative sub algebra. 

Theorem 1.2.5 [4]: Every commutative sub algebra is contained in a 

maximal commutative sub algebra. 

Theorem 1.2.6 [4]: Every element   is contains in a maximal commutative 

sub algebra. 
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Definition 1.2.7 [4]: (linear algebra)  

Let   be a linear space. Then    is said to be algebra if there exist operation 

on   (          ) its called The multiplication operation if the 

following  axioms are realized; 

1-     (      )    (    )   (     )                       

                

2- (      )        (     )    (     )                     

                                                       

                   (  )     (     )   (  )              

                           

  (     )                       

         (   )                

It is said about algebra   as  

1- Associative algebra if  

    (     )   (    )                       

2- Algebra with identity if there exist       

Such that                      , then   is called identity element  

3- Commutative algebra if                ,        . 

 

Definition 1.2.8 [4]: (Algebra with identity) 

An algebra   is called an algebra with identity if   contains an element 

which satisfies the condition                          . 
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The element e itself which condition ( ) is called an identity of the algebra 

 . 

Theorem 1.2.9 [4]: Every algebra   with out identity can be considered as 

a sub algebra of an algebra with   identity.  

Definition 1.2.10 [4]: An element      is called a left quasi – inverse of 

the element       in         is a left inverse of the element       in   

that mean if (   ) (   )   . 

Definition 1.2.11 [4]: The center of algebra   is the set of those element 

     which commutative with all the element of  , The center a 

commutative sub algebra of the algebra  .  

Definition 1.2.12 [4]: A set    of element of the algebra   is called a left 

ideal   if 

1-       

2-    is a sub space  of the linear space    

3- If     ,     then        

Theorem 1.2.13 [4]: An element   of the algebra with identity has a left 

(right) invers if and only if it is not contained in any left (right) ideal  

Theorem 1.2.14 [4]: Every left (right) ideal of the algebra with identity is 

contained in a maximal left (right) ideal. 

Theorem 1.2.15 [4]: An element   of an algebra with identity has a left 

(right) inverse if and only if it is not contained  in any maximal left (right) 

ideal. 

Theorem 1.2.16 [4]:  Every two-sided ideal of an algebra with identity is 

contained in a maximal left (right) ideal.  



 

 

11 

Theorem 1.2.17 [4]: Every regular (right, left , two-said) ideal can be 

extended to a maximal (right, left, respectively, two-said) ideal (which is 

obviously regular also). 

Theorem 1.2.18 [4]: An element   in the algebra   has a left quasi-inverse 

if and only if for arbitrary maximal regular left ideal  , there exist element 

such that          . 

Theorem 1.2.19  [4]: An element   in the algebra   dose not have a left a 

quasi-inverse if and only if    *    + ,     . 

Definition 1.2.20 [4]: An element    in the algebra   with identity is said 

to be generalized nilpotent if (     )
   exist for an arbitrary element 

      . the set of all generalized nilpotent element in the algebra   is called 

it's (Jacobson /radical). 

Theorem 1.2.21 [4]: The radical of an algebra with identity coincides with 

intersection of all it's maximal left ideal. 

Theorem 1.2.22 [4]: The intersection of all maximal left ideal coincides 

with the intersection of all maximal right ideal and is the radical of the 

algebra. 

Definition 1. 2.23 [4]: An algebra is said to be semi simple if it radical 

consist of only the zero element. 

 Definition 1.2.24 [4]: An element    is said to be generalized nilpotent 

         has a left quasi-inverse for arbitrary      and arbitrary 

numbers   in this definition   is no large necessarily an algebra with 

identity. 

Definition 1.2.25 [4]: A mapping      of the algebra   into an arbitrary 

algebra    if      ,      imply that           
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                   if is the image of algebra   , then the 

homomorphism is called a homomorphism of   on to   . 

Definition 1.2.26 [4]: Two algebra   and    are said to be isomorphic if 

there exist isomorphism of   onto   . 

