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Introduction

Throughout, all rings are associative with identity and a
modules are left unitary. In this work we will study the concej
of closed submodules which is weaker than the concept of dire
summand. By using this concept we study the class of extendir
modules, where an R-module M is called extending if every close
submodule of M is a direct summand. Many results about thes
two concepts are given, also many relationships with othe
related concepts are introduced.
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CHAPTER ONE
Background of Modules

Definition 1.1 [1] A module M is said to be semisimple if YN < M3K <
M > NHK =M.

Definition 1.2 Let M be an R module A subset X of M is called basis of
M iff ;

(1) X'is generated M , i.e. M = (X).

(2) Xis linearly independent , that is for every finite subset(x,, x,, ..., xX,,)
of X with 37, X; ;= 0,V;E R then «;=0,V1 <i<n,

Definition 1.3 An R-module M is said to be free if satisfy the following
condition :

(1) M has basis.

(2) M = ®Vi€IAi N Vl € I [Al = RR]
Example 1.4 Z as Z-module is a free module.

Example 1.5 Z as Z-module is free since (1)=Z
(1)={l.ala€ez}={..,-3,-2,-1,0,1,2,3,...}

AndVxe Z,x.1 = 0 =>x= 0.

Zoren's lemma 1.6 If A is non-empty partial order set such that every
chain in A has an upper bound in A, then A has maximal element.

Modular law 1.7 [4] IfA,B,C < MAB<C,then(A+B)NnC =
AnC)+(BNnC)=(ANC)+B.
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Theorem 1.8 If<:M - N, SN — K modular homomorphism on R-ring

then ker(f «) =x~1 (ker(B)).

Proof. Let x € ker(f <) » B o« (x) = 0" - (x (x)) = 0" > (x) €
ker(B) - x €x™t (ker(B)). So ker(B «) 1 (ker(B)) ... (1)

Let x ex! (ker(B)) -« (x) € ker(B) — (« (x)) =0 ->px(x)=
0" - x € ker(B ). So «x~ 1 (ker(B)) € ker(B x) ... (2)

Form (1),(2)- ker(fB «) =x~1 (ker(B)).

Theorem 1.9[4] If<:M — N,[B: N - K modular homomorphism on
R-ring then if A < M then <! (« (4)) = A + ker().

Proof. Let x ex™1 (x (4)) »x (x) €x (4).

Then3b € A 3« (x) =x (b)

> (x—b)=0">x—b €ker(x) ,then Ik € ker(x) 3x—b =k
- x=b+k->x€A+Ker(x) [sincek € ker(x),b € A]

So ™! (< (4)) € A + ker(«) ... (1)

Letx € A + ker(x), then3b € B,k € ker(x) 3 x = b + k

-« (x) =x (b + k) > (x) =x (b)+x (k)

S (x) =« (b)[since k € ker(x)] » x €x~! (x (A))

S0 A + ker(c) S (¢ (4)) ... (2)

So from (1) ,(2) we get o< (o (4)) = A + ker(e).

Definition 1.10 [4] Let A < M then B < M is called addition complement of

Ain M (briefly adco ) iff :
(1))A+B=M

(2)B < M minimal in A+B=M ,i.e VB < M with A+B=M,ieVU <M

with A+U=M and U < B imply U=B
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D < M is called intersection complement of A in M (beieflyinco) iff
(1)ANnD=0
(2)DisamaximalinAnD =0

.e. VC<MwithAnC =0 AD < C implies C=D.

Corollary 1.11 LetA<M and B <M then A®B =M < B s adco
and inco of A in M.

Proof. =) Suppose that B is adco and inco of A
Then A+tB=Mresp. ANB =0 = M = A@B
&) Suppose that A@B = M , hence A+tB=MandANnB =0

LetC < M withA+C=M andC < B,(A+C)NB=MnNnB=(A+
C)NB=B->(AnNnB)=C=B=C=B[ANnB =0]

SoBisadcoof Ain M
LetC <M withANnC=0andB<C
Since A+B=M=A+C=M [since A+ B € A + (]

- ADC =M = ADC = A®B [A®B = Mby assumption]

APC ABB .. .
T=T=>C=B—>soB|smcoofA|nM.

Lemma 1.12 [3] Let M=A+B , then we have B is adco of A in M
S ANB KB.

Proof. =) letU<B(ANB)+U=B8B
ThenM =A+(ANB)+U = A+ U= M|[since ANB C A]
ButBissoANB < B

<) We have by assumption M=A+B , let U < M with A+U=M and
U<B
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B, thus B is adco to A in M.

