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 الإهداء

  إلى من جرع الكأس فارغاً لٌسقٌنً قطرة حب

إلى من حصد  إلى من كلّت أنامله لٌقدم لنا لحظة سعادة

  الأشواك عن دربً لٌمهد لً طرٌق العلم

 )والدي العزٌز( إلى القلب الكبٌر

 

  إلى من أرضعتنً الحب والحنان

 إلى رمز الحب وبلسم الشفاء

 بة()والدتً الحبٌ إلى القلب الناصع بالبٌاض

 

إلى القلوب الطاهرة الرقٌقة والنفوس البرٌئة إلى 

  )إخوتً( رٌاحٌن حٌاتً

 

لآن تفتح الأشرعة وترفع المرساة لتنطلق السفٌنة فً ا

عرض بحر واسع مظلم هو بحر الحٌاة وفً هذه 

الظلمة لا ٌضًء إلا قندٌل الذكرٌات ذكرٌات الأخوة 

  )أصدقائً( البعٌدة إلى الذٌن أحببتهم وأحبونً



 شكر وتقدير

والصلاة  }لئن شكرتم لأزٌدنكم  {ٌقول الله فً محكم كتابه  الحمد لله

 والسلام على اشرف خلق الله سٌدنا محمد )صلى الله علٌه واله وسلم (

 القائل: من لم ٌشكر المخلوق لم ٌشكر الخالق.

بداٌة اشكر الله عز وجل الذي ساعدنً على اتمام بحثً وتفضل علٌنا 

 هذا العمل.. وبعدبإتمام 

على ما   د.شكرا وتقدٌرا لحضرة الاستاذ الفاضل 

بذله من سعة صدر وكرم طبعه ورحابة خاطره وارشاد وتوجٌه وتسدٌد 

 لأفكاري 

 فجزاه الله خٌر جزاء المحسنٌن
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CHAPTER 

     ONE

 
PRELIMINARIES  AND  BACKGROUND 

 

 

1.1.INTRODUCTION 

 
          In this chapter, we have two classes of preliminary discussions: ODEs 

and approximation theory ,for they are fundamental compositions in our 

subject. The former is mainly about the two point second order boundary 

value problems (TPBVP) and semi-analytic methods for solving TPBVP.  

 

1.2. MATHEMATICAL BACKGROUND 
 

          We begin by considering some elementary mathematical background 

material for ODE BVPs in this these .The dynamic behavior of systems is an 

important subject. A mechanical system involves displacements, velocities, 

and accelerations. An electric or electronic system involves voltages, currents, 

and time derivatives of these quantities. An equation that involves one or 

more derivatives of the unknown function is called an Ordinary Differential 

Equations.  

          The order of the equation is determined by the order of the highest 

derivative. For example, if the first derivative is the only derivative, the 

equation is called a first-order ODE. In the same way, if the highest derivative 

is second order, the equation is called a second-order  ODE.      

          The problems of solving an ODE are classified into initial-value 

problems (IVP ) and boundary-value problems (BVP), depending on how the 

conditions at the endpoints of the domain are specified. All the conditions of 

an initial-value problem are specified at the initial point. On the other hand, 
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the problem becomes a boundary-value problem if the conditions are needed 

for both initial and final points.[1] 

          The words two-point in the two point boundary value problem, refer to 

the fact that the boundary condition is evaluated at the solution at the two 

interval endpoints and unlike for initial value problems (IVPs) where the 

initial conditions are all evaluated at a single point .Occasionally, problems 

arise where the boundary condition is also evaluated at the solution at other 

points in the domain. In these cases, we have a multipoint BVP. As shown in 

[2], a multipoint problem may be converted to a two-point problem by 

defining separate sets of variables for each subinterval between the points and 

adding boundary conditions which ensure continuity of the variables across 

the whole interval. Like rewriting the original BVP in the compact, rewriting 

a multipoint problem as a two-point problem may not lead to a problem with 

the most efficient computational solution[3 ]. We note that a different type of 

boundary condition may be applied at each end point, for example, periodicity 

conditions. The reader is referred to Keller for methods of treatment.  

          Most practically arising TPBVP have separated boundary conditions 

where the boundary function g may be split into two parts (one for each 

endpoint:  

                             ga (y(a)) = 0 ,   gb (y(b)) = 0 .                         