Theorem 1.2.27 [4]: Under a homomorphism of the algebra   into the 

algebra    , the inverse image   of the zero of   is a two sides ideal in  . 

Definition 1.2.28 [4]: (topological algebra ) 

  is called a topological algebra if : 

1-   is an algebra. 

2-   is a locally convex topological linear space.  

3- The product    is a continuous function of each of the factors       

provided other factor is fixed . 

 Definition 1.2.29 [4]: A mapping      of the topological algebra   into 

the topological algebra    is called a continuous homomorphism  if : 

1-      is a homomorphism of the algebra   in to the algebra   . 

2-      is continuous in mapping of the topological space   into the 

topological space   . 

Definition 1.2.30 [4]: A sub set      is said to be a closed sub algebra of 

the algebra   if : 

1-   is a sub algebra of the algebra  . 

2-   is a closed sub space of the topological space  . 

Theorem 1.2.31 [4]: If   is a sub algebra of the algebra   then it's closer 
 ̅

 ̅ 
 

is closed sub algebra of  . 
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Theorem 1.2.32 [4]: The algebra   ( ) is the closer of the algebra   ( ): 

  ( )    ( )̅̅ ̅̅ ̅̅ ̅̅ . 

Theorem 1.2.33 [4]: The closer of a commutative sub algebra of the 

topological algebra is commutative. 

Theorem 1.2.34 [4]: A maximal commutative sub algebra of a topological 

algebra is closed. 

Theorem 1.2.35 [4]: The center   of a topological algebra   is closed 

commutative sub algebra in  . 

Theorem 1.2.36 [4]: The closer of a ( left , right , two-said ) ideal in a 

topological algebra which dose not coincide with the entire algebra is also 

(left, right, two-said) ideal in this algebra. 

Definition 1.2.37 [4]: (normed algebra ) : 

  is called normal algebra if  

1-   is algebra. 

2-   is normed space. 

3- For any two element         

            . 

4- if X is contains an identity   , then     1  

The norm in a normed   defines a topology in   in natural manner recall 

that in this topology, the open balls          with center at    from a 

neighborhood basis of the element      . 

Definition 1.2.38 [2]: Let ( ,‖ ‖) be a quasi-normed space. 
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The quasi-normed space ( , ‖ ‖) is called a quasi-normed algebra if   is an 

algebra and there is a constant      such that ‖  ‖   ‖ ‖ ‖ ‖ for all 

      . 

A quasi-Banach algebra is a complete quasi-normed algebra. 

  If the quasi-norm ‖ ‖ is a  -norm then the quasi-Banach algebra is called 

a  -Banach algebra. 

Definition 1.2.39 [2]: Let ( ,   ) be a Banach algebra and   a module over 

  quasi-norm is a real-valued function on   satisfying the following:  

1- ‖ ‖                  and ‖ ‖    if and only if    . 

2- ‖  ‖     ‖ ‖              and all      .  

3- There exist constant     s.t ‖   ‖    ‖ ‖ ‖ ‖                .  

The pair (  ‖ ‖) is called a quasi-normed module over   if ‖ ‖ is a quasi-

norm on  . 

A quasi-banach module over   is a complete quasi-normed module over  . 

Definition 1.2.40 [4]: Let ( ,‖ ‖ ) and (  ‖ ‖ ) be a quasi-normed 

algebras. 

1- A mapping       is said to be isometric or an isometric if for all 

      . 

‖      ‖  ‖   ‖  . 

2- The algebra   is said to be isometric with algebra   if there exist a 

bijective isometry of   on to   . The algebra   and   are called isometric 

algebras. 
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Definition 1.2.41 [2]: (Banach space ) 

Said that the normative space   is a complete space if it is all sequential of 

couchy is converge in  . 

Full normative space is called Banach space . 

Example 1.1.42 [2]: The space    *  (         )       for all 

        + with norm  

‖ ‖  (∑    
 

 

   

+

 
 

    (          )     

 It is a Banach space . 

Solution : 

It is clear    is a normed space. 

