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حِيمِ  نِ الرَّ ٰـ حْمَ  بِسْمِ اللَّـهِ الرَّ

  

 ﴿بَلْ هُوَ آيَاتٌ بَي ِنَاتٌ فِي صُدوُرِ الَّذِينَ أوُتوُا الْعِلْمَ ۚ وَمَا يَجْحَدُ بآِيَاتنَِا إلََِّّ الظَّالِمُونَ﴾ 

 

 صدق الله العظيم

   49جزء من الآية \سورة العنكبوت

 

 

 

 

 

 

 

 

 

 

 



 شكر و تقدير

 

 

الحمد لله رب العالمين والسلام على نبيه وسيد المرسلين )صلى الله عليه وآله وسلم( وبعد الحمد 

والثناء للبارئ عز وجل ورسوله لَّ يسعني إلَّ أن أتقدم بخالص الشكر والتقدير الى الدكتورة 

ها رجاء جفات شاهين )المشرفة على البحث( والتي كانت خير عون لي في اتمام هذا البحث فجزا

 الله عني أفضل الجزاء. كما أتقدم بخالص شكري وأمتناني لجميع أساتذتي في قسم الرياضيات.

كما أقف احتراما لأقدم جميع كلمات الشكر والتقدير والبر لوالدي ووالدتي لما قدماه لي من 

 عطاء ليومنا هذا.  

 

 

 

 

 

 

 

 

 



Abstract 

 

     In this article, it is proved that under some conditions every bijective 

Jordan triple product homomorphism from generalized matrix algebras 

onto rings is additive. As a corollary, we obtain that every bijective Jordan 

triple product homomorphism from Mn (A) (A is not necessarily a prime 

algebra) onto an arbitrary ring Ŕ is additive.  

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

 Let R be a commutative ring with identity, A and B be two 

associative algebras over R. Let M be an (A , B)-bimodule and N a (B, A)-

bimodule. Assume that there are two bimodule homomorphosms φ : M 

B N → A and ѱ : N A M → B satisfying the associativity conditions: 

(MN) M = M (N M ) and (NM) N  = N (MN  ) for all M, M  ϵ M and N, 

N  ϵ N where we put MN = φ (M  N) and NM = ѱ (N  M). A 

generalized matrix algebra Mat (A , M , N , B) is an associative algebra of 

the form. 

 

 

Mat (A, M , N , B ) =                                   : A ϵ A , M ϵ M , N ϵ N ,  B ϵ B 

 

Under the usual matrix – like multiplication, where at least one of the two 

bi – modules M and N is distinct from zero. In the above definition of 

generalized  

A           M 

 

 

N            B 



matrix algebras, if M is faithful as a left A-module and also as a right B-

module and  N ={0}, then the associative R-algebra 

 

 

  

Tri Mat (A, M , B ) =                                 : A ϵ A , M ϵ M , B ϵ B 

is usually called a triangular algebra.  

The most important examples of triangular algebras are upper 

triangular matrix algebras, block upper triangular matrix algebras and 

nest algebras. Obviously, the triangular algebras and Mn (A).  

In studying preserves on algebras or rings, one usually assumes 

additivity in advance. Recently, however, a growing number of papers 

began investigating preservers that are not necessarily additive. 

Characterizing the interrelation between the multiplicative and additive 

structures of a ring or algebra is an interesting topic. This question 

was first studied by Martindale (18) who showed the surprising result that 

every bijective multiplicative map from a prime ring containing a 

nontrivial idempotent onto an arbitrary ring is necessarily additive. For 

A           M 

 

 

O           B 

 

 



operator algebras, the same problem was treated in (1, 14, 21). In the 

papers (2, 3, 7, 12,13, 15, 19), the additivity of maps on operator algebras 

which are multiplicative with respect to other products, such as the Jordan 

product, the Jordan triple product or Jordan triple product 

homomorphisms were investigated. Also, the papers (6, 9, 20) studied the 

similar questions for elementary maps and Jordan elementary maps on 

rings or operator algebras.  

Ling and Lu (11) studied Jordan maps of nest algebras, a kind of 

triangular algebras coming from operator theory. They showed that every 

Jordan bijective map on a standard subalgebra of a nest algebra is additive. 

