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 وليييم الذيليييتواذاوعيييأيذيل ايييلذا ييي ذي ييي ذ
مييياذ فييينذامبم يييأيذفييي ذاهم ييي ذلييي ذ ايييأف لذ

يللهذلهيييييييي آذيلييييييييتواذ م ييييييييأيذإ ذوإنذ
   صريطذمسهقمل

 صدق الله العلي العظيم

 (54)الآية  الحجسورة 



 داءـــــــــــــالإه

الى نبي الرحمة  .. ونصح الامةالأمانةبلغ الرسالة وأدى إلى من 

 ونور العالمين

 سيدنا محمد صل الله عليه واله وسلم

من كلله الله بالهيبة والوقار الى من علمني العطاء بدون  إلى

  انتظار الى من أحمل أسمه بكل افتخار

 والدي العزيز

 معنى الحبإلى 

 وإلى معنى الحنان والتفاني

 بسمة الحياة وسر الوجود إلى

  من كان دعائها سر نجاحي وحنانها بلسم جراحي إلى

 ةـبـيـي الحبــمأ

 وعليهم أعتمدمن بهم اكبر إلى 

 التي تنير ظلمة حياتي

 الشموع المتقدة إلى  

 من بوجودهم أكتسب قوة ومحبة لا حدود لها إلى 

 من عرفت معهم معنى الحياة إلى 

 واتيـوأخ وتيـإخ

 



 شكر وتقدير

والصلاة  }لئن شكرتم لأزيدنكم  {يقول الله في محكم كتابه  الحمد لله

 والسلام على اشرف خلق الله سيدنا محمد )صلى الله عليه واله وسلم (

 القائل: من لم يشكر المخلوق لم يشكر الخالق.

بداية اشكر الله عز وجل الذي ساعدني على اتمام بحثي وتفضل علينا 

 بإتمام هذا العمل.. وبعد

على ما بذله من سعة  جوادفراسشكرا وتقديرا لحضرة الاستاذ الفاضل  

 د لأفكاري صدر وكرم طبعه ورحابة خاطره وارشاد وتوجيه وتسدي

 فجزاه الله خير جزاء المحسنين
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Abstract: 

In this paper we generalize the concept of topological games in to a 

fuzzy topological space and some results related to them are obtained. 

Just like in the case of 𝐺 (𝐾, 𝑋), the fuzzy topological game 𝐺∗(𝐾, 𝑋) has 

plenty of applications in fuzzy topology especially in fuzzy 

metacompactness etc. 

 

 

  



Introduction: 

The concept of a fuzzy set, which was introduced in [1], provides a 

natural framework for generalizing many of the concepts of general 

topology to what might be called fuzzy topological spaces. In the interest 

of brevity, we shall confine our attention in this note to the more basic 

concepts such as open set, closed set, neighborhood, interior set, 

continuity and compactness, following closely the definitions, theorems 

and proofs given in Kelly [2]. Our notation and terminology for fuzzy 

sets follow that of Zadeh [1].  

In chapter one section one we introduce definition of basic of 

topological space, some examples and remark.  

In chapter one section two preview some definitions and properties of 

topological space, continuity, homomorphism and locally compact. Also 

some examples and theorem. 

In chapter one section three we introduce some definitions and 

examples of fuzzy and fuzzy topological space. 

In chapter two section one we preview definitions, examples and 

theorems of fuzzy topological game G
*
(K,X). In chapter two section two 

we introduce some proposition, definition, examples and theorems of 

finite and countable union. 

Finally In chapter two section three we introduce theorems of game 

and mapping. A pursuit evasion game 𝐺 (𝐾, 𝑋) in which the pursuer and 

the evader choose certain subsets of a topological space in a certain way 

is defined and ystudied b Telgarsky [𝑇2].  

 

 



 

 

 

 

 

 

 

 

 

SOME PROPERTIES OF 

TOPOLOGICAL SPACE 

 

 

 

 

 



1.1 Basic of Topological space.              

1.1.1 Definition :  

 Let X be a set. A topology on X is a collection T ⊆ P(X) of 

subsets of X satisfying         

1. T contains ∅ and X;                                                                                                                 

2. T is closed under arbitrary unions, i.e. if Ui ∈ T for i ∈ I then 

 Ii  Ui ∈ T;                            3. T is closed under finite 

intersections, i.e. if U1, U2 ∈ T then U1 ∩ U2 ∈ T . 

 

1.1.2 Definition : 

A topological space (X, T ) is a set X together with a 

topology T on it. The elements of T are called open subsets of X. A 

subset F ⊆ X is called closed if its complement X \ F is open. A 

subset N containing a point x ∈ X is called a neighborhoods of x if 

there exists U open with x ∈ U ⊆ N. Thus an open neighbourhood 

of x is simply an open subset containg x.  

Normally we denote the topological space by X instead of (X, T ). 

 

1.1.3 Definition : 

 Let A ⊆ X be a subset of a topological space X. The interior 

of A is the biggest open subset contained in A. One has A˚=

 UA  open U. Dually the closure of A is the smallest closed 

subset containing A. One has                     A  =  FA   closed F. 

 

 

 

 

 

 



1.1.4 Example:  

Consider the following set consisting of 3 points; X = {a, b, 

c} and determine if the set  T = {∅, X, {a}, {b}} satisfies the 

requirements for a topology. 

 This is, in fact, not a topology because the union of the two sets 

{a} and {b} is the set {a, b}, which is not in the set τ 

 1.1.5 Example: 

 Find all possible topologies on X = {a, b} 

1. ∅, {a, b}                                                                                                                                

2. ∅, {a}, {a, b}                                                                                                                             

3. ∅, {b}, {a, b}                                                                                                                    

4. ∅, {a},{b},{a,b} 

1.1.6 Example: 

 When X is a set and τ is a topology on X, we say that the 

sets in τ are open. Therefore, if X does have a metric (a notion of 

distance ), then 
 T

 ={all open sets as defined with the ball above} 

is indeed a topology. We call this topology the Euclidean 

topology. It is also referred to as the usual or ordinary topology. 

1.1.7 Example: 

 If Y ⊆ X and τx is a topology on X, one can define the 

Induced topology as  τy = {O ∩ Y |O ∈ τx}. 

 This last example gives one reason why we must only take finitely 

many intersections when defining a topology. 

 

1.1.8 Remark: 

    As promised, we can now generalize our definition for a 

closed set to one in terms of open sets alone which removes the 

need for limit points and metrics 

  

1.1.9 Definition:  



 A set C is closed if  X − C is open.  

Now that we have a new definition of a closed set, we can prove 

what used to be definition 1.3.3 as a theorem: A set C is a closed 

set if and only if it contains all of its limit points. 

  

 

Proof: Suppose a set A is closed. If it has no limit points, there 

is nothing to check as it trivially contains its limit 

points. Now suppose z is a limit point of A. Then if z ∈ 

A, it contains this limit point. So suppose for the sake of 

contradiction that z is a limit point and z is not in A. 