Here, ga ∈ R
s
 and gb ∈ R

n-s
 for some value s with 1 < s < n and where each of 

the vector functions ga and gb are independent. However, there are well-

known, commonly arising, boundary conditions which are not separated; for 

example, consider periodic boundary conditions which. 
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         A boundary-value problem in standard form consists of the second-order 

linear differential equation : 

                           y " P(x) y׳Q(x) y ф(x)      ……(1.1) 

and the boundary conditions   

  

                               α1 y(a) + β1y' (a) = γ1 

                               α2 y(b) + β2 y'(b) = γ2     ……….  (1.2) 

 

where P(x), Q(x), and ф(x) are continuous in [a, b] and α1 , α2, β1, β2 , γ1 ,and γ2  

are all real constants. Furthermore, it is assumed that α1 and β1are not both 

zero, and also that α2 and β2are not both zero. In this thesis we take the 

following probability of boundary conditions (1.2) : α1 and α2 are equal to 

zero(Neuman condition )  or β1and β2 are equal to zero ( Dirichlet condition ) 

or ( α1and β2 or α2 and β1) equal to zero (mixed condition ).  

         The boundary-value problem is said to be homogeneous if both the 

differential equation and the boundary conditions are homogeneous (i.e.,ф(x) 

≡ 0 and γ1= γ2= 0 ).Otherwise the problem is non homogeneous .Thus a 

homogeneous boundary-value problem has the form 

 

                         y"+ P(x) y
׳
  +Q(x) y0     ……..   (1.3) 

                              α1 y(a) + β1 y' (a) = 0 

                              α2 y(b) + β2 y׳(b) = 0 

         A boundary-value problem is solved by first obtaining the general 

solution to the differential equation, using any of the appropriate methods 

presented heretofore, and then applying the boundary conditions to evaluate 

the arbitrary constants. 
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1.3. APPROXIMATION THEORY [4] 

 

         The primary aim of a general approximation is to represent non-

arithmetic quantities by arithmetic quantities so that the accuracy can be 

ascertained to a desired degree. Secondly, we are also concerned with the 

amount of computation required to achieve this accuracy. A complicated 

function f(x) usually is approximated by an easier function of the form φ(x; 

a0, . . . , an) where a0, . . . , an are parameters to be determined so as to 

characterize the best approximation of f. Depending on the sense in which the 

approximation is realized, there are three types of approaches: 

 

1. Interpolatory approximation: The parameters ai are chosen so that on a 

fixed prescribed set of points xi, i = 0, 1, . . ., n, we have 

φ(xi; a0, . . . , an) = f(xi) = fi.                          ………………  (1.4) 

Sometimes, we even further require that, for each i, the first ri derivatives of φ 

agree with those of f at xi . 

 

2. Least-square approximation: The parameters ai are chosen so as to  

Minimize ║f(x) − ψ(x; a0, . . . , an) ║2.           ………………..(1.5) 

 

3. Min-Max approximation: the parameters ai are chosen so as to  

 Minimize ║f(x) − φ(x; a0, . . . , an)║∞.           ………………   (1.6) 

 

Note  

          The approximation functions depend on a set of parameters {ai }i=0
n 

, 

there are many ways to choose these parameters. The most obvious ones are 

algebraic polynomials.  
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Definition 1.4 [5]  

         We say φ is a linear approximation of f if φ depends linearly on the 

parameters ai, that is, if φ(xi; a0, . . , an) = a0φ0(x0) +  . . + an φn (xn)            (1.7)  

where φi(x) are given and fixed functions .Now we introduce the theorem of 

Weierstrass which can be considered as one of the foundations of the 

approximation theory .  

 

Theorem 1.5  (Weierstrass Approximation Theorem)  

 

          Let f(x) be a continuous function on [a, b]. For any є > 0, there exist an 

integer n and a polynomial Pn(x) of degree n such that max  

       x∈[a,b] |f(x) − Pn(x)| < є.      …………………(1.8)   

           

           In this thesis, we shall consider only the interpolatory approximation.          

