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CHAPTER 

     ONE

 

MATHEMATICAL BACKGROUND 

 

 

1.1.Introduction  

This chapter contains a brief overview of artificial neural networks 

has been to clarify the most important features of artificial neural 

networks and the basic elements that make up the network. The work of 

each element in the network. The training was to explain the network 

and the types of training for the networks and the algorithm that was 

used in training (feedback) and how they work. As was stopped training 

conditions And how is the appropriate choice of parameters Walt. 

1.2. APPROXIMATION THEORY [1] 

 

         The primary aim of a general approximation is to represent non-

arithmetic quantities by arithmetic quantities so that the accuracy can 
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be ascertained to a desired degree. Secondly, we are also concerned 

with the amount of computation required to achieve this accuracy. A 

complicated function f(x) usually is approximated by an easier function 

of the form φ(x; a0, . . . , an) where a0, . . . , an are parameters to be 

determined so as to characterize the best approximation of f. Depending 

on the sense in which the approximation is realized, there are three 

types of approaches: 

 

1. Interpolatory approximation: The parameters ai are chosen so that on 

a fixed prescribed set of points xi, i = 0, 1, . . ., n, we have 

φ(xi; a0, . . . , an) = f(xi) = fi.                             

Sometimes, we even further require that, for each i, the first ri 

derivatives of φ agree with those of f at xi . 

 

2. Least-square approximation: The parameters ai are chosen so as to  

Minimize ║f(x) − ψ(x; a0, . . . , an) ║2.            

 

3. Min-Max approximation: the parameters ai are chosen so as to  

 Minimize ║f(x) − φ(x; a0, . . . , an)║∞.            
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1.3. Artificial Neural Networks 

A neural network is a parallel, distributed information processing 

structure consisting of processing elements (which can possess a local 

memory and can carry out localized information processing operations) 

interconnected via unidirectional signal channels called connections. 

Each processing element has a single output connection that branches 

("fans out") into as many collateral connections as desired; each carries 

the same signal , the processing element output signal. The processing 

element output signal can be of any mathematical type desired. The 

information processing that goes on within each processing element can 

be defined arbitrarily with the restriction that it must be completely 

local; that is, it must depend only on the current values of the input 

signals arriving at the processing element via impinging connections and 

on the values stored in the processing element's local memory[2] . 

       ANN  can be most adequately characterized as 'computational 

models'with particular properties such as the ability to adapt or learn, to 

generalize, or to cluster ororganize data, and which operation is based 

on parallel processing. However, many of the 
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abovementionedproperties can be attributed to existing (non-neural) 

models; the intriguing questionis to which extent the neural approach 

proves to be better suited for certain applications thanexisting models. 

To date an equivocal answer to this question is not found. 

1.4.Using ANN for Solving Differential Equation  

Application of ANNto the solution of differential equations is stipulated 

also by two reasons. The first reason is that logical sequence scheme 

corresponds to the logical scheme in the solution of differential 

equations. In other words, the solution scheme of differential equations 

enables to create the appropriate structure of ANN. The second reason 

is that ANN can accurately approximate the function [3] . 

 

1.4.1. Connections Between Units[4] 

In most cases it is assumed that each unit provides an additive 

contribution to the input of theunit with which it is connected. The total 

input to unit k is simply the weighted sum of theseparate outputs from 

each of the connected units plus a bias bk: 

Sk(x) =∑jwjk(x) yj(x) + bk(x)(1.1) 
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The contribution for positive wjk is considered as an excitation and for 

negative wjk as inhibition. 

In some cases more complex rules for combining inputs are used, in 

which a distinction is madebetween excitatory and inhibitory inputs. We 

call units with a propagation rule (1.1) sigmaunits. 

A different propagation rule, introduced byKrӧseet al[5]. 

 

1.4.2. Activation Function [4] 

The activation function (sometimes called a transfer function) can be a 

linear or nonlinear function. There are many different types of activation 

functions. Selection of one type over another depends on the particular 

problem that the neuron (or ANN) is to solve.  