S (A+U)NB=MnNB->(A+U)NB=B[B<M]- (A+B)n

U = B [by modular law]
ButANnB < B, hence U
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CHAPTER TWO

1. Essential Extensions

Definition 2.1.1 Consider a submodule A of a module B . We say that B is
an essential extension of A if every nonzero submodule of B has nonzero
inter-section with A. We also say that A is an essential submodule (or a
large submodule ) of B, and we writ A =, B to denote this situation.
In order to test for this condition, we need only check whether all
nonzero cyclic submodules of B have nonzero intersection with A,
whicg is equivalent to the condition that every nonzero element of B
has a nonzero multiple in A. Note that A always has at least one
essential extension, since A =, A. Also, note that 0 =, A iff A= 0.

Proposition 2.1.2
()IfA=B=C,thenA=,Cifandonlyif AS,B=,C.
(i)IfAS,BSCand AS,B=SCthenAnAS, BNnB.
(i) fF:B—>Cand A =, C thanf* A<, B

(iv) If {Aa} is anindependent family of submodules of C, and if
Ay S, B, =C

for each a than {Ba} is an independent family and @A, =, ®B, .
Proof: (i) Firstlet A =, B =, C and consider any nonzero M = C.

Since B =, C we have M U B # 0, and then since A =, B we obtain
(MNB)NA=+0,thatis, MNA+#0.Thus4 =, C.

Now assume that A =, C. Since any nonzero submodule of C has nonzero
intersection with A, the same can be said for nonzero submodule of C.
Hence A =, B . Also ,since any nonzero submodule M of C satisfies M N
C satisfiesM N A # 0,it mus satfyM N B # 0;thus B =, C .
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(v) If Mis any nonzero submodule of

BN B’,than since A =, Bwe have M N A +

0.Since A <. Baswell,we obtain (M nA) N A # 0,and thus A n
A=, BnB

(vi) If not, than B has a nonzero submodule of M such that
Mnf-1A =0.

In particular,
Mn (kerf) =
0; hence fmaps m isomrhically onto FM, so that f M so a nonzero

Sub module of C. However, since MN f—1 A = 0 we obtain M
N A = 0,which is impossible.

(vii) First consider the case when the index set consists of exactly
two elements, say

{1,2}. According to (ii) 0 =, B, N= B,; hence By N B, =

0 and so{B;,B,} isindependent. Applying (iii) to the projection
maps B, ®B,_,B; and B;®B,_,B,, we obtain A;®B, =, B;®B, and
B,®A, =, B,®B,; hence it follows from (ii) that A, DA, <, B,®B,
Thus (iv) hold for index sets with two elements. Now consider the
case when the index set consists of {1,2,...,n}, and assume that (iv)
holds for index sets with n — 1 elements. Then {B; - - -, B,,_1} is
independent,and A; @ -+ ®A,_; =, B; @ -+ ®B,_,.Using the case
above, we see that (4, @ -+ ®A,_,) PA, =, (B;® ---DBB,_1) BB,

Therefore (iv) holds for all finite index sets, and we are ready to
prove the general case. Given distinct indices « (0),« (1),- - -, (n),
we know that {Bo((o), cee Boc(n)} is independent, whence By gy N
(Bx(1)t . - - +Bx(m) ) = 0. Thus {B,} is independent. Now any
nonzero sub moduleM = @B, contains a nonzero element, which
must belong to B,y @. . .@By, for some « (i) As aresult,

M N (Bg1) @ . . - @Bynn) # 0, from which we obtain

M N (Boc(1)® . .@Bo((n)) N (Aoc(1)® Ce ®Aoc(n)) #0

And consequently M N (BA,) # 0. Therefore A, =, DB.

SUSOSOSOSUSOSOSOUSUSOSUSUSOSUSUSUSOSUSUSOSUSUSOSOSUSOSUSOSOSOSUSOSOSOSOSOSOSOSOSO"03



SUSCSOSOSUSOSOSOUSUSOSOSUSOSUSUSOSOSUSUSOSUSUSOSOSUSUSUSOSOSOSUSOSOSOSOSOSOSOSOSO"03

Remark 2.1.3 We note that 1.1(ii) may fail for infinite intersections.
For example, nZ =, Z for all positive integers n, and yet N (nZ) = 0,
which is essential in Z. Also, 1.1(ii) may fail if the family {A.} is not
independent, as the following example shows.

A+As,B+B.