From (1.8) it follows that one can always find a polynomial that is arbitrarily 

close to a given function on some finite interval. This means that the 

approximation error is bounded and can be reduced by the choice of the 

adequate polynomial. Unfortunately Theorem 1.6 is not a constructive one, 

i.e. it does not present a way how to obtain such a polynomial. i.e. the 

interpolation problem can also be formulated in another way, viz. as the 

answer to the following question: How to find a .good. representative of a 

function that is not known explicitly, but only at some points of the domain of 

interest .In this thesis we use Osculatory Interpolation since has high order 

with the same given points in the domain . 
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1.6. Osculatory Interpolation[6] 

 

         Given {xi}, i = 1, . . .k  and values fi
(0)

, . . . , fi
(ri)

 ,where ri are 

nonnegative integers and fi = f(xi ).We want to construct a polynomial P(x) 

such that                   P(j)(xi) = fi
(j)                        ……………                 (1.9) 

for i = 1, . . . , k and j = 0, . . . , ri. Such a polynomial is said to be an sculatory 

interpolating polynomial of a function f . 

 

          In this paper  we use two-point osculatory  interpolation [6]. Essentially 

this is a generalization of interpolation using Taylor polynomials and for that 

reason osculatory interpolation is sometimes referred to as two-point Taylor 

interpolation. The idea is to approximate a function y(x) by a polynomial P(x) 

in which values of y(x) and any number of its derivatives at given points are 

fitted by the corresponding function values and derivatives of P(x).  

          In this thesis we are particularly concerned with fitting function values 

and derivatives at the two end points of a finite interval, say [0,1],wherein a 

useful and succinct way of writing a osculatory interpolant P2n+1(x) of degree 

2n + 1 was given for example by Phillips [14] as: 

P2n+1(x)=


n

j 0

{y )( j (0) q j (x)+(-1) j  y )( j (1) q j (1-x)}………….(1.10) 

 q j (x) =( x j /j!)(1-x) 1n  




jn

s 0







 

s

sn
 x

s
= Q j (x)/j!    ...………..(1.11) 

 

so that (1.10) with (1.11) satisfies 

y )(r (0)= 
)(

12

r

nP  (0)  ,   y )(r (1)= 
)(

12

r

nP  (1)  ,     r=0,1,2,…,n. 

implying that P2n+1(x)agrees with the appropriately truncated Taylor series for 

y(x) about x = 0 and x = 1.The error on [0, 1] is given by 
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R2n+1=y(x)-P2n+1(x)= 
)!22(

)()1()1( )22(1)1(1



 

n

yxx nnnn 
 where  0   1  and  y )22( n  is 

assumed to be continuous. 

 

          The osculatory interpolant for P2n+1(x) may converge to y(x) in [0,1] 

irrespective of whether the intervals of convergence of the constituent series 

intersect or are disjoint .The important consideration here is whether R2n+1 → 

0 as n→∞ for all x in [0,1]. In the application to the boundary value problems 

in this thesis such convergence with n is always confirmed numerically .We 

observe that (1.10) fits an equal number of derivatives at each end point but it 

is possible and indeed sometimes desirable to use polynomials which fit 

different numbers of derivatives at the end points of an interval. As an 

example of a two-point osculatory interpolant we may take n = 2 so that 

(1.10) with (1.11)becomes the quintic 

P5(x)=(1-x) 3 (1+3x+6x 2 )y(0)+x 3 (10-15x+6x 2 )y(1)+x(1-x) 3 (1+3x)y'(0)-  

          x 3 (1-x) (4-3x) y'(1)+1/2x 2 (1-x) 3 y''(0)+1/2x 3 (1-x) 2 y''(1) 

 

    Satisfying       

 

P5(0)=y(0) , P'5(0)= y'(0)  ,  P''5(0)= y''(0) . 

P5(1)=y(1) , P'5(1)= y'(1)  ,  P''5(1)= y''(1) . 

 

Finally we observe that (1.17) can be written directly in terms of the Taylor 

coefficients ai and bi about x = 0 and x = 1 respectively, as 

  P2n+1(x)=


n

j 0

{ a j Q j (x) + (-1) j b j Q j (1-x) }. ….(1.12) 



      

81 8 

 
CHAPTER  

     TWO  
On  Osculatrary interpoiation 

 
 
2.1. INTRODUCTION 

 

          The most general form of the problem to be considered is: 

                        y" = f(x ,y, y' ),   x ∈ [a , b] ,  

with boundary conditions :      y(a) = A     ,       y(b) = B                     

there is no loss in generality in taking a = 0 and b = 1, and we will sometimes 

employ this slight simplification. We view f as a generally nonlinear function 

of y and y', but for the present, we will take f = f(x) only. For such a problem 

to have a solution it is generally necessary either that f(x) ≠ 0 hold, or that A≠  

