

Republic of Iraq

Ministry of higher education and scientific research

University of Al- Qadisiyah

College of education

Dept. of Mathematics

A research
Submitted to the department of education Al- Qadisiyah

University as a partial fulfillment o requirement for
certificate o the Bachelor of science Mathematics

Ali Hamza Jabbar

Dr. Khaled Mindeel

1440 2019

بسم الله

الزحمن

 الزحيم

 (

يؤتي الحكمت

من يشاء ومن

يؤث الحكمت

فقد أوتي

خيزاً كثيزاً

 وما يذكز الا

أولو الالباب

)
 صدق الله العلي العظيم

 962سورة البقزة الايت

I present this research to my dearest people

“My family “for their support and help

presented to me in all my educationally life. I

never forget their advices, kindness, and

compassion …

The person believed me while I was not able to

My mother

The individual who made me believed that

there is nothing as real as a dream My father

Thanks for their support hoping to be the

devoted daughter and this simple effort as gift

wishing to accept it

I should like expressed my sincere

great for my supervisor Khalid

Mendel for here unfailing guidance

and remarkable efforts.

Also I would like to express my

gratitude to my parents and my

sister for all support and help they

have given to me.

Subject Page
Approximation theory 1

Artificial neural networks 3

Using Ann for solving differential 4

Equation

Connections between units 4

Activation function 5

The bias 5

Multi-layer feed forward Neural

networks

6

Training ANN 7

Description the design of feed forward

Neural networks

10

Computation of the Gradient 12

Illustration of the Design feed forward

neural Network

13

Discussion 25

References 27

1

CHAPTER

 ONE

MATHEMATICAL BACKGROUND

1.1.Introduction

This chapter contains a brief overview of artificial neural networks

has been to clarify the most important features of artificial neural

networks and the basic elements that make up the network. The work of

each element in the network. The training was to explain the network

and the types of training for the networks and the algorithm that was

used in training (feedback) and how they work. As was stopped training

conditions And how is the appropriate choice of parameters Walt.

1.2. APPROXIMATION THEORY [1]

 The primary aim of a general approximation is to represent non-

arithmetic quantities by arithmetic quantities so that the accuracy can

2

be ascertained to a desired degree. Secondly, we are also concerned

with the amount of computation required to achieve this accuracy. A

complicated function f(x) usually is approximated by an easier function

of the form φ(x; a0, . . . , an) where a0, . . . , an are parameters to be

determined so as to characterize the best approximation of f. Depending

on the sense in which the approximation is realized, there are three

types of approaches:

1. Interpolatory approximation: The parameters ai are chosen so that on

a fixed prescribed set of points xi, i = 0, 1, . . ., n, we have

φ(xi; a0, . . . , an) = f(xi) = fi.

Sometimes, we even further require that, for each i, the first ri

derivatives of φ agree with those of f at xi .

2. Least-square approximation: The parameters ai are chosen so as to

Minimize ║f(x) − ψ(x; a0, . . . , an) ║2.

3. Min-Max approximation: the parameters ai are chosen so as to

 Minimize ║f(x) − φ(x; a0, . . . , an)║∞.

3

1.3. Artificial Neural Networks

A neural network is a parallel, distributed information processing

structure consisting of processing elements (which can possess a local

memory and can carry out localized information processing operations)

interconnected via unidirectional signal channels called connections.

Each processing element has a single output connection that branches

("fans out") into as many collateral connections as desired; each carries

the same signal , the processing element output signal. The processing

element output signal can be of any mathematical type desired. The

information processing that goes on within each processing element can

be defined arbitrarily with the restriction that it must be completely

local; that is, it must depend only on the current values of the input

signals arriving at the processing element via impinging connections and

on the values stored in the processing element's local memory[2] .

 ANN can be most adequately characterized as 'computational

models'with particular properties such as the ability to adapt or learn, to

generalize, or to cluster ororganize data, and which operation is based

on parallel processing. However, many of the

4

abovementionedproperties can be attributed to existing (non-neural)

models; the intriguing questionis to which extent the neural approach

proves to be better suited for certain applications thanexisting models.

To date an equivocal answer to this question is not found.