Proof:SetR = Z,C = Z&®(Z/2Z),A = A = (0,2)R, B = (1,0)R, and
B = (1, 1)R. Any nonzero element of B has the form (n, 1) for some
nonzeron € Z,and (n,n)2 = (2n,0) is a nonzero element of A. Thus

A =, B, and similarly A <, B. Observing that (0,1)R N A = 0, we see
that A %, C,

Thatis, A+ A =, B + B.

Definition 2.1.4 Let A be a sub module of C. A relative complement for A
in C is any sub module B of C which is maximal with respect to the
property AN B = 0. Such sub modules B always exist, by virtue of
zrem's Lemma; in fact, any sub module B, of C satisfying An B, =
0 can be enlarged to a relative com-plement for A. Of course, if A is
actually a direct summand of C, say C = A®B than the complementary
summand B is a relative complement for A. for example, if F is field,
C = FOF,and A =® 0, then for any x € F the subspace (x,1)F is a
relative complement for A in C. In case F is infinite, this provides an
example in which A has infinitely many distinct relative com-elements in
C. (See the importance of relative complements is that they can be used
to construct essential submodules, as in the following proposition.

Proposition 2.1.5 Let A = C. If B is any relative complement for Ain C,
thenA®B =, C.

Proof: Since ANB =0,we have A+ B = A®B, so that A®B is a
submodule if C. Suppose that M = C with M N (A®B) = 0, Then the
sum (A®B) + M is direct, that is, (A®B) + M = A@B®M, whence
AN(B®M) = 0. By the maximality of B, we obtain BOM = B and thus
M = 0. Therefore A®B =, C.
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Definition 2.1.6 A submodule A of a module C is said to be a closed

submodule of C if A has no proper essential extensions inside C, that is, if

the only solution of the relation A<, B = C is A = B. For example,
0 and C and always closed submodules of C. Also, every direct summand
of Cis a closed submodule.

Proposition 2.1.7 If B =, C then the following conditions are equivalent:
(i)B is a closed submodule of C.
(ii) B is relative complement for some A = C.

(iii) If A'is any relative complement for B in C , then B is a relative com
plement for A in C.

(v IfBSKS,C, thenkK/B <, C/B.

Proof: (i) = (ii): If M/B is submodule of C/B suchthat (M/B) N
(K/B) =0,then MNK =B . Since K=,C,wehave MNK =, MnN
C,i.e.,B =, M. The assumption that B is closed in C gives B = M, and
thus M/B =0.

(ii) = (iii): Since ANB =0, B can be enlarged to a relative
complement Bfor A . By the modular law, (A®B)NB = B + (AﬂB) =
B, whence [(AEBB)/B]H[B/B] = 0. According to 1.3, A®B =, C, and
then from(ii) we obtain (A®B)/B <, C/B. ThusB/B =0, and so
B = B is a relative complement for A.

(iit) = (ii)is automatic.

(i) = (i): Suppose that B =, B=C. Since (BNA)NB=ANB =
0,wehave B N A = 0 and then the maximality of B implies that B = B.
Thus B is closed in C.

Proposition 2.1.8 Let A’ be a relative complement for Ain B, and let B’
be a relative complement for B in C. According to 1.3, B®B <, C; hence
1.4 shows that (B®B)/B =, C/B. We now see from 1.1

that(B@®B)/A =, C/A,or [B/A]GB[(AGBB)/A] =, C/A. Using 1.3 and
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1.4 again, we obtain A@A =, B and then (A®A)/A <, B/A.
According to 1.1, it follows that
[(A®A)/A]®[(A®B)/A] S, C/A or (ADADB)/A <, C/A.

Now suppose that we have A =, K < C.Since A n (A®B) =

0, 1.1 show that KN(A®B) = 0. Using the modular law, we find that
Kn (AEBA@B) = A,whence [K/A] N [(AEBAEBB)/A] = 0. Inasmuch
as (A®A®B)/A =, C/A,we obtain K/A = 0,so that K =
A.Therefore A is closed in C.

Example 2.1.9 There exist module A, B = C such that A and B are closed
in C, but A N B is not closed in A,B or C.

Proof: Set R=27, C =Z&®(Z/2Z),A = (1,0)R,and B = (1,1)R. Since

A is a direct summand of C, it must be closed in C. Observing that

C = B®(0,1)R, we see that B is closed in C also. Note that AN B =

(2,0)R. As observed in 1.2, ANB =, Aand ANB =, B,whence ANB
is not closed in A,B or C.
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2. On Extending Modules

Remark 2.2.1

(i) Let {A} and {B4} be collections of modules such that A is closed
submodule of B, for each «. Hence @A, must be closed in @B,.