The activation function, denoted by  : RR defines the output of a 

neuron, whichis bounded monotonically increasing, differentiableand 

satisfies :Limx+(x) = 1 andLimx -(x) = 0  . 

 

1.4.3.The Bias[4] 
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         Some ANN employ a bias unit( offset , threshold) as part of every 

layer except the output layer. This units have a constant activation value 

of 1 or -1, it's weight might be adjusted during training. The bias unit 

provides a constant term in the weighted sum which results in an 

improvement on the convergence properties of the ANN . 

        A bias acts exactly as a weight on a connection from a unit whose 

activation is always 1. Increasing the bias increases the net input to the 

unit . 

In the previous section we discussed the properties of the basic 

processing unit in an ANN. The next section focuses on the pattern of 

connections between the units and thepropagation of data. 

1.5. Multi-layer Feed Forward Neural Networks 

A feedforward neural network( FFNN) has a layered structure. Each layer 

consists of units which receive theirinput from units from a layer directly 

below and send their output to units in a layer directlyabove the unit. 

There are no connections within a layer. The Ni inputs are fed into the 

firsthidden layer of Nk,1 hidden units. The input units are merely 'fan-out' 

units; no processing takes placein these units. The activation of a hidden 

unit is a function fi of the weighted inputs plus abias. The output of the 
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hidden units is distributed over the next layer ofNk,2 hidden units, until 

the last layer of hidden units, of which the outputs are fed into a layerof 

No output units (see figure 1.1)[5] 

 

Figure 1.1:Multilayer feed forward neural network. 

 

 

1.6. Training ANN[5] 

           Training is the process of adjusting connection weights w and 

biases b. In the first step, the network outputs and the difference 

between the actual (obtained) output and the desired (target) output 

(i.e.,the error) is calculated for the initialized weights and biases 

(arbitrary values). During the second stage, the initialized weights in all 

links and biases in all neurons are adjusted to minimize the error by 

propagating the error backwards (the back propagation algorithm). The 
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network outputs and the error are calculated again with the adapted 

weights and biases, and the process (the training of the ANN) is repeated 

at each epoch (The number of iterations of training process) until 

satisfied output y
k 

(corresponding to the values of the input variables x) 

is obtained and the error is acceptably small.  
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CHAPTER 

  TWO

 

DESIGN FAST FEED FORWARD NEURAL NETWORKS TO SOLVE 

TWO POINT BOUNDARY VALUE PROBLEMS 

 

2.1. Introduction 

          Many methods have been developed so far for solving differential 

equations. Some of them produce a solution in the form of an array that 

contains the value of the solution at a selected group of points, others 

use basis functions to represent the solution in analytic form and 

transform the original problem usually to a system of algebraic 

equations. 

            Most of the previous study in solving differential equations using 

Artificial neural network (ANN) is restricted to the case of solving the 
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systems of algebraic equations which result from the discretization of 

the domain. In this chapter we design fast FFNN as a method to solve 

SBVP. 

 

 

2.2. Description the Design of Feed Forward Neural Network 

         In the proposed  approach the model function is expressed as the 

sum of two terms: the first term satisfies the boundary conditions (BC)  

and contains no adjustable parameters. The second term can be found 

by using feed forward neural network (FFNN) which is trained so as to 

satisfy the differential equation and such technique we were called 

collocation neural network. Since it is known that a multilayer FFNN with 

one hidden layer can approximate any function to arbitrary accuracy  

thus our FFNN contains one hidden layer. 

  In this section, we will illustrate how our approach can be used to 

find the approximate solution of the general form of a second order 

singular  differential equation:  

       y(2)(x) = F( x, y(x), y׳(x) ),                                  (2.1) 
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which a subject to certain BC’s and x  (x1, x2,…, xn) Rn, D Rn denotes 

the domain and y(x) is the solution to be computed. 