Let {  + is elementary sequence in a     

         *         +   

Let              such that  

                   

1- ‖     ‖
                  (                 )  

 

2- 

 ‖     ‖
  ∑         

 

   

 

From (1) , (2) we get 



 

 

16 

∑         
 

 

   

            

                                        

For you , the van {  } is couchy sequence. In a   forally  

Since   is complete space   To each   there exist      such that 

          (       )        To proof       

Let           then  

 ‖    ‖  ∑        
 

 

   

      

‖    ‖           

 *  + is converg     complete space 

     normed space     Banach space. 
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Section Three: 

1.3. Symmetric Algebra 

In this section, we introduce some definitions and concepts related of 

symmetric algebra. 

Definition 1.3.1. [4]:   is called a symmetric algebra if:  

1)   is an algebra  

2) an operation is defined in   which assigns to each element   in   the 

element    in   in such a way that the following conditions are satisfies:-  

a) (       )              

b)        

c) (  )         

An element   is said to be Hermitian if          

Theorem 1.3.2 [4]: Every element   of a symmetric algebra can be 

uniquely represented in the form           , where        are 

Hermitian elements.  

In fact, if such a representation holds, then            consequently  

   
    

 
       

    

  
 

Thus, this representation is unique. Conversely, the elements        defined 

by equalities (1) are Hermitian and            . 

These elements         will be called the Hermitian components of the 

element X an element x is called normal if             
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Theorem 1.3.3. [4]: Every element of the form     is Hermitian. 

In fact, in virtue of c and b). (   )              

Theorem 1.3.4. [4]: The identity   is a Hermitian element. In fact    

     is a Hermitian element. Consequently,        

If   is asymmetric algebra without identity and    is the algebra obtained 

from   by adjunction of the identity, then setting (     )           

for    .  

Theorem 1.3.5. [4]: If     exists, then (  )    also exists and (  )     

 (   )   

Theorem 1.3.6.[4]: If   is a maximal commutative symmetric sub algebra 

containing a normal element x and if     exists, then      . In fact since 

  and    commute with all elements in       and    (   )  

Definition 1.3.7. [4]: The mapping       of a symmetric algebra   into 

the symmetric algebra    is called a symmetric homomorphism if  

 )      is a homomorphism  

 )      implies that        . 

Theorem 1.3.8. [4]: The radical of a symmetric two- sided ideal.  

Example 1.3.9. [4]:  

1) The algebra  ( ) is a symmetric algebra if we set      ( )̅̅ ̅̅ ̅̅  for 

     ( ) (where the vinculum denotes conjugate complex number). 

2) Suppose   is a Hilbert space. the algebra  ( ) that mean  ( ) with 

      is a symmetric algebra if involution is under stood to be passage 

over to the adjoint operator. 

3) The algebra   is asymmetric algebra if we set  
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     ∑  ̅  
 
         for     ∑   

 
           

Definition 1.3.10. [4]: (Positive functional)  

A linear functional   in the symmetric algebra   is said to be real- valued if 

  assumes real value on all Hemitian elements of the algebra  .  

Theorem 1.3.11. [4]: Every linear functional in a symmetric algebra can be 

represented in the form           where       are real valued 

functional. Namely it suffices to set  

  ( )    , ( )     (  )̅̅ ̅̅ ̅̅ ̅-      ( )   
 

  
, ( )     (  )̅̅ ̅̅ ̅̅ ̅-  

Then       are real valued functional and  ( )      ( )       ( ) these 

functional       are called the real components.  

Theorem 1.3.12. [4]: If   is a real- valued functional then  (  )   ( )̅̅ ̅̅ ̅̅  for 

an arbitrary    . In fact setting              where       are Hermitian 

we have  (  )    (      )    (  )    (  )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    ( )̅̅ ̅̅ ̅̅ . 

Inasmuch as  (  )  (  ) are real- valued by assumption. A linear 

functional   is said to be positive if  (   )      for an arbitrary element   

of the algebra  . 

Theorem 1.3.13. [4]: For every positive functional f in the symmetric 

algebra  .  