Now we have assumed A was closed, so its complement 

is open. Since z is not in A, it is in the complement of A, 

which is open; which means there is an open set U 

containing z contained in the complement of A. This 

contradicts that z is a limit point because a limit point 

is, by definition, a point such that every open set about 

z meets A 

 

 Conversely: if A  contains all its limit points, then its 

complement is open. Suppose x is in the complement of 

A. Then it can not be a limit point (by the assumption 

that A contains all of its limit points). So x  is not a limit 

point which means we can find some open set around  x  

that doesn’t meet  A. This proves the complement is 

open, i.e. every point in the complement has an open set 

around it that avoids A . 

1.1.10 Remark: 

 Since we know the empty set is open, X must be closed. 

1.1.11 Remark: 

  Since we know that X is open, the empty set must be 

closed. 

 Therefore, both the empty set and X and open and closed. 



1.1.12 Example :  

When X is a set and τ is a topology on X, we say that the sets 

in τ are open. Therefore, if X does have a metric (a notion of 

distance), then τ ={all open sets as defined with the ball above} is 

indeed a topology. We call this topology the Euclidean topology. 

It is also referred to as the usual or ordinary topology.   

 

1.1.13 Definition: 

 A subset S of topological space (x, T) is said clopen if it is 

both open and closed subset of X. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2  Some properties of Topological space. 



1.2.1 Continuity 

  In topology a continuous function is often called a function. 

There                     are 2 different ideas we can use on the idea of 

continuous functions. 

 Calculus Style 

 1.2.2 Definition:  

 f : R n → R m  is continuous if for every  > 0 there exists δ 

> 0 such that when |x − x0| < δ then |f(x) − f(x0)| < . 

 The map is continuos if for any small distance in the pre-image an 

equally small distance is apart in the image. That is to say the 

image does not jump 

 Topology Style. In topology it is necessary to generalize down the 

definition of continuity, because the notion of distance does not 

always exist or is different than our intuitive idea of distance. 

1.2.3 Definition : 

  A function f : X → Y is continuous if and only if the pre-

image of any open set in Y is open in X. If for whatever reason you 

prefer closed sets to open sets, you can use the following 

equivalent definition: 

 1.2.4 Definition : 

  A function f : X → Y is continuous if and only if the pre-

image of any closed set in Y is closed in X. 

1.2.5 Definition : 

Given a point x of X, we call a subset N of X a neighborhood 

of X if we can find an open set O such that x ∈ O ⊆ N.  

1. A function f : X → Y is continuous if for any neighborhood V of 

Y there is a neighborhood U of X such that f(U) ⊆ V .  

2. A composition of 2 continuous functions is continuous  

 

 



1.2.6 Definition : 

A function f:X Y  between two topological spaces is called 

continuous if every U Y open in Y the inverse image f
-1

 (U)  is 

open in X. 

1.2.7 Proposition : 

  The identity function is continuous. A composition of two 

continuous maps is continuous. Thus topological spaces and 

continuous maps between them form a category, the category of 

topological spaces. 

 

1.2.8 Definition :(Homeomorphisms) 

 A homeomorphism is a function f : X → Y between two 

topological spaces X and Y that 

1.is a continuous bijection; and  

2.has a continuous inverse function f
 −1

 . 

Another equivalent definition of homeomorphism is as follows.  

1.2.9 Definition : 

 Two topological spaces X and Y are said to be 

homeomorphic if there are continuous function  f : X → Y and g : Y 

→ X such that  f ◦ g = IY and                 g ◦ f = IX. 

 Moreover, the functions  f and g are homeomorphisms and are 

inverses of each other, so we may write f 
−1

 in place of g and g 
−1

 in 

place of f. 

 Here, IX and IY denote the identity maps . 

 

1.2.10 Definition: 

  Let and * be two topologies on a given set X. If 

*then is coarser than *. 

 



 

1.2.11 Definition :  

a topological space (X,T) is said to be completely 

regular space iff every closed subset F of X and every point 

xX-F there exist a continuous function f:X→[0,1] such that 

f(x)=0 , f(F)={1} 

 1.2.12 Definition :(tychonoff) 

  a tychonoff space or space is completely regular T1-space 

1.2.13 Definition : 

  Say that a family of sets A is linked if for every A, B ∈ A, 

A∩B = ∅. 

1.2.14 Definition :(pathwise) 

  Let X be a topological space, and x, y ∈ X. A continuous 

function           p : I → X such that p(0) = x and p(1) = y is called a 

path from x to y.                   X is called pathwise.  

1.2.15 Definition : 

 A collection U of open subsets of a topological space X is 

called an (open) cover if its union is the whole of X, i.e.  Ii  U =

  U0 ∈U  U = X.              A subcollection U 0 ⊆ U is called a sub-

cover if it is itself a cover. 

1.2.16 Definition : 

 A topological space X is called compact if every open cover 

admits a finite sub-cover 

1.2.17 Definition :(locally compact) 

 A topological space is locally compact if every point x ∈ X 

has a compact neighborhood. 

 1.2.18 Example 1.2. Any compact space is locally compact 

 

 



 

 

1.2.19 Definition :  

Product topology Given two topological spaces (X, T) and 

(Y, T ' ), we define the product topology on X × Y as the collection 

of all unions  i  Ui × Vi , where each Ui is open in X and each Vi 

is open in Y .  

1.2.20 Theorem.  

Projection maps are continuous Let (X, T) and (Y, T' ) be 

topological spaces. If X × Y is equipped with the product topology, 

then the projection map p1= : X × Y → X defined by p1(x, y) = x is 

continuous. Moreover, the same is true for the projection map p2 : 

X × Y → Y defined by                                       p2(x, y)= y  □ 

1.3 Fuzzy Topological space 

 

1.3.1 Definition 

Let 𝐴 and 𝐵 be fuzzy sets in a space 𝑋 = {𝑥}, with the grades of 

membership of 𝑥 in 𝐴 and 𝐵 denoted by 𝜇𝐴(𝑋) and 𝜇𝐵(𝑋), respectively. 

Then  

𝐴 =  𝐵 ⟺ 𝜇𝐴(𝑥)  = 𝜇𝐵(𝑥)            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋. 

𝐴 ⊂  𝐵 ⟺ 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥)        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋. 

𝐶 =  𝐴 ∪ 𝐵 ⟺ 𝜇𝐶(𝑥)  =  𝑀𝑎𝑥[𝜇𝐴(𝑥), 𝜇𝐵(𝑥)]       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋. 

𝐷 = 𝐴 ∩  𝐵 ⟺ 𝜇𝐷(𝑥)  =  𝑀𝑖𝑛[𝜇𝐴(𝑥), 𝜇𝐵(𝑥)]         𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋. 

