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Introduction  

 

 

    Throughout, all rings are associative with identity and all 

modules are left unitary. In this work we will study the concept 

of closed submodules which is weaker than the concept of direct 

summand. By using this concept we study the class of  extending 

modules, where an R-module M is called extending if every closed 

submodule of  M is a direct summand. Many results about these 

two concepts are given, also many relationships with other 

related concepts are introduced. 
 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER ONE 
 

Background of Modules 

 

Definition 1.1 [1] A module M is said to be semisimple if        

       .  

 

Definition 1.2 "Let M be an R module A subset X of M is called basis of 

M iff : 

(1) X is generated M , i.e.   〈 〉. 

(2) X is linearly independent , that is for every finite subset⟨          ⟩ 

of X with ∑                                 
   ."  

      

Definition 1.3 "An R-module M is said to be free if satisfy the following 

condition :                                                                                                

(1) M  has basis.  

(2)                ,     -."  

  

Example 1.4  Z as Z-module is a free module.  

 

Example 1.5  Z as Z-module is free since 〈 〉=Z 

 〈 〉  *   |   +  *                    + 

And               ." 

 

Zoren's lemma 1.6  If A is non-empty partial order set such that every 

chain in A has an upper bound in A, then A has maximal element.    

 

Modular law 1.7 [4]" If                   (   )    

(   )  (   )  (   )   ."  



Theorem 1.8" If              modular homomorphism on R-ring 

then     (  )     (   ( )).  

Proof. Let      (  )    ( )     ( ( ))      ( )  

    ( )       (   ( )). So     (  )     (   ( ))  … (1)" 

Let      (   ( ))   ( )     ( )  ( ( ))       ( )  

          (  ). So    (   ( ))      (  )  … (2) 

Form (1),(2)    (  )     (    ( )).  

 

Theorem 1.9 [4] "If               modular homomorphism on 

R-ring then  if              ( ( ))       ( ).  

Proof. Let      ( ( ))   ( )   ( ).  

Then        ( )   ( ) 

  (   )            ( )             ( )        

              ( )   ,           ( )     - 

So    ( ( ))       ( ) ( ) 

Let        ( )                  ( )        

  ( )   (   )   ( )   ( )  ( ) 

  ( )   ( ),           ( )-       ( ( )) 

So      ( )     ( ( )) ( ) 

So from (1) ,(2) we get    ( ( ))        ( ). " 

 

Definition 1.10 [4]  Let      then      is called addition complement of 

A in M (briefly adco ) iff : 

(1)A+B=M  

(2)     minimal in A+B=M , i.e       with A+B=M , i.e       

with A+U=M and     imply U=B   



    is called intersection complement of A in M (beieflyinco) iff  

(1)       

(2) D is a maximal in       

i.e.      with            implies C=D."   

 

Corollary  1.11 "Let                             B is adco 

and inco of A in M.   

Proof.   ) Suppose that B is adco and inco of A 

Then A+B=M resp.              

 ) Suppose that         hence A+B=M and       

Let     with A+C=M  and     (   )        (  

 )      (   )         ,     - 

So B is adco of A in M  

Let      with                

Since A+B=M A+C=M [since        - 

               ,     by assumption] 

   

 
 

   

 
      so B is inco of A in M. 

"  

Lemma 1.12 [3] "Let M=A+B , then we have B is adco of A in M 

      .                                                                                              

Proof.  )         (   )      

Then     (   )          ,           - 

But B is so       

 ) We have by assumption M=A+B , let     with A+U=M  and 

    



 (   )        (   )      ,   -  (   )  

    [by modular law] 

But       , hence U=B , thus B is adco to A in M. "  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER TWO 

 

1. Essential  Extensions 

 

Definition 2.1.1 Consider a submodule  A of a module B . We say that B is 

an essential extension of A  if every nonzero submodule of B has nonzero 

inter-section with A. We also say that A is an essential submodule (or a 

large submodule ) of B , and we writ      to denote this situation.      

In order to test for this condition, we need only check whether all 

nonzero cyclic submodules of B have nonzero intersection with A, 

whicg is equivalent to the condition that every nonzero element of B 

has a nonzero multiple in A. Note that A always has at least one 

essential extension, since     . Also, note that               .        

  

Proposition 2.1.2  

 (i) If                                          

(ii) If             ̀    ̀             ̀       ̀   

  (iii) If                                

(iv) If   *  +  is an independent family of submodules of C, and if 

         

                  *  +                                           

Proof: (i) First let                                        

Since                     and then since      we obtain 

(   )     , that is,      . Thus      . 

Now assume that     . Since any nonzero submodule of C has nonzero 

intersection with A, the same can be said for nonzero submodule of C. 