1.4.Using ANN for Solving Differential Equation

Application of ANNto the solution of differential equations is stipulated

also by two reasons. The first reason is that logical sequence scheme

corresponds to the logical scheme in the solution of differential

equations. In other words, the solution scheme of differential equations

enables to create the appropriate structure of ANN. The second reason

is that ANN can accurately approximate the function [3] .

1.4.1. Connections Between Units[4]

In most cases it is assumed that each unit provides an additive

contribution to the input of theunit with which it is connected. The total

input to unit k is simply the weighted sum of theseparate outputs from

each of the connected units plus a bias bk:

Sk(x) =∑jwjk(x) yj(x) + bk(x)(1.1)

5

The contribution for positive wjk is considered as an excitation and for

negative wjk as inhibition.

In some cases more complex rules for combining inputs are used, in

which a distinction is madebetween excitatory and inhibitory inputs. We

call units with a propagation rule (1.1) sigmaunits.

A different propagation rule, introduced byKrӧseet al[5].

1.4.2. Activation Function [4]

The activation function (sometimes called a transfer function) can be a

linear or nonlinear function. There are many different types of activation

functions. Selection of one type over another depends on the particular

problem that the neuron (or ANN) is to solve.

The activation function, denoted by : RR defines the output of a

neuron, whichis bounded monotonically increasing, differentiableand

satisfies :Limx+(x) = 1 andLimx -(x) = 0 .

1.4.3.The Bias[4]

6

 Some ANN employ a bias unit(offset , threshold) as part of every

layer except the output layer. This units have a constant activation value

of 1 or -1, it's weight might be adjusted during training. The bias unit

provides a constant term in the weighted sum which results in an

improvement on the convergence properties of the ANN .

 A bias acts exactly as a weight on a connection from a unit whose

activation is always 1. Increasing the bias increases the net input to the

unit .

In the previous section we discussed the properties of the basic

processing unit in an ANN. The next section focuses on the pattern of

connections between the units and thepropagation of data.

1.5. Multi-layer Feed Forward Neural Networks

A feedforward neural network(FFNN) has a layered structure. Each layer

consists of units which receive theirinput from units from a layer directly

below and send their output to units in a layer directlyabove the unit.

There are no connections within a layer. The Ni inputs are fed into the

firsthidden layer of Nk,1 hidden units. The input units are merely 'fan-out'

units; no processing takes placein these units. The activation of a hidden

unit is a function fi of the weighted inputs plus abias. The output of the

7

hidden units is distributed over the next layer ofNk,2 hidden units, until

the last layer of hidden units, of which the outputs are fed into a layerof

No output units (see figure 1.1)[5]

Figure 1.1:Multilayer feed forward neural network.

1.6. Training ANN[5]

 Training is the process of adjusting connection weights w and

biases b. In the first step, the network outputs and the difference

between the actual (obtained) output and the desired (target) output

(i.e.,the error) is calculated for the initialized weights and biases

(arbitrary values). During the second stage, the initialized weights in all

links and biases in all neurons are adjusted to minimize the error by

propagating the error backwards (the back propagation algorithm). The

8

network outputs and the error are calculated again with the adapted

weights and biases, and the process (the training of the ANN) is repeated

at each epoch (The number of iterations of training process) until

satisfied output y
k

(corresponding to the values of the input variables x)

is obtained and the error is acceptably small.

9

CHAPTER

 TWO

DESIGN FAST FEED FORWARD NEURAL NETWORKS TO SOLVE

TWO POINT BOUNDARY VALUE PROBLEMS

2.1. Introduction

 Many methods have been developed so far for solving differential

equations. Some of them produce a solution in the form of an array that

contains the value of the solution at a selected group of points, others

use basis functions to represent the solution in analytic form and

transform the original problem usually to a system of algebraic

equations.

 Most of the previous study in solving differential equations using

Artificial neural network (ANN) is restricted to the case of solving the

10

systems of algebraic equations which result from the discretization of

the domain. In this chapter we design fast FFNN as a method to solve

SBVP.