0 at one or both ends of the interval. When f(x) ≡ 0, and A = 0 , B=0 the BVP 

is said to be homogeneous and will in general have only the trivial solution, 

y(x) ≡ 0.[25].In this chapter we introduce a new technique for the qualitative 

and quantitative analysis of nonhomogeneous TPBVP using two-point 

polynomial interpolation,  

  

2.2. SOLUTION OF TWO POINT SECOND-ORDER BOUNDARY   

VALUE PROBLEMS  

 

        We consider the boundary value problem 

                                      y''+ f (x ,y,y') = 0           ………………. (2.1)  

                          g i ( y(0) , y(1) ,y'(0), y'(1) ) = 0 ,    i=1 , 2  ……. (2.2)  

where f , g1, g2 are in general nonlinear functions of their arguments and g1 and 

g2 are given in three kinds. 
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1- y(0)=a0 ,y(1)=b0 ……(2.2a), and we say this kind Dirichlet 

condition(value specified). 

2- y'(0) = a1 ,y'(1) = b1 ….(2.2b)  , and we say this kind Neumann 

condition(Derivative specified). 

3- c0y'(0)+c1y(0)=a , d0y'(1)+d1y(1)= b  ….(2.2c), where c0,c1,d0,d1 are all 

positive constants not all are zero but c1,d0 are equal to zero or c0,d1are 

equal to zero and we say this kind Mixed condition (Gradient & value). 

 

        The simple idea behind the use of two-point polynomials is to replace 

y(.x) in problem (2.1)–(2.2), or an alternative formulation of it, by a P2n+1 

which enables any unknown boundary values or derivatives of y(x) to be 

computed .The first step therefore is to construct the P2n+1 . To do this we need 

the Taylor coefficients of y (x) at x = 0:  

y = a 0 + a 1 x + 


2i

a i x
i  ….(2.3a) into (2.1)and equate coefficients of powers 

of x. The resulting system of equations can be solved to obtain ai (a0, a1)for all 

i ≥ 2.  Also we need the Taylor coefficients of y (x) at x = 1. Using MATLAB 

throughout we simply insert the series forms: 

 y = b 0 + b 1 (x-1) + 


2i

b i (x-1) i    ……..(2.3b) 

into (2.1) and equate coefficients of powers of (x−1). The resulting system of 

equations can be solved to obtain bi (b0, b1 ) for all i ≥ 2.The notation implies 

that the coefficients depend only on the indicated unknowns a0, a1, b0, b1. The 

algebraic manipulations needed for this process .We are now in a position to 

construct a P2n+1(.x) from (2.3) of the form (1.10) and use it as a replacement in 

the problem (2.1)–(2.2). Since we have only the four unknownsto compute for 

any n we only need to generate two equations from this procedure as two 

equations are already supplied by the boundary conditions (2.2).An obvious 
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way to do this would be to satisfy the equation (2.1) itself at two selected 

points x = c1, x = c2 in [0,1] so that the two required equations become 

 

       P"2n+1(c i ) + f { P2n+1(c i ) , P
׳
2n+1(c i ), c i }= 0 ,  i=1,2.   …………..(2.4) 

          An alternative approach is to recast the problem in an integral form 

before doing the replacement. Extensive computations have shown that this 

generally provides a more accurate polynomial representation for a given n. 

We therefore use this alternative formulation throughout this thesis although 

we should keep in mind that the procedure based on (2.4) is a viable option 

and shares many common features with the approach outlined below. Of the 

many ways we could provide an integral formulation we adopt the following. 

We first integrate (2.1) to obtain 

     y'(x) -a 1 + 
x

0

f( y(s), y'(s) , s) ds = 0               ………………….(2.5) 

and again to find  

       y(x) -a 0 - x a 1 + 
x

0

(x-s) f (y(s),y'(s), s) ds =0     ……………….(2.6) 

where a0 = y(0) and a1 = y' (0). Putting x = 1 in (2.5) and (2.6) then gives 

    b 1 - a 1 + 
1

0

f ( y(s), y'(s) , s ) ds = 0            ……………………….(2.7) 

and 

   b 0 - a 0 -a 1 + 
1

0

(1-s) f ( y(s), y'(s) , s ) ds = 0        ………………….(2.8) 

where b0 = y(1) and b1 = y'(1). 