Hence      . Also ,since any nonzero submodule M of C satisfies   

                                                                       



(v) If  M is any nonzero submodule  of 

B                                

         ̀     ̀                   (   )   ̀               

 ̀       ̀  

(vi) If  not, than B has a nonzero submodule of  M such that 

           

In particular, 

M (    )  

                                                              

Sub module of C. However, since M            obtain  fM 

                          

(vii) First consider the case when the index set consists of exactly  

two elements, say 

*   +              (  )                       

        *     +   is independent. Applying (iii) to the projection 

maps           and         , we obtain               and 

            ; hence it follows from (ii) that              

Thus (iv) hold for index sets with two elements. Now consider the 

case when the index set consists of *         +, and assume that (iv) 

holds for index sets with     elements. Then *             + is 

independent, and                               .Using the case 

above, we see that (             )      (              )       

Therefore (iv) holds for all finite index sets, and we are ready to 

prove the general case. Given distinct indices  ( )  ( )         ( )  

we know that {  ( )         ( )} is independent, whence   ( )  

(  ( )            ( ) )      Thus *  +  is independent. Now any 

nonzero sub module       contains a nonzero element, which 

must belong to   ( )                  for some  ( ) As a result, 

  (  ( )             (  )     from which we obtain  

                (  ( )            ( ))    (  ( )               ( ))    

And consequently   (   )     Therefore            



Remark 2.1.3 We note that 1.1(ii) may fail for infinite intersections. 

For example, nZ      for  all positive integers n, and yet  (  )     

which is essential in Z. Also, 1.1(ii) may fail if the family *  +  is not 

independent, as the following example shows. 

   ̀      ̀ . 

Proof: Set    ,     (   )⁄  ,    ̀  (   ) ,   (   ) , and 

 ̀  (   ̅) . Any nonzero element of  ̀ has the form (   ̅) for some 

nonzero    , and (   ̅)  (    ) is a nonzero element of  ̀. Thus  

 ̀    ̀   and similarly       Observing that (   ̅)       we see 

that         

  That is,    ̀      ̀  

 

Definition 2.1.4  Let A be a sub module of C. A relative complement for A 

in C is any sub module B of C which is maximal with respect to the 

property        Such sub modules B always exist, by virtue of 

       Lemma; in fact, any sub module                         

  can be enlarged to a relative com-plement  for A. Of course, if A is  

actually a direct summand of C, say          than the complementary 

summand B is a relative complement for A. for example, if  F is field, 

                then for any     the subspace (   )   is a 

relative complement for A in C. In case F is infinite, this provides an 

example in which A has infinitely many distinct relative com-elements in 

C. (See  the importance of relative complements is that they can be used 

to construct essential submodules, as in the following proposition.          

 

Proposition 2.1.5  Let    . If B is any relative complement for A in C, 

then         

Proof:  Since        we have          so that     is a 

submodule if C. Suppose that            (   )     Then the 

sum (   )    is direct, that is,  (   )         , whence 

  (   )     By the maximality of B, we obtain       and thus 

   . Therefore       .                                                                             



 

Definition 2.1.6  A submodule A of a module C is said to be a closed 

submodule of C if A has no proper essential extensions inside C, that is, if 

the only solution of the relation              . For example, 

        and always closed submodules of C. Also, every direct summand 

of C is a closed submodule.                                                                                  

Proposition 2.1.7 If      then the following conditions are equivalent: 

(i)B is a closed submodule of C. 

(ii) B is relative complement for some    . 

(iii) If A is any relative complement for        , then B is a relative com 

plement for       . 

(iv)          , then   ⁄     ⁄ . 

Proof: ( )  (  ):      ⁄  is submodule of   ⁄            (  ⁄ )  

(  ⁄ )               . Since                     

           . The assumption that B is closed in C gives    , and 

thus   ⁄    .                                                                                                       

(  )  (   ): Since      , B can be enlarged to a relative 

complement  ̀      . By the modular law, (   )  ̀    (   ̀)  

 , whence ,(   )  ⁄ - [ ̀  ⁄ ]   . According to 1.3,       , and 

then from(ii) we obtain (   )  ⁄     ⁄   Thus ̀  ⁄   , and so 

   ̀ is a relative complement for A.                                                                

(   )  (  )is automatic. 

(  )  ( ): Suppose that     ̀   . Since ( ̀   )        

          ̀      and then the maximality of B implies that  ̀   . 

Thus B is closed in C.                                                                                         

Proposition 2.1.8 Let    be a relative  complement for A in B, and let    

be a relative complement for B in C. According to 1.3,    ̀    ; hence 

1.4 shows that (   ̀)  ⁄     ⁄ . We now see from 1.1 

that(   ̀)  ⁄     ⁄     ,  ⁄ - [(   ̀)  ⁄ ]     ⁄ . Using 1.3 and 



1.4 again, we obtain    ̀              (   ̀)  ⁄     ⁄ . 

According to 1.1, it follows that 

[(   ̀)  ⁄ ] [(   ̀)  ⁄ ]     ⁄     (   ̀  ̀)  ⁄     ⁄ . 

Now suppose that we have         Since   ( ̀  ̀)  

                  ( ̀  ̀)   . Using the modular law, we find that 

  (   ̀  ̀)           ,  ⁄ -  [(   ̀  ̀)  ⁄ ]   . Inasmuch 

as (   ̀  ̀)  ⁄     ⁄              ⁄              

 .Therefore A is closed in C. 