𝐸 =  𝐴′ ⟺ 𝜇𝐸(𝑥) = 1 − 𝜇𝐴(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑋 

More generally, for a family of fuzzy sets, 𝐴 = {𝐴𝑖;  𝑖 ∈ 𝐼}, the union, 

𝐶 =  ⋃𝑖  𝐴𝑖, and the intersection, 𝐷 = ⋂𝑖  𝐴𝑖 , are defined by  



𝜇𝐶(𝑥)  =  𝑠𝑢𝑝𝐼{𝜇𝐴𝑖(𝑥)}, 𝑥 ∈  𝑋  

𝜇𝐷(𝑥)  =  𝑖𝑛𝑓𝐼{𝜇𝐴𝑖(𝑥)}, 𝑥 ∈  𝑋  

The symbol 𝛷 will be used to denote an empty fuzzy set (𝜇𝛷(𝑥) = 0 for 

all 𝑥 𝑖𝑛 𝑋). For 𝑋, we have by definition 𝜇𝑥(𝑥) = 1 for all 𝑥 𝑖𝑛 𝑋.  

We are now ready to define a fuzzy topological space.  

 

 

 

1.3.2 Definition 

A fuzzy topology is a family 𝑇 of fuzzy sets in 𝑋 which  

satisfies the following conditions:  

 (a) 𝛷,𝑋 ∈  𝑇, 

 (b) 𝐼𝑓 𝐴, 𝐵 ∈ 𝑇, 𝑡ℎ𝑒𝑛 𝐴 ∩ 𝐵 ∈ 𝑇, 

 (c) 𝐼𝑓 𝐴𝑖  ∈  𝑇 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ∈  𝐼, 𝑡ℎ𝑒𝑛 𝑈𝐼  𝐴𝑖  ∈  𝑇.  

𝑇 is called a fuzzy topology for 𝑋, and the pair (𝑋, 𝑇) is a fuzzy 

topological space, or fts for short. Every member of 𝑇 is called a 𝑇-open 

fuzzy set. A fuzzy set is 𝑇-closed if and only if its complement is 𝑇-open. 

In the sequel, when no confusion is likely to arise, we shall call a 𝑇-open 

(𝑇-closed) fuzzy set simply an open (closed) set. As (ordinary) 

topologies, the indiscrete fuzzy topology contains only 𝛷 𝑎𝑛𝑑 𝑋, while 

the discrete fuzzy topology contains all fuzzy sets. A fuzzy topology 𝑈 is 

said to be coarser than a fuzzy topology 𝑇 if and only if 𝑈 ⊂  𝑇.  

 



1.3.3 Definition 

A fuzzy set 𝑈 in a fts (𝑋, 𝑇) is a neighborhood, or nbhd for short, 

of a fuzzy set 𝐴 if and only if there exists an open fuzzy set 0 such that 

𝐴 ⊂ 0 ⊂ 𝑈.  

The above definition differs somewhat from the ordinary one in that we 

consider here a nbhd of a fuzzy set instead of a nbhd of a point.  

 

 

1.4. SEQUENCES OF FUZZY SETS 

 

1.4.1 Definition 

A sequence of fuzzy sets, say {𝐴𝑛, 𝑛 =  1, 2, . . . }, is eventually 

contained in a fuzzy set 𝐴 iff there is an integer 𝑚 such that, if 𝑛 ≥ 𝑚, 

then 𝐴𝑛 ⊂ 𝐴. The sequence is frequently contained in 𝐴 iff for each 

integer 𝑚 there is an integer 𝑛 such that 𝑛 ≥ 𝑚 and 𝐴𝑛 ⊂ 𝐴. If the 

sequence is in a fts (𝑋, 𝑇), then we say that the sequence converges to a 

fuzzy set 𝐴 iff it is eventually contained in each nbdh of 𝐴.  

1.4.2 Definition 

Let 𝑁 be a map from the set of non-negative integers to the set of 

non-negative integers. Then the sequence {𝐵𝑖 , 𝑖 =  1, 2, . . . } is a 

subsequence of a sequence {𝐴𝑛, 𝑛 =  1, 2, . . . } iff there is a map 𝑁 such 

that 𝐵𝑖 = 𝐴𝑛 (𝑖) and for each integer 𝑚 there is an integer 𝑛 such that 

𝑁(𝑖) ≥ 𝑚 whenever 𝑖 ≥ 𝑛.  

1.4.3 Definition 



Suppose 𝔽 is a family of fuzzy sets in 𝑋. which satisfies  

the following axioms:  

(𝑇1)𝑂, 1 ∈ 𝔽. 

(𝑇2)𝑖𝑓 𝐴, 𝐵 ∈ 𝔽. 𝑡ℎ𝑒𝑛 𝐴 ∩ 𝐵 ∈ 𝔽, 

(𝑇3)𝑖𝑓 𝐴𝑖; ∈ 𝔽, 𝑖 ∈∧. 𝑡ℎ𝑒𝑛 ∪𝑖∈∧  𝐴𝑖 ∈ 𝔽, 

then 𝔽 is called a fuzzy topology for 𝑋 and the pair (𝑋, 𝔽) is a fuzzy 

topological space.  

Every member of 𝔽 is called an 𝔽 -open fuzzy set (or simply open fuzzy 

set) and its complement is an 𝔽 -closed fuzzy set (or closed fuzzy set).  

Let 𝐴 be a fuzzy set in fts (𝑋, 𝔽). The closure 𝐴 and interior 𝐴0 of 𝐴 are 

defined. respectively, by  

 

𝐴 = ⋂ {𝐵: 𝐵 ⊃  𝐴, 𝐵′ ∈ 𝔽} 

and  

𝐴0  = ⋃ {𝐵: 𝐵 ⊂ 𝐴, 𝐵 ∈ 𝔽}. 

1.4.4 Definition: (Fuzzy set) 

Let 𝑥 be anon-empty set. Then 𝑢 is said Fuzzy set if 𝑢: 𝑋 ⟶ 𝐼 

Such that 𝐼 = [0,1], 

𝑢 = {(𝑋, 𝑢(𝑥))     ∶ 𝑥 ∈ 𝑋    , 𝑢(𝑥) ∈ 𝐼}. 

1.4.5 Example: 

Let 𝑢: 𝑋 ⟶ 𝐼 and let = {𝑎, 𝑏, 𝑐} , 

𝑢(𝑎) =
1

2
                 ,  𝑢(𝑏) =

1

3
                   ,  𝑢(𝑐) =

1

4
   



Is 𝑢  Fuzzy set ? 

Solution. 

𝑢 is Fuzzy set 

Since all numbers are enclosed between zero and one. 