2.2. Description the Design of Feed Forward Neural Network

 In the proposed approach the model function is expressed as the

sum of two terms: the first term satisfies the boundary conditions (BC)

and contains no adjustable parameters. The second term can be found

by using feed forward neural network (FFNN) which is trained so as to

satisfy the differential equation and such technique we were called

collocation neural network. Since it is known that a multilayer FFNN with

one hidden layer can approximate any function to arbitrary accuracy

thus our FFNN contains one hidden layer.

 In this section, we will illustrate how our approach can be used to

find the approximate solution of the general form of a second order

singular differential equation:

 y(2)(x) = F(x, y(x), y׳(x)), (2.1)

11

which a subject to certain BC’s and x (x1, x2,…, xn) Rn, D Rn denotes

the domain and y(x) is the solution to be computed.

 If yt(x, p) denotes a trial solution with adjustable parameters p, the

problem is transformed to a discretize form :

 Minp

i

2

i t i t i t i
p ˆx D

Min G(x , (x ,p), (x ,p), (x ,p))

 F(xi ,yt(xi ,p), yt׳(xi ,p)), (2.2)

subject to the constraints imposed by the BC’s.

In our proposed approach, the trial solution yt employs a FFNN and

the parameters p correspond to the weights and biases of the neural

architecture.

We choose a form for the trial function yt(x) such that it satisfies

the BC’s. This is achieved by writing it as a sum of two terms:

 yt(xi , p) = A(x) + G(x, N(x, p)), (2.3)

where N(x, p) is a single output FFNN with parameters p and n input

units fed with the input vector x. The term A(x) contains no adjustable

parameters and satisfies the BC’s. The second term G is constructed so

as not to contribute to the BC’s, since yt(x) satisfy them. This term can be

formed by using a FFNN whose weights and biases are to be adjusted in

order to deal with the minimization problem.

12

2.3. Computation of the Gradient

An efficient minimization of equation (2.2) can be considered as a

procedure of training the FFNN, where the error corresponding to each

input vector xi is the value E(xi) which has to forced near zero.

Computation of this error value involves not only the FFNN output but

also the derivatives of the output with respect to any of its inputs.

Therefore, in computing the gradient of the error with respect to the

network weights consider a multi layer FFNN with n input units (where n

is the dimensions of the domain), one hidden layer with h sigmoid units

and a linear output unit.

 For a given input vector x (x1, x2, …, xn) the output of the FFNN is

:

13

 N ∑

 , where zi

n

ij j i

j 1

w x b

wij denotes the weight connecting the input unit j to the hidden unit i

vi denotes the weight connecting the hidden unit i to the output unit ,

bi denotes the bias of hidden unit i, and

σ (z) is the sigmoid transfer function (tansig.).

 The gradient of FFNN, with respect to the parameters of the FFNN

can be easily obtained as:

 i

N

 (zi), (2.4)

 i

N

b

 vi(zi), (2.5)

 ij

N

w

 vi(zi) xj , (2.6)

Once the derivative of the error with respect to the network

parameters has been defined, then it is a straight forward to employ any

minimization technique. It must also be noted, the batch mode of

weight updates may be employed.

2.4. Illustration of the Design Feed Forward Neural Network

14

 In this section we describe solution of TPSBVP using FFNN. Now,

consider the 2
nd

 order SBVP :

 , (2.7)

where x [a , b] and the Dirishlit BC : y(a) A, y(b) = B, a trial solution

can be written as:

 –

 , (2.8)

where N(x, p) is the output of FFNN with one input unit for x and

weights p

Note that

yt(x) satisfies the BC by construction. The error quantity to be minimized

is given by:

 E[p]

2n
t i

i t i

i 1

d (x)
f (x , (x))

dx

}2

, (2.9)

where the xi [a , b]. Since :

 –

 {

, (2.10)

and

 {

 , (2.11)

15

it is straight forward to compute the gradient of the error with respect

to the parameters p using (3.4) – (3.6). The same holds for all

subsequent model problems.

 Now, we describe the solution of higher order SBVP using FFNN.