          The precise way we make the replacement of y(x) with a P2n+1(x) in (2.7) 

and (2.8)depends on the nature of f(y,y',x) and will be explained in the 

examples which follow. In any event the important point to note is that once 

this replacement has been made, the equations (2.2), (2.7) and (2.8) constitute 

the four equations we require to determine the set {a0, b0, a1, b1}. As we shall 
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see the fact that the number of unknowns is independent of the number of 

derivatives fitted represents perhaps the most important feature of the method. 

We make the following points at this stage : 

(i) In the majority of cases where the boundary conditions are simple enough 

the system of algebraic equations may be reduced a priori to a system in two 

unknowns, since the boundary condition can be substituted directly into the 

integral formulations, which MATLAB can be utilized to solve. That is, if we 

have the BC(2.2a),then we have only  the unknown pair {a1, b1}and is known 

the required polynomial can be constructed. For the benefit of the reader the 

entire procedure for Examples in section 2.3 .And if, we have the BC(2.2b), 

then we have only  the unknown pair {a0, b0}and is known the required 

polynomial can be constructed. Also if, we have the BC(2.2c), then we have 

only  the unknown pair {a0, b1}or {a1, b0} and is known the required 

polynomial can be constructed. 

 (ii) The method offers a certain amount of flexibility. For example we could 

choose to satisfy at two internal points or we could use alternative integral 

formulations. The fact remains that whatever strategy we adopt produces a 

quickly convergent sequence of values of the set {a0, a1, b0, b1} as n increases. 

(iii) Throughout we assess the accuracy of the procedure by examining the 

convergence with n. Using a symbolic computational facility such as 

MATLAB, computing the required convergent is not an issue. Where possible 

we can also run checks on our solutions using shooting with MATLAB codes. 

(iv) We compare our method with the other method. We now consider a 

number of examples designed to illustrate the convergence, accuracy, 

implementation and utility of the method. In what follows the use of bold 

digits in the tables is intended to give a rough visual indication of the 

convergence. 
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Remark 

 

1- All computations in the following examples were performed in the 

MATLAB environment, Version 7, running on a Microsoft Windows 2003 

Professional operating system . 

2- In the following examples when analytical solutions are known so that we 

can measure the error of a solution. When analytical solutions are not 

known, we compare our results to values computed by other methods . 

  

2.3. EXAMPLES 

 

In this section we introduce some examples illustrates suggested method:  

 

2.3.1. A linear problem 

 

          Linear boundary value problems (BVPs) can be used to model several 

physical phenomena. For example, a common problem in civil engineering 

concerns the deflection of a beam of rectangular cross section subject to 

uniform loading, while the ends of the beam are supported so that they 

undergo no deflection. This problem is linear second-order TPBVP[6] .Now, 

we give many other examples, we first consider the linear problem with 

Dirichlet BC : 

 

Example 1  

 

               y''  -  4 ( y - x ) = 0    ,   y(0) = 0  ,    y(1) = 2  …  (2.9) 

 

has exact solution [6] : e2 (e4 -1)-1 (e2x-e-2x)+x 
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Here (2.7) and (2.8) become 

          b 1 - a 1   +2 - 4 
1

0

y(s) ds = 0                                 (2.10) 

          8/3  - a 1  - 4 
1

0

(1-s) y(s) ds = 0                            (2.11) 

and the coefficients : a2 ,b2, a3 , b3 ,…can be found from (2.3a) and (2.3b) .Ab 

initio inclusion of the boundary conditions in (2.9) has reduced the number of 

unknowns to two, namely {a1, b1}, which are computed by solving (2.10) and 

(2.11) with y(s) replaced by a P2n+1(s). The results for n = 2, 3,4 are displayed 

in Table 1. We can see that there is clear convergence with n to the ‘exact’ 

values which are obtained using MATLAB boundary value software. Table 2 

gives the compare between the suggested method and other methods and 

figure 1 gives the accuracy of the method.    