 

 

 

 

 

 

 

 

 

 

 

 



THE FUZZY TOPOLOGICAL 

GAME 𝑮∗(𝑲, 𝑿) 

 

 

 

 

 

 

 

 

 

 

 

THE FUZZY TOPOLOGICAL GAME 𝑮∗(𝑲,𝑿) 

2.1 The Fuzzy Topological Game 

 

2.1.1 Notation 

By 𝐾 we denote a non-empty family of fuzzy topological spaces, 

where all spaces are assumed to be 𝑇1.That is all fuzzy singletons are 



fuzzy closed. 𝐼𝓍 Denote the family of all fuzzy closed subsets of 𝑋 Also 

𝑋 ∈ 𝐾 implies 𝐼𝓍 ⊆ 𝑲.𝑫𝑲 (𝑭𝑲) denote the class of all fuzzy topological 

spaces which have a discrete (finite) fuzzy closed 𝛼-shading by members 

of 𝑲. 

 

2.1.2 Definition 

Let 𝐾 be a class of fuzzy topological spaces and let 𝑋 ∈ 𝑲 . Then 

the  fuzzy topological game 𝐺∗(𝐾, 𝑋) is defined as follows. There are 

two players Prayer 𝐼 and player 𝐼𝐼. They alternatively choose consecutive 

terms of the sequence (𝐸1, 𝐹1, 𝐸2, 𝐹2, . . . ) of fuzzy subsets of 𝑋.When 

each player chooses his term he knows 𝐾, 𝑋 and their previous choices. A 

sequence (𝐸1, 𝐹1, 𝐸2, 𝐹2, . . . ) is a play for 𝐺∗(𝐾, 𝑋) if it satisfies the 

following conditions for each ℎ ≥ 1.  

(I)   𝐸𝑛 is a choice of Player 𝐼  

(2)   𝐹𝑛  is a choice of Player 𝐼𝐼 

 (3)  𝐸𝑛 ∈ 𝐼
𝓍 ∩ 𝐾 

 (4)  𝐹𝑛 ∈ 𝐼
𝓍   

(5)  𝐸𝑛 ∨ 𝐹𝑛 < 𝐹𝑛−1  Where 𝐹0=𝑋 

(6)  𝐸𝑛 ∧ 𝐹𝑛 = 0 

Player 𝐼 wins the Play if 𝐼𝑛𝑓 𝐹𝑛 = 0. Otherwise Player 𝐼𝐼 wins the Game.  

 

2.1.3 Definition 

A "finite sequence (𝐸1, 𝐹1, 𝐸2, 𝐹2, . . . , 𝐸𝑚, 𝐹𝑚)  is admissible if it 

satisfies conditions (1)  − − (6) for each 𝑛 ≤ 𝑚.  



 

2.1.4 Definition 

Let S' be a crisp function defined as follows  

𝑆:∪ (𝐼𝓍)𝑛  
𝑖𝑛𝑡𝑜
→   𝐼𝓍 ∩ 𝐾 

Let 𝑆1 = {𝑋} 

𝑆2 = {𝐹 ∈ 𝐼
𝓍: (𝑆′(𝑋), 𝐹) Is admissible for 𝐺∗(𝐾, 𝑋)}, Continuing like this 

inductively we get  

𝑆𝑛 = {(𝐹1, 𝐹2, 𝐹3, …𝐹𝑛) : (𝐸1, 𝐹1, 𝐸2, 𝐹2, . . . , 𝐸𝑛, 𝐹𝑛) is admissible for 

𝐺∗(𝐾, 𝑋) where 𝐹0 = 𝑋 and  

𝐸𝑖 =  𝑆 ′ (𝐸1, 𝐹1, 𝐸2, 𝐹2, . . . , 𝐹𝑛−1)  for each 𝑖 ≤ 𝑛 }. Then the restriction 𝑆 

of 𝑆 ' to  

∪𝑛≥1 𝑆𝑛 Is called a fuzzy strategy for player 𝐼 in 𝐺∗(𝐾, 𝑋). 

 

 

 

2.1.5 Definition 

If Player 𝐼 wins every play (𝐸1, 𝐹1, 𝐸2, 𝐹2, . . . , 𝐸𝑛, 𝐹𝑛….) such that 

𝐸𝑛 =  𝑆 (𝐹1, 𝐹2, . . … , 𝐹𝑛−1), then we say that 𝑆 is a fuzzy winning 

strategy. 

 

2.1.6 Definition 

𝑆:∪ (𝐼𝓍)𝑛  
𝑖𝑛𝑡𝑜
→   𝐼𝓍 ∩ 𝐾 is called a fuzzy stationery strategy for 



Prayer 𝐼 in 𝐺∗(𝐾, 𝑋) if 𝑆 (𝐹) < 𝐹 for each 𝐹 ∈ 𝐼
𝓍 . we say that S is a 

fuzzy stationary winning strategy if he wins every play 

(𝑆(𝑋), 𝐹1, 𝑆(𝐹1), 𝐹2, … ). 

                From definitions above, we get 

 

2.1.7 Result 

A function 𝑆:∪ (𝐼𝓍)𝑛  
𝑖𝑛𝑡𝑜
→   𝐼𝓍 ∩ 𝐾 is a fuzzy stationary winning 

strategy if and only if it satisfies  

 (I) For each  𝐹 ∈ 𝐼
𝓍 , 𝑆(𝐹) < 𝐹  

(ii) If {𝐹𝑛: 𝑛 ≥ 1} satisfies 𝑆(𝑋) ∧ 𝐹1 =  0 and 𝑆(𝐹𝑛)  ∧  𝐹𝑛+1 =  0 for 

each n ≥  1 then𝐼𝑛𝑓 𝐹𝑛 = 0.  

 

2.1.8 Theorem 

Player I have a fuzzy winning strategy in 𝐺∗(𝐾, 𝑋) if and only if 

he has a fuzzy winning strategy in it.  

Proof is similar to that of Yajima [𝑌1] and for completeness we are 

including it.  

 

Proof.  

                Sufficiency part follows clearly. Conversely let 𝑆 be a fuzzy 

winning strategy of, Plyer I for𝐺∗(𝐾, 𝑋). Well order 𝐼𝓍\{𝑜} by <. Let 𝐻 

be any non-empty closed fuzzy subset of 𝑋.  



Claim-(1) now we will prove that there is some 

𝐹(𝐻) = (𝐹1, 𝐹2, 𝐹3, …𝐹𝑚) ∈ (𝐼
𝓍)𝑚  

Satisfying  

(I) 𝑆(𝐹0, 𝐹1, … 𝐹𝑖) ∧ 𝐻 = 0 For 0 ≤ 𝑖 ≤ 𝑚 − 1  

 (ii) 𝑆(𝐹0, 𝐹1, …𝐹𝑚) ∧ 𝐻 ≠ 0 

 (Iii) 𝐹𝑖+1 =Min{𝐹 ∈ 𝐼𝓍 ∶  𝐻 ≤ 𝐹 ≤ 𝐹𝑖   𝑎𝑛𝑑 𝐹 ∧ 𝑆(𝐹1, 𝐹2, … 𝐹𝑖) = 𝑂} 

for 𝑂 ≤  𝑖 ≤  𝑚 − 1 𝑤ℎ𝑒𝑟𝑒  

𝐹0 = 𝑋 And 𝐹(𝐻) = 0 may occur  

To prove the above claim assumes the contrary. Then we can inductively 

choose  

Some (𝐹1, 𝐹2, … ) ∈ (𝐼
𝓍)𝜔 such that 𝑆(𝐹1, 𝐹2, … 𝐹𝑘) ∧ 𝐻 = 𝑂 and 

𝐹𝑘 = 𝑀𝑖𝑛(𝐹 ∈ 𝐼
𝓍 ∶ 𝐻 ≤ 𝐹 ≤ 𝐹𝑘−1 And 

 𝑆(𝐹1, 𝐹2, … 𝐹𝑘−1) ∧ 𝐻 = 𝑂}𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 ≥ 1.  