           If yt(x, p) denotes a trial solution with adjustable parameters p, the 

problem is transformed to a discretize form : 

  Minp

i

2

i t i t i t i
p ˆx D

Min G(x , (x ,p), (x ,p), (x ,p))


     F( xi ,yt(xi ,p), yt׳(xi ,p) ),                              (2.2) 

subject to the constraints imposed by the BC’s. 

In  our proposed approach, the trial solution yt employs a FFNN and 

the parameters p correspond to the weights and biases of the neural 

architecture. 

We choose a form for the trial function yt(x) such that it satisfies 

the BC’s. This is achieved by writing it as a sum of two terms:  

 yt(xi , p) = A(x)  + G( x, N(x, p) ),                           (2.3) 

where N(x, p) is a single output FFNN with parameters p and n input 

units fed with the input vector x. The term A(x) contains no adjustable 

parameters and satisfies the BC’s. The second term G is constructed so 

as not to contribute to the BC’s, since yt(x) satisfy them. This term can be 

formed by using a FFNN whose weights and biases are to be adjusted in 

order to deal with the minimization problem. 
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2.3. Computation of the Gradient 

An efficient minimization of equation (2.2) can be considered as a 

procedure of training the FFNN, where the error corresponding to each 

input vector xi is the value E(xi) which has to forced near zero. 

Computation of this error value involves not only the FFNN output but 

also the derivatives of the output with respect to any of its inputs. 

Therefore, in computing the gradient of the error with respect to the 

network weights consider a multi layer FFNN with n input units (where n 

is the dimensions of the domain ), one hidden layer with h sigmoid units 

and a linear output unit. 

 For a given input vector x  ( x1, x2, …, xn) the output of the FFNN is 

:     
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     N ∑        
 
   ,  where  zi

n

ij j i

j 1

w x b


  

wij denotes the weight connecting the input unit j to the hidden unit i  

vi denotes the weight connecting the hidden unit i to the output unit , 

bi denotes the bias of hidden unit i, and  

σ (z) is the sigmoid transfer function ( tansig. ). 

        The gradient of FFNN, with respect to the parameters of the FFNN 

can be easily obtained as: 

      i

N


  (zi),                                            (2.4) 

      i

N

b




 vi(zi),                                          (2.5) 

      ij

N

w




 vi(zi) xj ,                                    (2.6) 

Once the derivative of the error with respect to the network 

parameters has been defined, then it is a straight forward to employ any 

minimization technique. It must also be noted, the batch mode of 

weight updates may be employed.  

2.4. Illustration of the Design Feed Forward Neural Network 
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         In this section we describe solution of TPSBVP using FFNN. Now, 

consider the 2
nd

 order SBVP : 

            
   

          
  

  
 ,                                (2.7) 

where x  [a , b] and the Dirishlit BC : y(a)  A, y(b) = B, a trial solution 

can be written as: 

               
   –   

   
   

     
   

                    ,          (2.8) 

where N(x, p) is the output of FFNN with one input unit for x and 

weights p  

Note that 

yt(x) satisfies the BC by construction. The error quantity to be minimized 

is given by: 

       E[p] 

2n
t i

i t i

i 1

d (x )
f (x , (x ))

dx

 
  

 


          

   
               

        

  
}2

,         (2.9) 

where the xi [a , b]. Since :  

        

  
 

 – 

   
 {                              

       

  
,      (2.10) 

and  

         

             {            
       

  
           

        

   ,  (2.11) 
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it is straight forward to compute the gradient of the error with respect 

to the parameters p using (3.4) – (3.6). The same holds for all 

subsequent model problems. 

        Now, we describe the solution of higher order SBVP using FFNN. 