This result was extended by Ji (4) to Jordan surjective map pair of 

triangular algebras. Cheng and Jing (1) proved that every multiplicative 

bijective map, Jordan bijective map, Jordan triple bijective map and 

elementary surjective map on triangular algebras is additive. Recently, Li 

and Xiao (10) extended the results of Ji (4) to generalized matrix algebras. 

In fact, they proved that every multiplicative bijective map, Jordan 

bijective map, Jordan triple bijective map on a generalized matrix algebra 

is additive under some conditions. For the Jordan triple product 



homomorphisms, Li and Jing (8) showed that if R is a 2 – torsion free 

prime ring containing a nontrivial idempotent and Ŕ is an arbitrary ring, 

then every bijective Jordan triple product homomorphism is additive. 

Kuzma (7) described the forms of Jordan triple product homomorphisms 

on matrix algebras and Moinar (19) obtained the exact forms of Jordan 

triple product homomorphisms between standard operator algebras. There 

is a connection between Jordan triple product homomorphisms and Lie 

triple product homomorphisms, the R – linear maps  ϕ : A → B such that 

for every A,B, C, ϵ A, ϕ ([[A, B], C]) = [[ϕ (A) , ϕ (B)] , ϕ (C) ], where 

[A,B] = AB – BA is the Lie multiplication.  
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Chapter One 

Preliminaries 

 



 

Definition 1.1:- Module / let (R ,+,.) be a ring and let (M , +) be abelian 

group, Then (M , +) is called left R – modules (left module over The ring 

R) 

If there is a mapping   . :R × M → M satisfying 

  

1- r. (m1 + m2 ) = r.m1 + rm2 

2- (r1 + r2 ) .m = r1 .m + r2 .m 

3- (r1 . r2 ) .m = r1 . (r2 .m)  

Definition 1.2 : - Abi -module is an abelian group that is both a left and 

right module such that the left and right multiplication compatible. 

 

Definition 1.3 : A generalized matrix algebra 

 

 

Mat (A, M , N , B ) = : A ϵ A , M ϵ M , N ϵ N , B ϵ B 

 

 

A           M 

 

 

N            B 



Under the usual matrix – like multiplication, where at least one of the 

two bi-modules M and N is distinct from zero. 

 

Definition 1.4:  if M is faithful as a left A-module and also as a right B-

module and  N ={0}, then the associative R-algebra  

 

 

  

Tri  (A, M , B ) =                                 : A ϵ A , M ϵ M , B ϵ B 

 

is usually called a triangular algebra.  

Definition 1.5 : Let ϕ be a map from A to B and A , B , C be arbitrary 

elements of A 

1) ϕ is said to be multiplicative  if  

ϕ (A , B) = ϕ (A) ϕ (B)  

2) ϕ is called a Jordan map if  

ϕ (AB + BA) = ϕ (A) ϕ (B) + ϕ (B) ϕ (A)  

3) ϕ is called a Jordan triple map if  

A           M 

 

 

O           B 
 



ϕ (ABC + CBA) = ϕ (A) ϕ (B ) ϕ (C) + ϕ (C) ϕ (B) ϕ (A)  

4) ϕ is said to be a Jordan triple product homomorphism if  

ϕ (ABA) = ϕ (A) ϕ  (B) ϕ (A)  

Remark 1.6:- 

 

 

  G11 =                                                                                    : A ϵ A 

 

 

 

 

G12 =                                                                  : M ϵ M 

 

 

 

G21 =                                                                   : N ϵ N 

A           O 

 

 

O            O 

O           M 

 

 

O            O 

O           O 

 

 

N            O 



 : B ϵ B 

 

G22 = 

 

 

                                  

Then every element A ϵ G can be written as A = A11 + A12 + A21 + A22, 

where Aij ϵ Gij for 1 ≤ i , j ≤ 2. 
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O            B 



 

 

 

 

Chapter Two 

Main Results 

 

 



 

 

 

Lemma 2.1 

    ϕ (0) = 0.  

Proof:-Since ϕ is surjective there exists an element A ϵ G such that ϕ (A) 

= 0.  

Then ϕ (0) = ϕ (0 A 0 ) = ϕ (0) ϕ (A) ϕ (0) = 0  

Lemma 2.2. 