1)  (   )    (   )̅̅ ̅̅ ̅̅ ̅   

2)   (   )    (   ) (   ) 

3)  ((     )  (     ))     

4)      (   )    ̅ (   )    (   )       (   )   .  
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Theorem 1.3.14. [4]: Every positive functional t in a symmetric algebra   

with identity is real and   ( )    ( ) (   )   

Theorem 1.3.15. [4]: Suppose   is a symmetric algebra without identity 

and that    is the symmetric algebra obtained from   by adjunction of the 

identity. A positive functional   in   can be extended to a positive 

functional in    if and only if   is real and satisfies inequality  

  ( )     (   ) for all     where   is some constant. 

Theorem 1.3.16 [4]: If in a symmetric normed algebra    

a)           

b) There exists a set *  + approximating the identity, then every continuous 

positive functional in   can be extended to a positive functional in   . 

Definition 1.3.17. [4]:   is called a normed symmetric algebra if  

a)   is a normed algebra  

b)   is a symmetric algebra  

c)     . 

Definition 1.3.18. [4]: A binary operation    ,   -   ,   -    ,   - 

is said to be a continuous t-norm if (,   -  ) is a topological monoid 

with unit 1 such that               whenever       and       

(          ,   -). 

   It is clear that if we define                      (   ) then   is a 

continuous t-norm. 
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Section One: 

2.1. Definition 

In this section we study the definition fuzzy normed spaces and 

some properties with proofs. We start this section by the following 

definition. 

Definition 2.1.1 [1]:The 3-tuple (     ) is said to be a fuzzy metric 

space if   is an arbitrary set,   is a continuous t-norm and   is a fuzzy 

set on 

    (   ) satisfying the following conditions for all           and 

         

(i) M(x,y,0) > 0, 

(ii)  (     )    1 for all       if and only if        

(iii)  (     )     (     )  

(iv)  (     )     (     )     (         ) for all      

   ( )  (     )   (   )    ,   - is continuous. 

Definition 2.1.2 [1]: A sequence *  +  in a fuzzy metric space 

(     ) is a Cauchy sequence if and only if for each         and 

      there exist        such that for all          we have, 

 (       )        

A fuzzy metric space is said be complete if and only if every Cauchy 

sequence is convergent. 

At last we state the following lemma which will be used later. 
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Definition 2.1.3 [1]: The 3-tuple (     ) is said to be a fuzzy normed 

space if   is a vector space,   is a continuous t-norm and   is a fuzzy 

set on     (   ) satisfying the following conditions for every 

        and          

(i)  (   )       

(ii)  (   )                 

(iii)  (    )     (       )                 

(iv)  (   )    (   )    (           )   

(v)  (   )   (   )    ,   - is continuous,  

(vi)         (   )       

Lemma 2.1.4 [1]: Let   be a fuzzy norm. Then 

(i)  (   ) is non-decreasing with respect to t for each      . 

(ii)  (       )     (       ). We need the proof of above lemma. 

 

Proof:  

Let  t < s. Then k = s − t > 0 and we have 

 (   )     (   )        

    (   )    (   ) 

    (   )   

This proves the (i). To prove (ii) we have 

 (     )   ((  )(   )  )  

    .    
 

  
/  

    (     )   
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Lemma 2.1.5 [1]: Let (     ) be a fuzzy normed space. If we define 

 (     )     (       )   

then M is a fuzzy metric on  , which is called the fuzzy metric induced 

by the fuzzy norm  . 

Lemma 2.1.6 [1]: A fuzzy metric M which is induced by a fuzzy norm 

on a fuzzy normed space (     ) has the following properties for all 

          and every scalar α   0: 

(i)  (         )    (     ) . 

(ii)  (       )   .    
 

   
/   

Proof: 

 (             )     ((     )    (     )  )  

        (       )     (     ) 

Also, 

 (       )   (       ) 

= .    
 

   
/  

= .    
 

   
/ . 