To illustrate the design, we will consider the 4
th

 order TPSBVP: 

         y(4)(x)  f(x, y(x), y׳(x), y"(x), y(3)(x) ),                    (2.12a) 

with BC :      y(i)(a)  Ai and y(i)(b)  Bi ,      i = 0,1                            (2.12b) 

       Let us in our approach assume that the trial function is in the form: 

                  yt(x ,P) Z(x( + M(x) N(x , P),                                    (2.13) 

       Now one may ask whether, for a general given boundary conditions 

in  

        For the nth order TPSBVP equation (3.1) with mixed BC: y(a)  A, 

y׳(a)  A, y״(a) = A״,…,y(k)(a) = A(k) , y(b)  B, y׳(b)  B, y״(b) = B״,…,y(n-

k)(b) = B(k), k = 1,2, …, n –1 and the trial solution can be have the form:   

yt(x)  A + Ax + A״ x2  + … + A(n-1) xn-1 + (x-a)n (x-b)n N(x, p),       (2.14) 

For the above nth order TPSBVP the error function, which should be 

minimized, is given by the following equation: 

E(P)   k

1 2 k

2
K n

t i

k i t t t

k 1 i 1

d (x )
f x , , ,...,

dx 

 
    

 


          

   – f(xi ,yt(xi, P), yt׳(xi ,P),…,yt
(n-1)(xi, P) ) }2 ,      (2.15) 
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Note that  

        We take the same manner of solution if the problems have 

Neumann or Mixed BC. That is the type of BC is not effect to the design 

of FFNN.    

2.5. Examples 

        To illustrate the technique proposed in the preceding sections we 

give examples to demonstrate the behavior and properties of proposed 

design, the programs are written with MATLAB 7.11. 

We used a multi-layer FFNN having one hidden layer with 5 hidden 

units (neurons) and one linear output unit. The sigmoid activation of 

each hidden unit is tansig. 

        For the test problems the analytic solution ya(x) was known in 

advance. Therefore we test the accuracy of the obtained solution by 

computing the error:       E(x)  | yt(x) – ya(x) |. 

 In order to illustrate the characteristics of the solution provided by 

the suggested design, we provide figures displaying the corresponding 

error E(x) both at the few points (training points) that were used for 

training and at many other points (test points) of the domain of each 

equation. The latter kind of figures are of major importance since they 
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show the interpolation capabilities of the neural solution which to be 

superior compared to other solution obtained by using other methods. 

Moreover, we can consider points outside the training interval in order 

to obtain an estimate of the extrapolation performance of the obtained 

numerical solution. 

Example 2.1          

        Consider the following 2nd order regular TPBVP : 

                       
   

   
    

  

  
    (x) = 0 

with Dirishlit BC:    y(0)  0, y(1) = 1,    x  [0, 1].  

        The analytic solution is: ya(x)    ,  according to the equation (2.8) 

the trial neural form of the solution is taken to be: 

                  yt(x)  x + x (x – 1) N(x, p) . 

        The FFNN trained using a grid of ten equidistant points in [0, 1]. 

Figure (2.1) display the analytic and neural solution with different 

training algorithms. The neural result with different types of training 

algorithms such as: Levenberg – Marquardt (trainlm),  quasi – Newton ( 

trainbfg ), Bayesian Regulation (trainbr) introduced in table (2.1) and its 

errors gave in table (2.2), table (2.3) gave the performance of the train 
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for epoch and time, table (2.4) gave the initial weight and bias of the 

design network. 

 

 

 

 

 

 

 

 

Table2.1: Analytic and Neural solution of example 2.1  

Output of suggested FFNN yt(x) for different training algorithm Analytic solution In-

put 

Trainbr  Trainbfg Trainlm ya(x) x 

8.31618490448882e-06  4.35445013380331e-11 3.18275672804846e-05 0 0.0 

e-05.2181881891858.0  020008100500505808.9 1.00000000001765e-05 e-05 8200000000000000 0.1 

02000.9.8890900...08  02000988015090.88518 02000.80085858.80.88 .0009.0000000000000  0.2 

0200.008.00.8.8508.  0200.09000000955810 0200.09000000000000 0200.09000000000000 0.3 

020809050880581598  02080.988888058.01 020809081000.58801 02080.000000000000 0.4 

020989091088859050  02098.088888..0011 02098.088888888888 02098.800000000000 0.5 

020550188510095.08  02055500000008.888 02055500000000000. 020555000000000000 0.6 
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Table 2.2: Accuracy of solutions for example 2.1 