ϕ (A11 + A12 + A21 + A22) = ϕ (A11) + ϕ (A12) + ϕ (A21) + ϕ (A22)  

for every Aij ϵ Gij  

Proof / Let SϵG be an element such that  

ϕ (S) = ϕ (A11) + ϕ (A12) + ϕ (A21) + ϕ (A22)  

Then we have for every Xij , 1≤ i ≤ j ≤ 2 

ϕ (xij s xij) = ϕ (xij) ϕ (s) ϕ (xij) 

 

= ϕ (xij) ∑ ϕ (Alt) ϕ (xij) 

 

l,t 

 



= ϕ (A11 + A12) + ϕ (A11 B12 C22 ) 

= ϕ (A11) + ϕ (A12 ) + ϕ (A11 B12)  

= ϕ (A11) + ϕ (A12) + ϕ (B12)  

From which it follows that  

ϕ (A12 + B12 ) = ϕ (A12) + ϕ (B12) 

Lemma 2.4. 

ϕ is additive on G21 

Proof :- Let S be an element of G such that ϕ (S) = ϕ (A21) + ϕ (B21).  

Then for every Xij , we have  

(2.1)              ϕ (Xij S Xij) = ϕ (Xij) (ϕ (A21) + ϕ (B21) ) ϕ (Xij) 

                                           = ϕ (Xij A21 Xij) + ϕ (Xij B21 Xij ) 

Then by lemma 2.3. ,  we have  

      ϕ (X12 S X12 ) = ϕ (X12 A21 X12 ) + ϕ (X12 B21 X12 ) 

                             = ϕ (X12 A21 X12 + X12 B21 X12)  

Hence we have  

       X12 S X12 = X12 A21 X12 + X12 B21 X12 

Then by condition (2), we get  

        S21 = A21 + B21 . By (2.1) we have:  

 



        ϕ (X11 S X11) = ϕ (X22 S X22) = ϕ (X21 S X21 ) = o  

Then it follows that S11 = S22 = o  and S21 = o by condition (1),and hence 

ϕ (A21 + B21 ) = ϕ (S21 ) = ϕ (S) = ϕ (A21) + ϕ (B21) 

 

Lemma 2.5: 

ϕ (A11 + B11) = ϕ (A11) + ϕ (B11) for every A11 , B11 ϵ G11 

Proof :- We first claim that for every C11 ϵ G11 and D12 ϵ G12 we have 

that (2.2) 

ϕ (C11 D12 ) = ϕ (P11) ϕ (C11) ϕ (D12) + ϕ (D12) ϕ (C11) ϕ (P11) 

Where P11 is the identity element of A. By Lemma 2.2, we have: 

ϕ (C11) + ϕ (C11 D12) = ϕ (C11 + C11 D12)  

= ϕ ((P11 + D12) C11 (P11 + D12)) 

= ϕ (P11 + D12 ) ϕ (C11) ϕ (P11 + D12) 

= (ϕ (P11) + ϕ (D12) ϕ (C11) (ϕ (P11) + ϕ (D12)) 

= ϕ (P11) ϕ (C11) ϕ (P11) + ϕ (D12 ) ϕ (C11) ϕ (D12) 

   + ϕ (P11) ϕ (C11) ϕ (D12) + ϕ (D12 ) ϕ (C11) ϕ (P11)  

= ϕ (C11) + ϕ (P11) ϕ (C11) ϕ (D12) + ϕ (D12) ϕ (C11) ϕ (P11)  

 

 



From which it follows that (2.2) holds 

Now choose S ϵ G such that  

ϕ (S) = ϕ (A11) + ϕ (B11) since for  

every Xij ϵ Gij  

ϕ (Xij S Xij ) = ϕ (Xij) ϕ (S) ϕ (Xij) = 

ϕ (Xij A11 Xij ) + ϕ (Xij B11 Xij),  

We have  

ϕ (X12 S X12) = ϕ (X21 S X21 ) = 

                      ϕ (X22 S X22) = o  

Hence we get S12 = S21 = S22 = o  

by condition (1) and (2) we also have 

ϕ (S11 X12) = ϕ (P11) ϕ (S11) ϕ (X12) + ϕ (X12) ϕ (S11) ϕ (P11) 

= ϕ (P11) (ϕ (A11) + ϕ (B11)) ϕ (X12) + ϕ (X12) (ϕ (A11) + ϕ (B11) 

ϕ (P11) 

= ϕ (A11 X12) + ϕ (B11 X12) 

= ϕ (A11 X12 + B11 X12),  

 

 



Where the first and third equations hold by (2.2) and the last equation 

comes by the additivity of ϕ on G12. Then we get S11 = A11 + B11 by 

condition (3), and hence ϕ (A11 + B11 ) = ϕ (A11 ) + ϕ (B11) 

 

Lemma 2.6:- 

ϕ is additive on G22  

Proof :- Let A22 and SϵG be an element such that ϕ (S) = ϕ (A22) + ϕ 

(B22). 