Example 2.2.7 [1]: Let (  ‖ ‖) be a normed space. We define 

           or         min(   ) and 

 (   )  
   

     ‖ ‖
                           

Then (     ) is a fuzzy normed space. In particular if           

    we have 
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 (   )  
 

  ‖ ‖
 

which is called the standard fuzzy norm induced by norm ‖ ‖. 

Example 2.2.8 [1]: Let (  ‖ ‖) be a normed space. We define 

           and 

 (   )  (   
‖ ‖

 
)    

for       and     (   )  Then (     ) is a fuzzy normed space. 

Definition 2.2.9 [1]: Let (     ) be a fuzzy normed space. We define 

the open ball  (     ) and the closed ball  ,     ] with center       

and radius                 as follows: 

 (     )    *        (       )         +  

 ,     -    *        (       )         +  

Lemma 2.2.10 [1]: If (     ) is a fuzzy normed space, then 

(a) The function (   )          is continuous, 

 (b) The function (   )    αx is continuous. 

Proof:  

If        and       , then as        

 ((     )  (   )  )   (     
 

 
*   (     

 

 
*    

This proves (a). 

Now if       , αn → α and αn   0 then 
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 (         )   (  (    )  (    )  ) 

  (  (    ) 
 

 
*   ( (    ) 

 

 
* 

  (     
 

   

*   (  
 

 (    )
*      

 as n → ∞, and this proves (b).  

Definition 2.1.11 [1]: The fuzzy normed space (     ) is said to be a 

fuzzy Banach space whenever   is complete with respect to the fuzzy 

metric induced by fuzzy norm. 
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Section Two: 

2.2 Quotient spaces 

In this section at first we define Quotient spaces and give several 

examples of these spaces, and then we define Quotient spaces. 

Definition 2.2.1[1]: Let (     ) be a fuzzy normed space,   be a 

linear manifold in   and let            be the natural map, 

          . We define 

  (       )    sup* (       )        +           

Theorem 2.2.2 [1]: If   is a closed subspace of fuzzy normed space   

and  (     ) is defined as above then 

(a)   is a fuzzy norm on    . 

(b)  (    )     (   ). 

(c) If (     ) is a fuzzy Banach space, then so is (       ). 

Proof: 

It is clear that  (       )     . Let  (       )     . By 

definition there is a sequence {   } in M such that  (      ) → 1. 

So           or equivalently     (  ) and since   is closed so 

      and          , the zero element of    . On the other 

hand we have, 

 ((     )   (     )  )     ((     )       )  

   ((     )    (     )  )  

       (        )    (        ) 
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for        ,         and          . Now if we take sup on both 

sides, we have, 

 ((     )    (     )  )     (        )    (        )  

Also we have, 

 ( (     )  )     (        )  

  sup * (         )        + 

  sup* (           )        + 

  (        ⁄ +  

Therefore (     ) is a fuzzy normed space. 

To prove (b) we have, 

 (    )     (       )   

  sup* (       )        + 

    (   ). 

Let *      + be a Cauchy sequence in    . Then there exists    0 

such that      and, 

 ((    )  (      )  )         

Let      . We choose        such that, 

 (   (     )  )   ((     )    )  (    )  

But  ((     )    )  (    ). Therefore, 

 (   (     )  )  (    )(    )  

Now suppose      has been chosen,       can be chosen such that 

 ((         ) (     )  )

  ((       )     )  (      )   
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and therefore, 

 ((         ) (     )  )  (      )  (      )  

Thus, {     + is a Cauchy sequence in  . Since   is complete, there 

is an    in   such that              in  . On the other hand  

         (       )     (  )           

Therefore every Cauchy sequence *     + is convergent in     and 

so     is complete and (       ) is a fuzzy Banach space.  

Theorem 2.2.3 [1]: Let   be a closed subspace of a fuzzy normed 

space  . If       and   [   (     )), then there is an    in   

such that,               and  (    )   (     )     

Proof:  

By (1.4) there always exists y   M such that, 

 (     )   (     )      

Now it is enough to put           

Theorem 2.2.4 [1]: Let   be a closed subspace of a fuzzy normed 

space (     ). If a couple of the spaces         are complete, so is 

the third one. 