Now (𝐸1, 𝐹1, 𝐸2, 𝐹2, ….) where 𝐸𝑘 =  𝑆(𝐹1, 𝐹2, …𝐹𝑘−1) is a play for each 

𝑘 ≥ 1 for 𝐺∗(𝐾, 𝑋) and by definition of fuzzy strategy, we 

have𝐼𝑛𝑓𝑘≥1 𝐹𝑘 =  𝑂. Also 𝐻 ≤ 𝐹𝑘 for all 𝑘 ≥ 1.There fore  

𝐻 ≤ 𝐼𝑛𝑓𝑘≥1 𝐹𝑘 = 𝑂. This is a contradiction to 𝐻 ≠ 𝑂. Thus claim-(1) 

holds.  

Take 𝑆∗(𝑂)  = 0 and 𝑆∗(𝐻)  =  𝑆(𝐹1, 𝐹2, …𝐹𝑚) ∧ 𝐻 

where 𝐹(𝐻)(𝐹1, 𝐹2, … 𝐹𝑚). 

For each 𝐻 ∈ 𝐼𝓍\{𝑜} .Then 𝑆∗ is a function from 𝐼𝓍 into 𝐼𝓍 ∩ 𝐾 such that 

𝑆∗(𝐻) ≤ 𝐻 for each 𝐻 ∈ 𝐼𝓍. We will prove that 𝑆∗ is a fuzzy stationary 

winning strategy for Player 𝐼 in 𝐺∗(𝐾, 𝑋).  



                 Let (𝐸1, 𝐻1, 𝐸2, 𝐻2, ….) be a play such that 𝐸1 = 𝑆
∗(𝑋) and  

𝐸1 = 𝑆
∗(𝐻𝑛−1) For 𝑛 ≥ 2 we show that 𝐼𝑛𝑓𝑘≥1 𝐻𝑛 =  0. For 𝑛 ≤ 𝑚, take 

𝐹(𝐻) 𝑛⁄ = (𝐹1, 𝐹2, …𝐹𝑛) and |𝐹(𝐻)| = 𝑚  

Claim-(2) 

We will show that there are some (𝐹1, 𝐹2, … ) ∈ (𝐼
𝓍)𝜔 and a sequence 

𝑘(1) < 𝑘(2) < . . ..Such that 𝑘 > 𝑘(𝑛) implies (𝐹1, 𝐹2, … 𝐹𝑛) = 𝐹(𝐻𝑛) 𝑛⁄  

for each 𝑛 ≥ 1 

Take 𝐹0 = 𝑋 and assume that (𝐹1, 𝐹2, …𝐹𝑛) ∈ (𝐼
𝓍)𝑛 and{ 𝑘(𝑖): 𝑖 ≤ 𝑛} has 

been  

Already chosen, first we will prove that |𝐹(𝐻𝑘)| > 𝑛 for each 𝑘 >

𝑘(𝑛) . 𝐿𝑒𝑡 𝑘 > 𝑘(𝑛) , then by induction we have 𝐹(𝐻𝑘) 𝑛⁄ =

𝐹(𝐻𝑘(𝑛)) 𝑛⁄ = (𝐹1, 𝐹2, …𝐹𝑛). 

If 𝑆(𝐹0, 𝐹2, …𝐹𝑛) ∧ 𝐻𝑘(𝑛) = 0, then from 𝐻𝑘 < 𝐻𝑘(𝑛) it follows that 

𝑆(𝐹0, 𝐹2, …𝐹𝑛) ∧ 𝐻𝑘 = 0. Otherwise if 𝑆(𝐹0, 𝐹2, …𝐹𝑛) ∧ 𝐻𝑘 ≠ 0 by (ii) of 

Claim-(1) above we have 𝐹(𝐻𝑘(𝑛)) = (𝐹1, 𝐹2, …𝐹𝑛). So that 𝑆∗(𝐻𝑘(𝑛)) =

𝑆(𝐹0, 𝐹2, …𝐹𝑛) ∧ 𝐻𝑘(𝑛).  

Hence 𝑆(𝐹0, 𝐹2, … 𝐹𝑛) ∧ 𝐻𝑘 = 𝑆
∗(𝐻𝑘(𝑛)) ∧ 𝐻𝑘  

       < 𝐸𝑘(𝑛)+1 ∧ 𝐻𝑘(𝑛)+1 

= 0 

Thus in both cases 𝑆(𝐹0, 𝐹2, …𝐹𝑛) is disjoint from 𝐻𝑘.By the choice of 

𝐹(𝐻𝑘) this means |𝐹(𝐻𝑘)| > 𝑛. 

Let 𝐹𝑛+1(𝑘) be the (𝑛 + 1)𝑠𝑡 term of 𝐹(𝐻𝑘) for 𝑘 > 𝑘(𝑛). This exists 

since we have already proved that |𝐹(𝐻𝑘)| > 𝑛. Now take 

𝐹𝑛+1 =Min { 𝐹𝑛+1(𝑘): 𝑘 >  𝑘(𝑛)}. 



Choose some 𝑘(𝑛 +  1 » 𝑘(𝑛) such that 𝐹𝑛+1 = 𝐹𝑛+1(𝑘(𝑛 + 1)). 

Let 𝑘 > 𝑘(𝑛 + 1). 

Clearly 𝐹𝑛+1 ≤ 𝐹𝑛+1(𝑘), 𝑎𝑙𝑠𝑜  𝐹(𝐻𝑘) 𝑛⁄ = 𝐹(𝐻𝑘(𝑛)) 𝑛⁄  

= (𝐹1, 𝐹2, …𝐹𝑛) 𝑎𝑛𝑑 𝐻𝑘 < 𝐻𝑘(𝑛+1) 

By (ii) of claim-(1) above we obtain 𝐹𝑛+1(𝑘) ≤  𝐹𝑛+1(𝑘(𝑛 + 1)) =

𝐹𝑛+1 . Hence 𝐹𝑛+1 = 𝐹𝑛+1(𝑘) whenever 𝑘 ≥  𝑘(𝑛 + 1) this means 

(𝐹1, 𝐹2, …𝐹𝑛)  =  𝐹(𝐻𝑘) 𝑛⁄ + 1 for each 𝑘 >  𝑘(𝑛 + 1). Thus  

Claim-(2) holds.  