To illustrate the design, we will consider the 4
th

 order TPSBVP:

 y(4)(x) f(x, y(x), y׳(x), y"(x), y(3)(x)), (2.12a)

with BC : y(i)(a) Ai and y(i)(b) Bi , i = 0,1 (2.12b)

 Let us in our approach assume that the trial function is in the form:

 yt(x ,P) Z(x(+ M(x) N(x , P), (2.13)

 Now one may ask whether, for a general given boundary conditions

in

 For the nth order TPSBVP equation (3.1) with mixed BC: y(a) A,

y׳(a) A, y״(a) = A״,…,y(k)(a) = A(k) , y(b) B, y׳(b) B, y״(b) = B״,…,y(n-

k)(b) = B(k), k = 1,2, …, n –1 and the trial solution can be have the form:

yt(x) A + Ax + A״ x2 + … + A(n-1) xn-1 + (x-a)n (x-b)n N(x, p), (2.14)

For the above nth order TPSBVP the error function, which should be

minimized, is given by the following equation:

E(P) k

1 2 k

2
K n

t i

k i t t t

k 1 i 1

d (x)
f x , , ,...,

dx

 – f(xi ,yt(xi, P), yt׳(xi ,P),…,yt
(n-1)(xi, P)) }2 , (2.15)

16

Note that

 We take the same manner of solution if the problems have

Neumann or Mixed BC. That is the type of BC is not effect to the design

of FFNN.

2.5. Examples

 To illustrate the technique proposed in the preceding sections we

give examples to demonstrate the behavior and properties of proposed

design, the programs are written with MATLAB 7.11.

We used a multi-layer FFNN having one hidden layer with 5 hidden

units (neurons) and one linear output unit. The sigmoid activation of

each hidden unit is tansig.

 For the test problems the analytic solution ya(x) was known in

advance. Therefore we test the accuracy of the obtained solution by

computing the error: E(x) | yt(x) – ya(x) |.

 In order to illustrate the characteristics of the solution provided by

the suggested design, we provide figures displaying the corresponding

error E(x) both at the few points (training points) that were used for

training and at many other points (test points) of the domain of each

equation. The latter kind of figures are of major importance since they

17

show the interpolation capabilities of the neural solution which to be

superior compared to other solution obtained by using other methods.

Moreover, we can consider points outside the training interval in order

to obtain an estimate of the extrapolation performance of the obtained

numerical solution.

Example 2.1

 Consider the following 2nd order regular TPBVP :

 (x) = 0

with Dirishlit BC: y(0) 0, y(1) = 1, x [0, 1].

 The analytic solution is: ya(x) , according to the equation (2.8)

the trial neural form of the solution is taken to be:

 yt(x) x + x (x – 1) N(x, p) .

 The FFNN trained using a grid of ten equidistant points in [0, 1].

Figure (2.1) display the analytic and neural solution with different

training algorithms. The neural result with different types of training

algorithms such as: Levenberg – Marquardt (trainlm), quasi – Newton (

trainbfg), Bayesian Regulation (trainbr) introduced in table (2.1) and its

errors gave in table (2.2), table (2.3) gave the performance of the train

18

for epoch and time, table (2.4) gave the initial weight and bias of the

design network.

Table2.1: Analytic and Neural solution of example 2.1

Output of suggested FFNN yt(x) for different training algorithm Analytic solution In-

put

Trainbr Trainbfg Trainlm ya(x) x

8.31618490448882e-06 4.35445013380331e-11 3.18275672804846e-05 0 0.0

e-05.2181881891858.0 020008100500505808.9 1.00000000001765e-05 e-05 8200000000000000 0.1

02000.9.8890900...08 02000988015090.88518 02000.80085858.80.88 .0009.0000000000000 0.2

0200.008.00.8.8508. 0200.09000000955810 0200.09000000000000 0200.09000000000000 0.3

020809050880581598 02080.988888058.01 020809081000.58801 02080.000000000000 0.4

020989091088859050 02098.088888..0011 02098.088888888888 02098.800000000000 0.5

020550188510095.08 02055500000008.888 02055500000000000. 020555000000000000 0.6

19

Table 2.2: Accuracy of solutions for example 2.1

The error E(x) | yt(x) ya(x) | w h e r e yt(x) computed by the following
training algorithm

t r a i n l m t r a i n b f g Trainbr
3.18275672804846e-05 4.35445013380331e-11 8.31618490448882e-06