The error E(x)  | yt(x)  ya(x) | w h e r e   yt(x) computed by the following 
training algorithm 

t r a i n l m t r a i n b f g Trainbr 
3.18275672804846e-05 4.35445013380331e-11 8.31618490448882e-06 

1.76531830603163e-16 0.000176674070754123 1.85819893857120e-05 
6.35420287897890e-05 7.10876302157806e-05 8.70865693777388e-05 
4.16333634234434e-17 3.77579911781112e-12 2.47937874238852e-05 
6.18040271908281e-05 3.28752337852567e-11 0.000107411075873889 

1.11022302462516e-16 7.79512010495864e-11 5.38651973673865e-05 
1.80411241501588e-16 1.29991850617017e-12 7.84215962758433e-05 

0.000172776025207599 2.72877136067162e-05 6.31377109800990e-05 
0 4.93727281281053e-12 3.37187086617563e-05 

1.11022302462516e-16 0.000901796585036974 1.17963465786630e-05 
0 2.57959209548631e-11 2.15435396155872e-06 

 

02801899895580810  0280100.58..10989 02801.0.5500.8.01 02801050000000000 0.7 

029.5000.18.88991  029.5010000000895 029.5010000000000 029.5010000000000 0.8 

02880808580900858  02888988580818095 02880080000000000 02880080000000000 0.9 

02888885108000091  02888888888850.00 8 8 1.0 
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Table 2.3: The performance of the train for epoch and time 

 

 

 

 

 

 

Table 2.4: Initial weight and bias of the network for different training algorithm 

 

 

MSE Time Epoch Performance of train Train Function 

3.16e-009 0:00:01 83 1.29e-32 Trainlm 

7.7295e-008 0:00:18 822 1.39e-21 Trainbfg 

1.8260e-009 0:00:11 462 6.81e-27 Trainbr 

 

Weights and bias for trainlm 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 

0.3619 0.5822 0.3012 

0.7248 0.1531 0.9506 

0.8583 0.0731 0.4606 

0.3479 0.5806 0.2876 

0.9617 0.2870 0.0846 

Weights and bias for trainbfg 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 

0.5853 0.1626 0.7094 

0.2238 0.1190 0.7547 

0.7513 0.4984 0.2760 

0.2551 0.9597 0. 6797 

0.5060 0.3404 0.6551 
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Figure 2.1: analytic and neural solution of example 2..1 using : trainbfg, trainbr,  and trainlm 

training algorithm 
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Weights and bias for trainbr 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 

 0.6427  0.1820 0.9541 

 0.0014   0.0930  0.5428  

 0.0304   0.4635  0.5401 

0.2085  0.0093  0.3111  

 0.4550   0.9150   0.0712  
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Example 2.2 

        Consider the following periodic 2nd order regular TPSBVP: 

                     
   

   
  (

 

 
)

  

  
        

       

 
   

with mixed BC:  y′(0)  0 , y(1) = cos1 and x  [0, 1]. The analytic solution 

is:               ( see [62] ),  according to the equation (2.8) the trial 

neural form of the solution is taken to be: yt(x)  (cos1) x + x (x – 1) N(x, 

p). 

          The FFNN trained using a grid of ten equidistant points in [0, 1]. 

Figure (2.2) display the analytic and neural solutions with different 

training algorithm. The neural results with different  types of training 

algorithm such as: trainlm,  trainbfg, trainbr, introduced in Table (3.6) 

and its errors gave in Table (2.7), Table (2.8) gave the weight and bias of 

the design network, Table (2.9) gave the performance of the train with 

epoch and time. 