Now consider (𝐸1, 𝐹1, 𝐸2, 𝐹2, . . . , 𝐸𝑛, 𝐹𝑛) such that 

𝐸𝑖 = 𝑆(𝐹0, 𝐹1, 𝐹2, …𝐹𝑖−1) for  

1 ≤  𝑖 ≤  𝑛 And 𝐹0 : = 𝑋 this is an admissible sequence in 𝐺∗(𝐾, 𝑋). By 

the definition of fuzzy winning strategy we have 𝐼𝑛𝑓𝐹𝑛  =  0 Also by 

claim-(2). Each 𝐹𝑛 is in terms of some 𝐹(𝐻𝑘). 

Then from (ii) of claim-(1), it follows that 𝐻𝑘  < 𝐹𝑛 for each 𝐹𝑛 Therefore 

we have 𝐼𝑛𝑓𝑛≥1𝐻𝑛 ≤ 𝐼𝑛𝑓𝑛≥1𝐹𝑛 But 𝐼𝑛𝑓𝑛≥1𝐹𝑛 =  𝑂. Therefore it follows 

that 𝐼𝑛𝑓𝑛≥1𝐻𝑛 =  𝑂. Thus 𝑆∗ is a fuzzy stationary winning strategy for 

Player I in  𝐺∗(𝐾, 𝑋). 

 

2.1.9 Proposition 

Let 𝐾1 and 𝐾2 be two classes of fuzzy topological spaces 

with 𝐾1 ⊂ 𝐾2 and if Player I has a fuzzy winning strategy in 𝐺∗( 𝐾1, 𝑋) , 

then he has a fuzzy winning strategy in 𝐺∗(𝐾2, 𝑋).  

 

Proof.  



        From Theorem 2.2.8 it follows that Player I has a fuzzy stationary 

winning strategy in 𝐺∗( 𝐾1, 𝑋). say S. From theorem 2.2.8 it suffices to 

prove that Player I has a fuzzy stationary winning strategy in 𝐺∗(𝐾2, 𝑋). 

Now 𝑆: 𝐼𝓍  
𝑖𝑛𝑡𝑜
→   𝐼𝓍 ∩  𝐾1, Then by result 2.2.7 we have 𝑆(𝐹)  <  𝐹 

where 𝐹 ∈ 𝐼𝓍. Where and if {𝐹𝑛 ∶  𝑛 ≥  𝑁 } ⊆ 𝐼
𝓍 satisfies 𝑆(𝑋)  ∧ 𝐹1  =

0 and 𝑆(𝐹𝑛) ∧ 𝐹𝑛+1 =  0 for all 𝑛 ≥ 1, then 𝐼𝑛𝑓𝑛≥1𝐹𝑛 = 𝑂. 

Now define 𝑆∗: 𝐼𝓍  
𝑖𝑛𝑡𝑜
→   𝐼𝓍 ∩  𝐾1 by 𝐹 →  𝑆(𝐹) ∧ 𝐾2 now we will show 

that 𝑆∗ is a fuzzy winning strategy for 𝐺∗(𝐾2, 𝑋). 

Now 𝑆∗(𝐹) = 𝑆(𝐹) ∧ 𝐾2 

                    ≤ 𝑆(𝐹) 

                      ≤ 𝐹 

Therefore 𝑆∗ is a stationary strategy for Player I in 𝐺∗(𝐾2, 𝑋).  

            Now to prove that 𝑆∗ is winning, we want to prove that Player I 

wins every play of the form (𝑆∗(𝑋), 𝐹1, 𝑆
∗(𝐹1),…..). For that we want to 

prove that 𝐼𝑛𝑓𝑛≥1𝐹𝑛 = 𝑂. 

Now we have 𝑆∗(𝑋) ∧ 𝐹1 = [𝑆(𝑋) ∧ 𝐾2] ∧ 𝐹1 

                                            = 𝑠(𝑋) ∧ 𝐾2  ∧ 𝐹1  

                                                    =  0 Since 𝑆 is a stationary winning strategy 

of Player I in 𝐺∗( 𝐾1, 𝑋).  

Also 𝑆∗(𝐹𝑛) ∧ 𝐹𝑛+1 =  𝑆(𝐹𝑛) ∧ 𝐾2 ∧ 𝐹𝑛+1  

By Result 2.2.7 it follows that 𝐼𝑛𝑓𝑛≥1𝐹𝑛 = 𝑂. Therefore 𝑆∗ is a fuzzy 

stationary winning strategy for Player I in 𝐺∗(𝐾2, 𝑋).  

 



2.1.10 Proposition 

Let 𝑌 is a fuzzy closed subspace of a fuzzy topological space 𝑋.If 

Player I has a fuzzy winning strategy in 𝐺∗(𝐾, 𝑋). Then he has a winning 

strategy in 𝐺∗(𝐾, 𝑌).  

 

Proof. 

Let 𝑆∗: 𝐼𝓍  
𝑖𝑛𝑡𝑜
→   𝐼𝓍 ∩ 𝐾 be a fuzzy stationary winning strategy 

of 𝐺∗(𝐾, 𝑋). 

Now define 𝑆∗: 𝐼𝑌
𝑖𝑛𝑡𝑜
→   𝐼𝑌 ∩ 𝐾 by 𝐹′ ⟶ 𝑆(𝐹) ∧ 𝑌 where 𝐹′ = 𝐹 ∧ 𝑌 and 

𝐹 ∈ 𝐼𝓍 now 𝑆∗(𝐹′)  =  𝑆(𝐹) ∧ 𝑌  

                                              < 𝐹 ∧ 𝑌  

                                               =  𝐹′  

Thus 𝑆∗ is a fuzzy stationary strategy of Player I in 𝐺∗(𝐾, 𝑋). 

        Let { 𝐹𝑛′ ∶ 𝑛 ≥ 1}  ⊂  𝐼
𝑌 where 𝐹𝑛′ = 𝐹𝑛 ∧ 𝑌  Y for some 𝐹𝑛 ∈ 𝐼

𝓍 

 

Now 𝑆∗(𝑌)  ∧ 𝐹1′ = [𝑆(𝑋)] ∧  𝑌]  ∧ 𝐹1′ 

                           = [𝑆(𝑋)] ∧  𝑌]  ∧ [𝐹1 ∧ 𝑌] 

= 𝑆(𝑋) ∧  𝑌 ∧ 𝐹1 

=  0 since S is winning  

Also 𝑆∗(𝐹𝑛′)  ∧ 𝐹𝑛+1′ follows clearly. Therefore from Result 2.2.7, it 

follows that  



 𝐼𝑛𝑓𝑛≥1𝐹𝑛 = 𝑂. Therefore it follows that 𝐼𝑛𝑓𝑛≥1𝐹𝑛′ = 𝑂. Thus proving 𝑆∗ 

is a fuzzy stationary winning strategy of Player I in 𝐺∗(𝐾, 𝑋). 