Proof: 

If   is a fuzzy Banach space, so are     and  . Therefore all that 

needs to be checked is that   is complete whenever both   and     

are complete. Suppose   and     are fuzzy Banach spaces and let 

*  + be a 

Cauchy sequence in  . Since 
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 ((       )       )     (         ) 

whenever        , the sequence *    + is Cauchy in     and so 

converges to       for some        So there exists a sequence    

such that      and  

 ((    )     )       for each t > 0. 

Now by last theorem there exists a sequence *  + in   such that 

        (      )      and 

 (    )  ((    )    )  (    )  

So limn  (    )      and limn       . Therefore *         + is a 

Cauchy sequence in   and thus is convergent to a point       and 

this implies that *  + converges to       and   is complete.  

Theorem 2.2.5 [1]: (Open mapping theorem) If   is a continuous 

linear operator from the fuzzy Banach space (      ) onto the fuzzy 

Banach space (      )  then   is an open mapping. 
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Section Three: 

2.3. Fuzzy normed algebras  

In this section at first we define Fuzzy normed algebras and give 

several examples of these algebras, and then we define Fuzzy normed 

algebras. 

Definition 2.3.1 [3]: It is called fuzzy nonned algebra-the quadruplet 

(       ) if we have  

(A 1)     are continuous t-norms;  

(A2)   is an algebra;  

(A3) (     ) is a fuzzy normed linear space;  

(A4)  (     )     (   )    (   ) for all                     .  

If (     ) is a fuzzy Banach space, then (       ) will be called fuzzy 

Banach algebra.  

Example 2.3.2. [3]: Let (  ‖ ‖) be a normed algebra,     be continuous t-

norms and  

       ,   )  ,   - defined by  (   )   {
         ‖ ‖
         ‖ ‖

 . 

Then (       )  is a fuzzy-normed algebra.  

Proof.  

It is easy to check (N1)-(N3) and (N5). We verify the condition (N4). Let 

              ,   )  If ‖   ‖       then   ‖ ‖ or   ‖ ‖ 

(contrarily    ‖ ‖ and    ‖ ‖, thus      ‖ ‖ ‖ ‖  ‖   ‖  

contradiction). If   ‖ ‖, then  (   )    . If   ‖ ‖, then  (   )    . 
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Thus  (   )   (   )    . Therefore the inequality  (           )  

  (   )     (   ) holds. If ‖ ‖  ‖ ‖       , then  (         )   

   and the inequality  (       )    (   )    (   ) holds.  

It remains to verify (A4). Let              ,   )  If ‖  ‖    , then 

  ‖ ‖ or   ‖ ‖ (contrarily   ‖ ‖ and    ‖ ‖, thus      ‖ ‖  

‖ ‖  ‖  ‖, contradiction). If   ‖ ‖, then  (   )    If   ‖ ‖, then 

 (   )    . Thus  (   )    (   )     . Therefore the inequality 

 (     )   (   )    (   ) holds. If ‖  ‖    , then  (     )      

and the inequality  (     )   (   )    (   ) holds. 

Example 2.3.3. [3]: Let (  ‖  ‖) be a normed algebra and     ,   )  

,   - defined by  

 (   )  {

 

  ‖ ‖
                   

                               
   

Then (       ) is a fuzzy Harmed algebra.  

Proof.  

By [4]' (     ) is a fuzzy normed linear space. It remains to verify (A4), 

that is  

 (     )   (   )   (   )  for all                       ,   )  

For       or       the inequality is obvious. For     and    , the 

inequality is equivalent to  

  

   ‖  ‖
 

 

  ‖ ‖
 

 

  ‖ ‖
  

namely       ‖ ‖    ‖ ‖  ‖ ‖  ‖ ‖      ‖  ‖, which is evidently 

true.  
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Example 2.3.4. [3]: Let (  ‖ ‖) be a normed algebra and      ,   )   

 ,   - defined by  

 (   )  {

 

  ‖ ‖
                   

                               
   

 

Then (       ) is a fuzzy normed algebra.  