1.76531830603163e-16 0.000176674070754123 1.85819893857120e-05
6.35420287897890e-05 7.10876302157806e-05 8.70865693777388e-05
4.16333634234434e-17 3.77579911781112e-12 2.47937874238852e-05
6.18040271908281e-05 3.28752337852567e-11 0.000107411075873889

1.11022302462516e-16 7.79512010495864e-11 5.38651973673865e-05
1.80411241501588e-16 1.29991850617017e-12 7.84215962758433e-05

0.000172776025207599 2.72877136067162e-05 6.31377109800990e-05
0 4.93727281281053e-12 3.37187086617563e-05

1.11022302462516e-16 0.000901796585036974 1.17963465786630e-05
0 2.57959209548631e-11 2.15435396155872e-06

02801899895580810 0280100.58..10989 02801.0.5500.8.01 02801050000000000 0.7

029.5000.18.88991 029.5010000000895 029.5010000000000 029.5010000000000 0.8

02880808580900858 02888988580818095 02880080000000000 02880080000000000 0.9

02888885108000091 02888888888850.00 8 8 1.0

20

Table 2.3: The performance of the train for epoch and time

Table 2.4: Initial weight and bias of the network for different training algorithm

MSE Time Epoch Performance of train Train Function

3.16e-009 0:00:01 83 1.29e-32 Trainlm

7.7295e-008 0:00:18 822 1.39e-21 Trainbfg

1.8260e-009 0:00:11 462 6.81e-27 Trainbr

Weights and bias for trainlm

Net.B{1} Net.LW{2,1} Net.IW{1,1}

0.3619 0.5822 0.3012

0.7248 0.1531 0.9506

0.8583 0.0731 0.4606

0.3479 0.5806 0.2876

0.9617 0.2870 0.0846

Weights and bias for trainbfg

Net.B{1} Net.LW{2,1} Net.IW{1,1}

0.5853 0.1626 0.7094

0.2238 0.1190 0.7547

0.7513 0.4984 0.2760

0.2551 0.9597 0. 6797

0.5060 0.3404 0.6551

21

Figure 2.1: analytic and neural solution of example 2..1 using : trainbfg, trainbr, and trainlm

training algorithm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y
t

ya

lm

bfg

br

Weights and bias for trainbr

Net.B{1} Net.LW{2,1} Net.IW{1,1}

 0.6427 0.1820 0.9541

 0.0014 0.0930 0.5428

 0.0304 0.4635 0.5401

0.2085 0.0093 0.3111

 0.4550 0.9150 0.0712

22

Example 2.2

 Consider the following periodic 2nd order regular TPSBVP:

 (

)

with mixed BC: y′(0) 0 , y(1) = cos1 and x [0, 1]. The analytic solution

is: (see [62]), according to the equation (2.8) the trial

neural form of the solution is taken to be: yt(x) (cos1) x + x (x – 1) N(x,

p).

 The FFNN trained using a grid of ten equidistant points in [0, 1].

Figure (2.2) display the analytic and neural solutions with different

training algorithm. The neural results with different types of training

algorithm such as: trainlm, trainbfg, trainbr, introduced in Table (3.6)

and its errors gave in Table (2.7), Table (2.8) gave the weight and bias of

the design network, Table (2.9) gave the performance of the train with

epoch and time.

Table 2.6: Analytic and neural solution of Example 2.2

Out of suggested FFNN yt(x) for different training algorithm Analytic solution In-

put

Trainbr Trainbfg Trainlm ya(x) x

97000000000000.1 9700000199000001 1 1 0.0

07110009090100090 0711000090090900. 07110110000.0909. 071100009000.0000 0.1

0710000000001.900 07100090999010000 071000000..009000 071000000..009000 0.2

0710090..91109090 07100900091000910 07100990001900000 07100990001900000 0.3

0710900..0.0.9001 071090001190.990. 07109000110000000 07109000110000000 0.4

23

Table 2.7: Accuracy of solution for Example 2.2

The error E(x) | yt(x) ya(x) | w h e r e yt(x) computed by the following
training algorithm

t r a i n l m t r a i n b f g trainbr
0 0.000269310588686622 2.80446790679179e-07

1.21645744084464e-05 1.26578747483563e-10 1.14833561148942e-06
0 2.82462457977806e-05 1.62485614274566e-06
0 9.94958121636191e-06 8.76920458825481e-06
0 1.29778077173626e-10 3.22653103579373e-06