 

 

 

 

 

 

 

 

 

2.2 Finite and Countable Unions 

Clearly we have 𝐾 ⊆ 𝐹𝐾 and 𝑋 ∈ 𝐹𝐾 implies 𝐼𝓍 ⊆ 𝐹𝐾. 

2.2.1. Proposition 

If Player I has a fuzzy winning strategy in 𝐺∗(𝐹𝐾, 𝑋), then he has 

a' fuzzy winning strategy in 𝐺∗(𝐾, 𝑋). 

 

Proof.  

Let 𝑆 be a fuzzy winning strategy for Player I in 𝐺∗(𝐹𝐾, 𝑋). We 

will try to define a fuzzy strategy 𝑡 for 𝐺∗(𝐾, 𝑋), Now take 𝐸0 = 𝑋, 𝐸1 =

𝑆(𝐸0) and 𝐹0 = 𝐸0 Now 𝐸1 ∈ 𝐼
𝓍 ∩ 𝐹𝐾 .Therefore  𝐸1 =∨ { 𝐻1,𝑚 ∶  𝑚:≤

𝑘1} where { 𝐻1,𝑚 ∶  𝑚:≤ 𝑘1}  ⊆ 𝐼
𝓍 ∩ 𝐾. We set 𝐹1 =  𝐻1,0 and 1(𝐹0) =

𝐹1. Also take 𝐹2  ∈ 𝐼
𝓍 in such a way that 𝐹1 ∧ 𝐹2 =  0 and also set 



𝐹3 = 𝐹2 ∧  𝐻1,1 and 𝑡(𝐹0, 𝐹1, 𝐹2)  = 𝐹3. Continuing like this we get an 

admissible sequence (𝐹0, 𝐹1, … , 𝐹2𝑘1) for 𝐺∗(𝐾, 𝑋). Take 𝐹2𝑘1+1 =

 𝑡(𝐹0, 𝐹1, … , 𝐹2𝑘1)  = 𝐹2𝑘1 ∧  𝐻1,1𝑘 . Take 𝐹2𝑘1+2 ∈ 𝐼
𝓍. 

With  𝐹2𝑘1+2 ≤ 𝐹2𝑘1 and 𝐹2𝑘1+2 ∧  𝐹2𝑘1+1 =  𝑂. Take 𝐸2 =  𝐹2𝑘1+2, now 

clearly  𝐸1 ∧ 𝐸2 = 0 and set 𝐸3 = 𝑆( 𝐸0 , 𝐸1 , 𝐸2) .  

Since  𝐸3 ∈ 𝐼
𝓍 ∩ 𝐹𝐾 , we have 𝐸3 =∨ {𝐻3,𝑚 ,    𝑚 ≤  𝐾3, Where 

each  𝐻3,𝑚  ∈ 𝐼
𝓍 ∩ 𝐾. 

Continuing like this we get the Play ( 𝐸0 , 𝐸1 , 𝐸2, . . . . ) of  𝐺∗(𝐹𝐾, 𝑋)and 

( 𝐹0 , 𝐹1 , 𝐹2, . . . . ) Of 𝐺∗(𝐹𝐾, 𝑋), Since 𝑆 is a fuzzy winning strategy 

for 𝐺∗(𝐹𝐾, 𝑋),  𝐼𝑛𝑓𝑛≥1𝐹2𝑛 = 𝑂.  

Now {𝐸2𝑛: 𝑛 ∈ 𝑁} ⊆ {𝐹2𝑛 ∶  𝑛 ∈ 𝑁 }. Therefore it follows 

that  𝐼𝑛𝑓𝑛≥1𝐹2𝑛 = 𝑂. Therefore 𝑡 is a fuzzy winning strategy for Player I 

in 𝐺∗(𝐾, 𝑋). 

 

2.2.2 Remark 

From 𝐾 ⊆ 𝐹𝐾 and Proposition 2.2.9 it follows that if Player I has 

a fuzzy winning strategy in 𝐺∗(𝐾, 𝑋), then he has a fuzzy winning 

strategy in  𝐺∗(𝐹𝐾, 𝑋).  

       From Remark 2.3.2 and Proposition 2.3.1 we get  

 

2.2.3 Theorem 

Player I has a fuzzy winning strategy in  𝐺∗(𝐾, 𝑋) if and only if 

he has the same in 𝐺∗(𝐹𝐾, 𝑋).  

 



2.2.4 Proposition 

If a fuzzy topological space 𝑋 has a fuzzy closed countable 𝛼-

shading {𝑋𝑛: 𝑛 ∈ 𝑁} such that Player I has a fuzzy winning strategy in 

 𝐺∗(𝐾, 𝑋𝑛) for each 𝑛 ∈ 𝑁 then he has a fuzzy winning strategy 

in 𝐺∗(𝐾, 𝑋). 

 

 

 

 

Proof.  

Let Sn be a fuzzy stationery winning strategy for Player I in 

 𝐺∗(𝐾, 𝑋𝑛)for each 𝑛 ∈ 𝑁, now it is enough if we prove that Player I has 

a fuzzy winning strategy in 𝐺∗(𝐹𝐾, 𝑋). 

Now we take 𝑆(𝑋) = 𝑆1(𝑋) and assume that (𝐸1, 𝐹1, 𝐸2, 𝐹2, . . . , 𝐸𝑛, 𝐹𝑛) is 

an admissible sequence in  𝐺∗(𝐹𝐾, 𝑋) such that 

𝐸𝑖 = 𝑆(𝐹1 , 𝐹2 , 𝐹3 , . . . 𝐹𝑖−1) for each 𝑖 ≤ 𝑛 where 𝐹0 = 𝑋  Take 𝐸𝑛+1 =

 𝑆(𝐹1 , 𝐹2 , 𝐹3 , . . . 𝐹𝑛)  =  𝑆𝑢𝑝𝑘≤𝑛+1 𝑆𝑘(𝐹𝑛 ∧ 𝑋𝑘). 