 

TABLE 1: The result of the methods for n= 2, 3, 4 of example1 

 

   P5 P7 P9   

a1   1.5511387164 1.5514458006 1.5514410832   

b1   3.0749482402 3.0746246085 3.0746294890   

X Y:exact P5 P7 P9       |Y-P9| 

0.25 0.3936766919 0.3937912461 0.3936753464 0.3936767011 0.000000009170200 

0.5 0.8240271368 0.8244047619 0.8240204194 0.8240272117 0.000000074822647 

0.75 1.3370861339 1.3372355396 1.3370844322 1.3370861455 0.000000011556981 

S.S.E =  5.81608482230229E-15 

 
 

  

 

 

 

 



   Chapter Two                                                    On  Osculatrary interpoiation 
 

 81 14 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(Appro.) (Exact)

 

        Figure1:Comparison between the exact solution and semi-analytic method P9 

 

Now we give the comparison between the solution of suggested method  

and solution of other methods in the following table : 

TABLE 2: A Comparison between P9 and other methods of example 1  

 

 

 

x 

 

 

Y 

Ф1 by using 

linear 

shooting 

method  

Ф2 by sing 

linear 

Finite-

Difference 

method 

P9 by using 

Oscillatory 

interpolation 

|Y-P9| 

0.25 0.393676692 0.3936767 0.39367669 0.3936767011 0.0000000092 

0.5 0.824027137 0.8240271 0.82402714 0.8240272117 0.0000000748 

0.75 1.337086134 1.337086 1.33708613 1.3370861455 0.0000000116 

Then from table 1 and the relation (1.10)and (1.11) in the previous chapter  we have: 

  

 P5=.121739*x^5-.662526e-1*x^4+.393375*x^3+1.55114*x                                                                                       

          P7=.114177e-1*x^7-.905686e-2*x^6+.804532e-1*x^5-.189035e-2*x^4 

     +.367631*x^3 +1.55145*x                                                        

 P9=.628069e-3*x^9-.652397e-3*x^8+.774834e-2*x^7-.403156e-3*x^6 

     + 0.0736107*x^5+0.367627*x^3 +1.55144*x   

                                                                                                                                                  

   



   Chapter Two                                                    On  Osculatrary interpoiation 
 

 81 15 

Example 2: 

               y''={-y '+(x+2) y-(2-(x+1) 2) e1 ln(2)+2 e
x
}/(x+1) 

                         with BC:             y(0) = 0 ,  y(1) = 0 

Exact solution [6]   y(x) = e
x
 ln(x+1) - (e

1
 ln(2)) x . 

The results of solution given in the following table : 

Table 3: The result of the methods for n = 2, 3, 4 of example2 

   P5 P7 P9   

a1   -0.88416918 -0.88416925 -0.88416940   

b1   1.35913519 1.35914462 1.35914055   

x Y P5 P7 P9      | Y-P9 | 

0.25 -0.1845203549 -0.1845324937 -0.1845173602 -0.1845205972 0.000000242273476 

0.5 -0.2735857444 -0.2735962538 -0.2735782173 -0.2735865577 0.000000813249308 

0.75 -0.2284204067 -0.2284181840 -0.2284189827 -0.2284205035 0.000000096793373 

    S.S.E=7.29439830 658099E-13     

 

Therefore:            P9 = 0.0015x^9 - 0.0091x^8 + 0.0257x^7-.0410x^6 +                                                                                                                                                                                                                                                              

0.737x^5 +   0.3333x^3 + 0.5000x^2 - 0.8842x  

The accuracy of the solution given in the following figure: 

-0.27669

-0.22669

-0.17669

-0.12669

-0.07669

-0.02669

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(Appro.) (Exact)

 

        Figure2: A comparison between exact and approximate solution of example2  
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          Now we give the comparison between the solution of suggested method 

and solution of other methods in the following table :  

 

Table4: A Comparison between P9 and other methods of example 2  

 

xi 

 

Y:exact 

 

Ф1 by 

using 

cubic 

splines 
 

Ф2 by 

another 

numerical 

solution 
 

P9  by using 

Osculatory 

interpolation 

| Y-P9 | 

0.25 -0.1845203549 -0.1845191 -0.1846134 -0.1845205970 0.0000002423 

0.5 -0.2735857444 -0.2735833 -0.2737099 -0.2735865580 0.0000008132 

0.75 -0.2284204067 -0.2284186 -0.2285169 -0.2284205030 0.0000000968 

 

Now we give the linear problem with Neumann BC : 

 

Example 3 

 

              y''- π
2
 y+2 π

2
 sin(π x) = 0   BC: y'(0)= π  ,  y'(1)=- π 

 