(ii)Let A = B = C.IfBisclosedin C, then B/A is closed in C/A.

(iii) If Ais closed inand N =, Cthen A N N is closed in N.

Definition 2.2.2 A module M is called extending, or a CS-module, if every

closed submodule is a direct summand. Equivalently, M is an extending

module if and only if every submodule is essential in a direct summand
of M.

Thus notion is the key one in this monograph and in this section we
explore some of the basic properties of extending module.

Definition 2.2.3 An R-module M is called semisimple if 0 and M are only
direct summand of M.

Example 2.2.4 Z, as Z-module semismple but Z is not semismple.

Definition 2.2.5 A nonzero R- module M is called uniform if all it is
submodule are essential.

Example 2.2.6 Z as Z-module is uniform but Zg is not uniform as Z-
module.

Definition 2.2.7 An R-module N is called injective if for Any R-module
A, B and for any monomorphism f: A — B and honomorphism
g: A — N there exist a homomorphism h: B — N suchthatg = ho f.

Definition 2.2.8 A module M is said to be completely extending if every
direct summand of M is extending.
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Example 2.2.9

(ii) Any uniform module is CS. (so for instance, any subgroup of

Q is a CS module over Z).

(iii) Any injective module is CS. (More generally, any ““quasi-injective™
module, to be defined in 64, is already CS; see (6.80).)

(iv) A closed submodule N of a CS module M is always CS. In fact, let
C =¢ N.By(6.24)(2)., we have C =¢ M. Since M is CS, Cis a direct
summand of M, and hence of N.

(vi)By (iv) and (i) above, Z™ and Z/p™Z (for any prime p) are CS module
over Z .However, the Z — module M = Z — module Z/8Z® Z./27Z in
(6.17) (iv) turns out to be not CS. (In the notation of (6.17)(5), the
submodule C is easily seen to be closed in M, but it is not a direct
summand ) Thus, the direct sum of two CS modules may not be CS. For

a complete determination of the f.g. CS module over Z.

Lemma 2.2.10 Any direct summand of an extending module is
extending.

Proposition 2.2.12 For any ring R, T — injective R-module are
extending.

Conversely, suppose that for every submodule N of M with N N M; =
0 there exists a submodule M’ of M such that M = M;@®M and N c
M.Let L be a submodule of M, and g: L —

M; bea homomorphism.Put H =

{—(x)g + x|x € L}.Then H is a submodule of M and HN\M; =
0.There exists a submodule H of M such that M = M;@®H and H c
H .Let m: MM, denote the projection with kernel H. Then n/M, :
M; — M, and for any x in L, (x)m = ((x)g + (—(x)g + x))ﬂ =
(x)g.It follows that M, is M, — injective.
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Lemma 2.2.13 Let M = M, ®M, where M, and M, are both extending
modules. Then M is extending if and only if every closed K
MwithKNM; =0o0r KN M, = 0isadirect summand of M.

Proof : The necessity is. Conversely, suppose that every closed
KcMwithKNnM;,=00rKNM, =0 is a direct summand. Let
L € M be closed. There exists a complement H in L such that L N M, is
essential in H. By 1.10(4), H is closed in M. Clearly H N M; = 0. By
hypothesis, M = H®H for some submodule H of M. Now L =
HGB(L N H) By1.10(4) again, LN H is closed in M. Also, clearly,
(LN H) N M, = 0. Hypothesis, L N H is a direct summand of M, and
hence also of H. It follows that L is a direct summand of M. Thus M is
extending.

Proposition 2.2.14 Let M = M; & - - ©M,, be a finite direct summand
sum of relatively incentive modules M;. The M is extending if and only if
all M; are extending.

Proof : The necessity is clear by 7.3. Conversely, suppose that all M; are
extending. By induction on n, it is sufficient to prove that M is extending
whenn = 2. Let K € M be aclosedand K N M; = 0. By 7.5 there exists
a submodule M of M such that M = M;@®M and K c M. Clearly M =~
M,, and hence M is extending. Clearly K is closed in M and hence K is a
of M , whence a direct summand of M. Similarly any direct summand
closed Hc MwithHN M, =0 is a direct summand. By 7.9, is an
extending module.

Lemma 2.2.15 For any (right) R-module M, the following are equivalent:
(i)Every complement (i.e., closed submodule ) in M is a direct summand.

(ii)For every submodule A = M, there exists a direct summand C of such
that A =, C.

Proof: (2) = (1) is trivial. (1) = (2) follows by taking C to be an
essential closure of A in M.
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If My satisfies (1),(2) above, M is an extending module.
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