Proof.  

We will prove that (     ) is a fuzzy normed linear space. According to 

[4], conditions (N1)-(N3) and (N5) are verified. It remains to prove (N4), 

that is,  

 (       )   (   )   (   )  for  all                         

Indeed, for       or       the inequality is obviously true. For      and 

   , the inequality is equivalent to  

   

    ‖   ‖
 

 

  ‖ ‖
 

 

  ‖ ‖
  

namely (   )(  ‖ ‖)(  ‖ ‖)    (    ‖   ‖), which is 

equivalent to  

  (‖ ‖ ‖ ‖)    ‖ ‖    ‖ ‖ (   )‖ ‖‖ ‖     ‖   ‖  

Because   (‖ ‖ ‖ ‖)      ‖   ‖ and all the other terms from the left 

member are positive, the inequality follows. Therefore (     ) is a fuzzy 

normed linear space. Moreover, conditions (A1)-(A4) are satisfied similar 

to the proof from the previous example. It follows (       ) is a fuzzy 

normed algebra.  
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Theorem 2.3.5. [3]:  

A fuzzy normed algebra (       ) is with continuous product if and only if  

For all   (   )     ( )  (   )     ( )    such that  

For all 

                        (   )      (   )      (      )      

Proof.  

( ) Let   (   ) and     *     (   )   + be an open 

neighbourhood of zero. As       (   )        is continuous at 

(   )  there exist      ( )          ( )         ( )   (   ) 

     ( )   (   ) such that  

For all           (    )     (    )     we have that 

 (      )   . 

Let        *      +  (   )   
 

    
  . Let                

such that  (   )     (   )    Then  (     )       and 

 (     )       . Let    
    

 
    

    

 
 We note that  

 (     )   (       )   (      )      

 (    )   (       )   (     )        

Hence  (      )    , i.e.,   (
    

 
 
    

 
  )    , namely   (   

   

    
)  

   Thus  (      )    .  

( ) First we will prove that for each      , the mapping  

           

is continuous.  
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Let    ,   (   ). Thus there exist    ( )  (   )    ( )    

such that  

 (   )     (   )     (      )      

As        (    )   , there exists      such that  (     )    . Let 

   (   )   
 

   
 and  (   )   . Let  

    such that  (   )   . As  (     )   , we obtain that 

 (        )    , namely  (     )   .  

Similarly, we can establish that, for each     , the mapping  

            

is continuous.  

Now, we will prove that (       ) is with continuous product. Let 

     ,      · Thus           and          . Hence 

       (           )    ,        (           )    for all 

     . Therefore  

 (           )  

   ((     )(     )    (     )      (     )  )  

   ((     )(     ) 
 

 
)     ((     )   

 

 
)     (  (     ) 

 

 
* 

  ( (      √
 

 
)  (      √

 

 
),    ((     )   

 

 
)

    (  (     ) 
 

 
*     

Hence           
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Lemma 2.3.6. [3]: Any continuous t-norm   satisfies:  

For all   (   )       (   ) such that         

Proof.  

Let   (   ). Choose     Let    ,   -  ,   - defined by  ( )   

    . As   is continuous, we have that   is continuous. As  ( )    

    and  ( )        , for   (   ) there exists   (   ) such 

that  ( )   , namely        

Theorem 2.3.7. [3]: Any fuzzy normed algebra (       ) is with 

continuous product.  

Proof.  

Let   (   ). Then there exists     such that     (   ). As   is a 

continuous t-norm, by the previous lemma, we obtain that there exist 

      (   ) such that            We suppose that       (the 

case       is similar). We choose    ( )   . Let             

such that  (   )      (   )     Then 

  (       )    (   )    (   )                      

Definition 2.3.8. [3]: The fuzzy normed algebra (       ) is called with 

multiplicatively continuous product if  

For all   (   ), for all      , for all         (   )      (   )  

   (     )     

Example 2.3.9. [3]: (Fuzzy normed algebra with multiplicatively 

continuous product). The fuzzy normed algebra (       ) from Example 

(2.4.2) is with multiplicatively continuous product.  
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Proof.  