 

Example 2.1.9  There exist module       such that A and B are closed 

in C, but     is not closed in A,B or C. 

Proof: Set         (   ⁄ )   (   )        (   ̅)   Since 

A is a direct summand of C, it must be closed in C. Observing that 

    (   ̅) , we see that B is closed in C also. Note that     

(   ) . As observed in 1.2,                 ,whence     

is not closed in A,B or C.                                                                                   

                                                                                  

 

 

 

 

 

 

 

 

 

 



2. On Extending Modules 

 

 

Remark 2.2.1   

(i) Let *  +     *  + be collections of modules such that    is closed 

submodule of    for each  . Hence      must be closed in    . 

(ii) Let      . If B is closed in C, then   ⁄  is closed in   ⁄ . 

(iii) If A is closed in and     then     is closed in N. 

 

Definition 2.2.2 A module M is called extending, or a CS-module, if every 

closed submodule is a direct summand. Equivalently, M is an extending 

module if and only if every submodule is essential in a direct summand 

of M .                                                                                                                   

Thus notion is the key one in this monograph and in this section we 

explore some of the basic properties of extending module. 

Definition 2.2.3 An R-module M is called semisimple if 0 and M are only 

direct summand of M. 

Example 2.2.4     as  -module semismple but   is not semismple. 

Definition 2.2.5 A nonzero  - module   is called uniform if all it is 

submodule are essential. 

Example 2.2.6   as  -module is uniform but    is not uniform as  -

module. 

Definition 2.2.7 An R-module N is called injective if for Any R-module 

    and for any monomorphism       and honomorphism 

      there exist a homomorphism       such that      .  

Definition 2.2.8 A module M is said to be completely extending if every 

direct summand of M is extending. 



Example 2.2.9  

 (ii) Any uniform module is CS. (so for instance, any subgroup of 

ℚ                      ). 

(iii) Any injective module is CS. (More generally, any ``quasi-injective`` 

module, to be defined in   , is already CS; see (6.80).) 

(iv) A closed submodule N of a CS module M is always CS. In fact, let 

    . By(6.24)(2)., we have     .  Since M is CS, C is a direct 

summand of M, and hence of N. 

(vi)By (iv) and (i) above,            ⁄  (for any prime p) are CS module 

over   .However, the                            ⁄⁄  in 

(6.17) (iv) turns out to be not CS. (In the notation of (6.17)(5), the 

submodule   ̀ is easily seen to be closed in M, but it is not a direct 

summand ) Thus, the direct sum of two CS modules may not be CS. For  

a complete determination of the f.g. CS module over                                    

 

Lemma 2.2.10  Any direct summand of an extending module is 

extending. 

Proposition 2.2.12  For any ring R, 𝜋            R-module are 

extending. 

 Conversely, suppose that for every submodule                  

                                                   ̀       

 ̀                                    

                          

* ( )   |   +                                      

                            ̀                      ̀       

 ̀      𝜋                                        ̀        𝜋   ⁄  

                         ( )𝜋  (( )  ( ( )   ))𝜋  

( )                                       

 



Lemma 2.2.13 Let                         are both extending 

modules. Then M is extending if and only if every closed   

                        is a direct summand of M. 

Proof : The necessity is. Conversely, suppose that every closed 

                          is a direct summand. Let 

    be closed. There exists a complement H in L such that      is 

essential in H. By 1.10(4), H is closed in M. Clearly       . By 

hypothesis,      ̀ for some submodule  ̀ of M. Now   

  (   ̀). By1.10(4) again,    ̀ is closed in M. Also, clearly, 

(   ̀)      . Hypothesis,    ̀ is a direct summand of M, and 

hence also of  ̀. It follows that L is a direct summand of M. Thus M is 

extending.                                                                                                           

Proposition 2.2.14 Let               be a finite direct summand 

sum of relatively incentive modules   . The M is extending if and only if 

all    are extending.                                                                                              

Proof : The necessity is clear by 7.3. Conversely, suppose that all    are 

extending. By induction on n, it is sufficient to prove that M is extending 

when    . Let     be a closed and        . By 7.5 there exists 

a submodule  ̀ of M such that       ̀ and    ̀. Clearly  ̀  

  , and hence  ̀ is extending. Clearly K is closed in  ̀ and hence K is a 

direct summand of  ̀ , whence a direct summand of M. Similarly any 

closed                 is a direct summand. By 7.9, is an 

extending module.                                                                                            

 

Lemma 2.2.15 For any (right) R-module M, the following are equivalent: 

(i)Every complement (i.e., closed submodule ) in M is a direct summand. 

(ii)For every submodule    , there exists a direct summand C of such 

that     . 

Proof: ( )  ( ) is trivial. ( )  ( ) follows by taking C to be an 

essential closure of A in M. 
 



If    satisfies (1),(2) above, M is an extending module.   
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