0 7.71521496467642e-07 4.94512483140142e-06
0 4.24377200047843e-11 3.22398064012130e-06

3.78288935598548e-06 5.65963942378289e-11 1.08387487263162e-05
5.02885861338731e-05 8.32875990397497e-11 1.56515945903823e-06
0.000155002766255130 8.10940203876953e-12 1.06936244681499e-06

070..00.00.090000 070..009999099001 070..0000090109.9 070..0000090109.9 0.5

07000990910101090 0700099009000.009 070009900901010.0 070009900901010.0 0.6

07.00099900090.00 07.0000090.00.010 07.00090000910999 07.0000090.000001 0.7

07010.000.0000000 07010.00.010090.0 07010000000.09090 07010.00.0190.900 0.8

07009000010100090 070090011000.0..0 07009000100000001 070090011000.0000 0.9

07000900000100000 070009009000..900 07000900900000900 07000900900000900 1.0

24

0 9.22539822312274e-12 2.53086685830795e-07

Table 2.8: Initial weights and bias of the network for different training algorithm

Weights and bias for trainlm

Net.B{1} Net.LW{2,1} Net.IW{1,1}

0.1299 0.0759 0.2858

0.5688 0.0540 0.7572

0.4694 0.5308 0.7537

0.0119 0.7792 0.3804

0.3371 0.9340 0.5678

Weights and bias for trainbfg

Net.B{1} Net.LW{2,1} Net.IW{1,1}

0.2601 0.8334 0.4068

0.0868 0.4036 0.1126

0.4294 0.3902 0.4438

0.2573 0.3604 0.3002

0.2976 0.1403 0.4014

Weights and bias for trainbr

Net.B{1} Net.LW{2,1} Net.IW{1,1}

0.4075 0.8803 0.1696

0.8445 0.4711 0.2788

0.6153 0.4040 0.1982

25

Table 2.9 :The performance of the train with epoch and time

 Figure 2.2: Analytic and neural solution of example 2.2 using: trainbfg, trainbr,

trainlm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

x

yt

ya

lm

bfg

br

0.3766 0.1792 0.1951

0.8772 0.9689 0.3268

MSE Time Epoch Performance of train Train Function

2.1859e-009 0:00:01 75 0:00 Trainlm

6.6751e-009 0:04:23 6187 6.42e-21 Trainbfg

2.0236e-011 0:0030 1861 5.88e-12 Trainbr

26

2.6. Discussion

 Based on our examples, we see that the application of Levenberg

Marquardt appears to be the fastest method for training moderate-sized

FFNN (up to several hundred weights). It also has a very efficient

MATLAB implementation, since the solution of the matrix equation is a

builtin function, so its attributes become even more pronounced in a

MATLAB setting.

 The disadvantage of the Bayesian regularization method is that it

generally take longer to converge than early stopping.

 Networks are also sensitive to the number of neurons in their

hidden layers, too few neurons can lead to under-fitting and too many

neurons can contribute to over-fitting, in which all training points are

well fit, but the fitting curve take swirled oscillations between these

points.

27

[1] A. Blum and R. Rivest, "Training a 3-node neural network is NP-

complete", Proc. of the 1988Workshop on Computational Learning, pp.

9-18, 1988.

[2] A. Junaid, M. A. Z. Raja, and I. M. Qureshi," Evolutionary Computing

Approach for The Solution of Initial value Problems in Ordinary

Differential Equations", World Academy of Science, Engineering and

Technology , No.55 , PP:578 – 581, 2009.

References

28

[3] A. K. Jabber , " On Training Feed Forward Neural Networks for

Approximation Problem ", MSc Thesis, University of Baghdad, College of

Education Ibn Al-Haitham, 2009.

[4] A. Malek and R. S. Beidokhti, "Numerical solution for high order

differential equations using a hybrid neural network-optimization

method ", Applied Mathematics and Computation ,Vol.183, pp: 260–

271, 2006.

[5] B. Krӧse and P. van der Smagt , " An introduction to Neural Networks

", Eighth edition , Amsterdam, November 1996 .