Indeed, let   (   ),             such that  (   )   ,  (   )   

 . Then  (   )   (   )     . Thus ‖ ‖     ‖ ‖   . Therefore 

‖  ‖  ‖ ‖ ‖ ‖    . Hence  (     )     . 

Example 2.3.10. [3]: (Fuzzy normed algebra which is not with 

multiplicatively continuous product). We consider the fuzzy normed 

algebra from Example 2.4.3, where     . and the norm on   is the 

absolute value    · Then (       ) is not with multiplicatively continuous 

product.  

Proof.  

Indeed, for    
 

 
   

 

 
     

 

 
        we have that  (   )   

 

     
 

 

  
 

 
 
 

 

 
  

 

 
 and  (   )  

 

 
. But  (     )  

  

       
 

  

   
  

 
  

 

  

 
  

 

 
. Thus (       ) is not with multiplicatively  

continuous product.  

Proposition 2.3.11. [3]: Let (       ) be a fuzzy normed algebra such that 

      for all   (   ). Then (       )  is with multiplicatively 

continuous product.  

Proof.  

Let   (   ).,             such that  (   )      (   )   . Then  

 (     )   (   )   (   )         

Remark 2.3.12. [3]: The condition        for all   (   ) from the 

previous proposition is sufficient but not necessary.  
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Indeed, the algebra (       ) from Example 2.4.2 is with multiplicatively 

continuous product, although       does not verify       for all 

  (   ).  

Proposition 2.3.13. [3]: Let (         ) and (         ) be two fuzzy normed 

algebras. If t-norm    dominates both   and  , then ((     )       ) is a fuzzy 

normed algebra, where  ((     )  )    (    )     (    ).  

Proof.  

According to [13], it remains to be proved that: r :  

 ((         )   )   ((     )  )   ((     )  )    

for all                     for all     (   )  

We have  

 ((         )   )    (        )  
   (        )  

 ,  (    )    (    )-  
 ,  (    )    (    )-  

  ,  (    )     (    )-  ,  (    )     (    )-  

   ((     )  )   ((     )  )   

for all                      for all     (   ) 

Proposition 2.3.14. [3]: Let   be a t-norm satisfying        for all 

  (    ) and let (         )and (         ) be two fuzzy normed 

algebras with multiplicatively continuous product. If    is a t-norm that 

dominates both   and   then ((     )       ) is a fuzzy normed algebra 

with multiplicatively continuous product.  

Proof.  

Let   (   ) (     )       , and (     )              such that 

 ((     )  )    and  ((     )  )   . Then we have successively:  
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 ((         )   )    (        )  
   (        )  

 ,  (    )    (    )-  
 ,  (    )    (    )-  

  ,  (    )     (    )-  ,  (    )     (    )-  

   ((     )  )   ((     )  )   

                                                    

                                                           

Example 2.3.15. [3]: Let (       ) be a fuzzy normed algebra with 

multiplicatively continuous product and let     be a linear closed sub 

algebra of  . Then (       ) is a fuzzy normed algebra with 

multiplicatively continuous product.  

Example 2.3.16. [3]: (Cartesian product of fuzzy normed algebras with 

multiplicatively continuous product that is not with multiplicatively 

continuous product). Let (       ) be the fuzzy normed algebra from 

Example 2.4.2, where    . The fuzzy normed algebra (          ), 

where  

  ((     )  )   (    )  (    )  for all (     )                  is 

not with multiplicatively continuous product.  

Proof.  

Taking into account that  

  ((     )  )   (    )  (    ) 

{
                    

                  
    {

                 

                   
 

{
              *         +  
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for   
 

 
             

 

 
      

 

 
  we obtain  

  ((     )  )    
 

 
   ((     )  )    

 

 
   ((         )   )    

 

 
.  
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