Since for every Xij ϵ Gij  

(2.3) ϕ (Xij S Xij) = ϕ (Xij) ϕ (S) ϕ (Xij) =  

ϕ (Xij A22 Xij) + ϕ (Xij B22 Xij),  

We have  

ϕ  (X11 S X11) = ϕ (X11) ϕ (A22) ϕ (X11) + ϕ (X11) ϕ (B22) ϕ (X11) = o  

Hence X11 S X11 = o and X11 S11 X11 = o. Then it follows that S11 = o. 

Since  

ϕ (X12 S X12) = o by (2.3), we have X12 S X12 = o and hence S21 = o  

Similarly S12 = o Hence 

       ϕ (S22) = ϕ (A22) + ϕ (B22) 

 



Considering. For every X12 , Y12 ϵ G12  

ϕ (X12 S22 Y21) = ϕ ((X12 + Y21) S22 (X12 + Y21) 

= ϕ (X12 + Y21) ϕ (S22) ϕ (X12 + Y21)  

= ϕ (X12 + Y21) (ϕ (A22) + ϕ (B22)) ϕ (X12 + Y21) 

= ϕ ((X12 + Y21) A22 (X12 + Y21)) + ϕ ((X12 + Y21) B22 (X12 

+ Y21)) 

= ϕ (X12 A22 Y21) + ϕ (X12 B22 Y21)  

= ϕ (X12 A22 Y21 + X12 B22 Y21), 

  

We have  

       X12 S22 Y21 = X12 A22 Y21 + X12 B22 Y21  

Therefore, by condition (4), it follows that S22 = A22 + B22, and hence 

        ϕ (A22 + B22) = ϕ (A22) + ϕ (B22) 

We now prove our main result.  

Theorem 2.7:- Let R be a commutative ring with identity, A and B be 

two unital algebras over R. Let G be the generalized matrix algebra Mat 

(A, M, N, B) which satisfies the following conditions: 

1- For M ϵ M , NMN =0 for every N ϵ N implies M = 0  

 



2- For N ϵ N , MNM = 0 for every M ϵ M implies N = 0 

3- M is faithful as a left A- module, that is for A ϵ A , AM = 0  for 

every M ϵ M implies A = 0 ,  

4- For B ϵ B , MBN = 0 for every M ϵ M and N ϵ N implies B = 0  

Then every bijective Jordan triple product homomorphism ϕ from 

G onto an arbitrary ring Ŕ is additive.  

Proof :-Let  

A = A11 + A12 + A21 + A22 and B = B11 + B12 + B21 + B22 be elements of 

G. Then by lemmas 2.2, 2.3, 2.4, 2.5, and 2.6 we have 

ϕ (A + B) = ϕ (A11 + B11 + A12 + B12 + A21 + B21 + A22 + B22) 

= ϕ (A11 + B11) + ϕ (A12 + B12) + ϕ (A21 + B21) + ϕ (A22 + B22) 

= ϕ (A11) + ϕ (B11) + ϕ (A12) + ϕ (B12) 

  + ϕ (A21) + ϕ (B21) + ϕ (A22) + ϕ (B22) 

= ϕ (A11) + ϕ (A12) + ϕ (A21) + ϕ (A22) 

   + ϕ (B11) + ϕ (B12) + ϕ (B21) + ϕ (B22)  

= ϕ (A) + ϕ (B). 

 



It is clear Mn (A) satisfies the conditions of Theorem 2.6 for (not 

necessarily prime) unital algebras A. Hence we have the following 

corollary. 

Corollary 2.8:- Let A be a unital (not necessarily prime) algebra over a 

commutative ring R. Then every bijective Jordan triple product 

homomorphism ϕ from Mn (A) onto an arbitrary ring Ŕ is additive for n ≥ 

2.  
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