With Exact solution [6]  : sin(π x) 

In this case equation (2.3) gives {ai , bi }where i= 2,3,…,so we have four 

unknown {a0 ,a1 ,b0 ,b1} then BC give a1 ,b1,thus solving (2.7)and (2.8) to 

obtain a0 , b0 .The result of method given in the following table : 

 

 

 

 

 

 

)( ixy

i
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Table 5 :The result of the methods for n = 2, 3, 4 of example 3 

 

   P5 P7 P9   

a0   0.0071286292 0.0002701079 0.0000066077   

b0   0.0071286292 0.0002701079 0.0000066077   

X Y P5 P7 P9 |Y-P9| 

0 0.0000000000 0.0071286292 0.0002701079 0.0000066077 0.000006607700484 

0.1 0.3090169943 0.3156038133 0.3092862669 0.3090237892 0.000006794799366 

0.2 0.5877852522 0.5911087921 0.5879637222 0.5877906400 0.000005387754140 

0.3 0.8090169943 0.8069586888 0.8089626630 0.8090164488 0.000000545560411 

0.4 0.9510565162 0.9440928773 0.9507420034 0.9510478432 0.000008673077361 

0.5 1.0000000000 0.9910749818 0.9995720325 0.9999874662 0.000012533840896 

0.6 0.9510565162 0.9440928773 0.9507420034 0.9510478432 0.000008673077361 

0.7 0.8090169943 0.8069586888 0.8089626630 0.8090164488 0.000000545560411 

0.8 0.5877852522 0.5911087921 0.5879637222 0.5877906400 0.000005387754140 

0.9 0.3090169943 0.3156038133 0.3092862669 0.3090237892 0.000006794799367 

1 0.0000000000 0.0071286292 0.0002701079 0.0000066077 0.0000066077005 

    
S.S.E =     5.45854779363699E-10 

 
  

 

 

Then from table 5 and the relation (1.10)and (1.11) in the previous chapter  

we have :  

P5= 3.17677*x^4-6.35354*x^3+.351784e-1*x^2+3.14159*x+.712863e-2     

P7=-.900000e-18*x^7-1.11814*x^6+3.35442*x^5-.211490*x^4-.16771*    x^3  

+.133293e-2*x^2+3.14159*x+.270108e-3 

P9=-.406544e-17*x^9+.205015*x^8-20059*x^7+.114551*x^6+2.52655* x^5+.268188e-

4*x^4-5.16771*x^3+.326077e-x^2+3.14159*x+.660770e-5 

 

 

The accuracy of the solution given in the following figure: 
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0.00000661

0.10000661

0.20000661

0.30000661

0.40000661

0.50000661

0.60000661

0.70000661

0.80000661

0.90000661

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(Appro.) (Exact)

 

        Figure3: A comparison between exact and approximate solution of example3 

 

Now we give the comparison between the solution of suggested method and  

solution of other methods in the following table:  

Table 6: A Comparison between P9 and other methods of example 3  

xi Y  exact 

 
 

by using B-

splines 
 

 
 

     by using 

piecewise 

linear 

Rayleigh-Ritz 
 

P9 by using 

Osculatory 

interpolati

on 

|Y-P9| 

0 0.0000000000 0 0.0000000000 0.0000000000 0.0000000000 

0.1 0.3090169943 0.30901644 0.3102866742 0.3090187881 0.0000017937 

0.2 0.5877852522 0.58778549 0.5902003271 0.5877867479 0.0000014956 

0.3 0.8090169943 0.80901687 0.8123410598 0.8090132782 0.0000037161 

0.4 0.9510565162 0.95105667 0.9549641896 0.9510450787 0.0000114376 

0.5 1.0000000000 1.00000002 1.0041087710 0.9999848327 0.0000151673 

0.6 0.9510565162 0.95105713 0.9549641893 0.9510450787 0.0000114376 

0.7 0.8090169943 0.80901773 0.8123410398 0.8090132782 0.0000037161 

0.8 0.5877852522 0.5877869 0.5902003271 0.5877867479 0.0000014956 

0.9 0.3090169943 0.3090181 0.3102866742 0.3090187881 0.0000017937 

1 0.0000000000 0 0.0000000000 0.0000000000 0.0000000000 

 

 

 

)(1 ix )(2 ix
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