 

 

 

Table 2.6: Analytic and neural solution of Example 2.2 

Out of suggested FFNN yt(x) for different training algorithm Analytic solution In-

put 

Trainbr  Trainbfg Trainlm ya(x) x 

97000000000000.1  9700000199000001 1 1 0.0 

07110009090100090  0711000090090900. 07110110000.0909. 071100009000.0000 0.1 

0710000000001.900  07100090999010000 071000000..009000 071000000..009000 0.2 

0710090..91109090  07100900091000910 07100990001900000 07100990001900000 0.3 

0710900..0.0.9001  071090001190.990. 07109000110000000 07109000110000000 0.4 
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Table 2.7: Accuracy of solution for Example 2.2 

The error E(x)  | yt(x)  ya(x) | w h e r e  yt(x) computed by the following 
training algorithm 

t r a i n l m t r a i n b f g trainbr 
0 0.000269310588686622 2.80446790679179e-07 

1.21645744084464e-05 1.26578747483563e-10 1.14833561148942e-06 
0 2.82462457977806e-05 1.62485614274566e-06 
0 9.94958121636191e-06 8.76920458825481e-06 
0 1.29778077173626e-10 3.22653103579373e-06 

0 7.71521496467642e-07 4.94512483140142e-06 
0 4.24377200047843e-11 3.22398064012130e-06 

3.78288935598548e-06 5.65963942378289e-11 1.08387487263162e-05 
5.02885861338731e-05 8.32875990397497e-11 1.56515945903823e-06 
0.000155002766255130 8.10940203876953e-12 1.06936244681499e-06 

070..00.00.090000  070..009999099001 070..0000090109.9 070..0000090109.9 0.5 

07000990910101090  0700099009000.009 070009900901010.0 070009900901010.0 0.6 

07.00099900090.00  07.0000090.00.010 07.00090000910999 07.0000090.000001 0.7 

07010.000.0000000  07010.00.010090.0 07010000000.09090 07010.00.0190.900 0.8 

07009000010100090  070090011000.0..0 07009000100000001 070090011000.0000 0.9 

07000900000100000  070009009000..900 07000900900000900 07000900900000900 1.0 
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0 9.22539822312274e-12 2.53086685830795e-07 

 

 

 

 

 

 

 

 

 

 

Table 2.8: Initial weights and bias of the network for different training algorithm 

 

 

Weights and bias for trainlm 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 

0.1299 0.0759 0.2858 

0.5688 0.0540 0.7572 

0.4694 0.5308 0.7537 

0.0119 0.7792 0.3804 

0.3371 0.9340 0.5678 

Weights and bias for trainbfg 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 

0.2601 0.8334 0.4068 

0.0868 0.4036 0.1126 

0.4294 0.3902 0.4438 

0.2573 0.3604 0.3002 

0.2976 0.1403 0.4014 

Weights and bias for trainbr 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 

0.4075 0.8803 0.1696 

0.8445 0.4711 0.2788 

0.6153 0.4040 0.1982 



 

25 

 

  

 

 

 

 

 

 

 

Table 2.9 :The performance of the train with epoch and time 

 

 

           Figure 2.2: Analytic and neural solution of example 2.2 using: trainbfg, trainbr, 

trainlm.   
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0.3766 0.1792 0.1951 

0.8772 0.9689 0.3268 

MSE Time Epoch Performance of train Train Function 

2.1859e-009 0:00:01 75 0:00 Trainlm 

6.6751e-009 0:04:23 6187 6.42e-21 Trainbfg 

2.0236e-011 0:0030 1861 5.88e-12 Trainbr 
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2.6. Discussion 

          Based on our examples, we see that the application of Levenberg  

Marquardt appears to be the fastest method for training moderate-sized 

FFNN (up to several hundred weights). It also has a very efficient 

MATLAB implementation, since the solution of the matrix equation is a 

builtin function, so its attributes become even more pronounced in a 

MATLAB setting. 

           The disadvantage of the Bayesian regularization method is that it 

generally take longer to converge than early stopping. 

           Networks are also sensitive to the number of neurons in their 

hidden layers, too few neurons can lead to under-fitting and too many 

neurons can contribute to over-fitting, in which all training points are 

well fit, but the fitting curve take swirled oscillations between these 

points. 
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