        Consider the Play (𝐸1, 𝐹1, 𝐸2, 𝐹2, … . ) in  𝐺∗(𝐹𝐾, 𝑋) such that 

𝐸𝑛 = 𝑆(𝐹1 , 𝐹2 , 𝐹3 , . . . 𝐹𝑛−1)  for all 𝑛 ≥ 1 . Now take an 𝑚 ≥ 1. By 

definition of Play we have 𝐸𝑛+1 ∧ 𝐹𝑛+1 =  0⋯⋯ (1)  

Here 𝐸𝑛+1 = 𝑆𝑢𝑝𝑘≤𝑛+1 𝑆𝑘(𝐹𝑛 ∧ 𝑋𝑘) 

≥ 𝑆𝑚(𝐹𝑛 ∧ 𝑋𝑚) 

Also 𝐹𝑛+1  ∧  𝑋𝑚 ≤ 𝐹𝑛+1, therefore from (1) it follows that  



[𝑆𝑚(𝐹𝑛 ∧ 𝑋𝑚)] ∧ [𝐹𝑛+1  ∧  𝑋𝑚] = 0 For each 𝑛 ≥ 𝑚, now since 𝑆𝑚 is a 

stationary winning strategy for Player I in 𝐺∗(𝐾, 𝑋𝑚), we have  

𝑆𝑚(𝐹𝑛 ∧ 𝑋𝑚) ≤ 𝐹𝑛 ∧ 𝑋𝑚 For each 𝑛 ≥ 𝑚 , 

Therefore 𝐹𝑛 ∧ 𝑋𝑚] ∧ [𝐹𝑛+1  ∧  𝑋𝑚] = 0  for each 𝑛 ≥ 𝑚, thus 

∧𝑛≥𝑚 [𝐹𝑛+1  ∧  𝑋𝑚] = 0 we also have 𝐹𝑛+1 < 𝐹𝑛 and hence it follows 

that 𝐼𝑛𝑓𝑛≥1𝐹𝑛 = 𝑂. Thus Player I has a winning strategy in 𝐺∗(𝐹𝐾, 𝑋) 

hence the proof is complete by Theorem 2.3.3.  

 

 

2.2.5 Theorem 

Let 𝑋 be a fuzzy topological space with a fuzzy subset 𝐸 such that 

𝐸 ∈ 𝐼𝓍 ∩ 𝐸 . If Player I has a fuzzy winning strategy in  𝐺∗(𝐾, 𝐹) for each 

𝐹 ∈ 𝐼𝓍 with 𝐸 ∧ 𝐹 =  0, then Player I has a fuzzy winning stratey in 

 𝐺∗(𝐾, 𝑋). 

 

Proof.  

            For each 𝐹 ∈ 𝐼𝓍 with 𝐸 ∧ 𝐹 =  0, Let 𝑆𝐹 is a fuzzy stationary 

winning strategy for Player I in 𝐺∗(𝐾, 𝐹). Now we will find out a fuzzy 

winning strategy S for Player I in 𝐺∗(𝐾, 𝑋). 

         Define 𝑆(𝑋) = 𝐸 and (𝐸1, 𝐹1, 𝐸2, 𝐹2, . . . , 𝐸𝑛, 𝐹𝑛) be an admissible 

sequence in  𝐺∗(𝐾, 𝑋) such that 𝐸1 = 𝑆(𝐹0 , 𝐹1 , 𝐹2 , . . . 𝐹𝑖−1) for each 

𝑖 ≤ 𝑛 where 𝐹0 =  𝑋. Take 𝐸𝑛+1 = 𝑆(𝐹0 , 𝐹1 , 𝐹2 , . . . 𝐹𝑛) =  𝑆𝐹 1(𝐹𝑛). 

Consider the play (𝐸1, 𝐹1, 𝐸2, 𝐹2, . . . ) now clearly 𝐸𝑛+1 ∧ 𝐹𝑛+1 = 𝑂. That 

is 𝑆𝐹 1(𝐹𝑛) ∧ 𝐹𝑛+1 = 𝑂. Also  𝑆𝐹 1(𝑋)  ∧ 𝐹1 = 𝐸1 ∧ 𝐹1 = 0 Since  𝑆𝐹 1 is a 



stationery winning strategy, it follows that 𝐼𝑛𝑓𝑛≥1𝐹𝑛 = 𝑂. Thus Player I 

has a fuzzy winning strategy in 𝐺∗(𝐾, 𝑋).  

 

 

 

 

 

 

2.3 Games and Mappings 

 

2.3.1. Theorem 

Let 𝑋 and 𝑌 be two fuzzy topological spaces and 𝑲𝟏 and 𝑲𝟐 be 

two classes of fuzzy topological spaces such that 𝑋 ∈ 𝑲𝟏 and 𝑌 ∈ 𝑲𝟐. If I 

is an 𝐹-continous function from 𝑋 on to 𝑌 which maps all 𝐸 ∈ 𝐼𝓍 ∩𝑲𝟏 to 

𝑓(𝐸) ∈ 𝐼𝓍 ∩ 𝑲𝟐 and if player I has a fuzzy winning strategy in 

 𝐺∗ (𝑲𝟏, 𝑋) , then Player I has a fuzzy winning strategy in  𝐺∗ (𝑲𝟐, 𝑋). 

 

Proof. 

           Let S be a fuzzy stationary winning strategy for Player I in 

 𝐺∗ (𝑲𝟏, 𝑋).Thus player I wins every play of the form 

(𝑆(𝑋) , 𝐹1, 𝑆(𝐹1), . . . . . ). Now we will define a stationary winning strategy 

𝑡 for Player I in 𝐺∗(𝑲𝟐, 𝑌). Now consider the play 

(𝑡(𝑌), 𝑃1, 𝑡(𝑃1), 𝑃2 . . . . ) where 𝑃𝑛 =  𝑡(𝐹𝑛) 𝑎𝑛𝑑 𝑡 ∶ 𝐼
𝑌
𝑖𝑛𝑡𝑜
→   𝐼𝑌 ∩𝑲𝟐 is 



defined by 𝑡(𝑃𝑛) =  𝑓[𝑆(𝐹𝑛)]. Now 𝑡 is a stationary winning strategy 

for 𝐺∗(𝐾2, 𝑌).  

For, 𝑡(𝐹𝑛)  = 𝑓[𝑆(𝐹𝑛)] 

                   < 𝑓(𝐹𝑛) 

                    = 𝑃𝑛 . There fore 𝑡 is a fuzzy stationery strategy.  

Now  𝑡(𝑃𝑛) ∧ 𝑃𝑛+1 = 𝑓[𝑆(𝐹𝑛)] ∧ 𝑓(𝐹𝑛+1) 

                             = 𝑓[𝑆(𝐹𝑛) ∧ 𝐹𝑛+1] 

                             = 𝑓(𝑂)  

                             =  0  

Also       𝑡(𝑌)  ∧ 𝑃1 = 𝑓[𝑆(𝑋)] ∧ 𝑃1 

                              = 𝑓[𝑆(𝑋)] ∧ 𝑓(𝐹1) 

                              =  𝑓[𝑆(𝑋) ∧ 𝐹1]  

                              =  𝑓(𝑂)  

                              =  0 

Therefore it follows from Result 2.2.7 that  𝐼𝑛𝑓𝑛≥1𝐹𝑛 = 𝑂 and hence 𝑡 is 

a stationary winning strategy for Player I in  𝐺∗(𝑲𝟐, 𝑌). 

 

2.3.2 Theorem 

Let 𝑓: 𝑋
𝑖𝑛𝑡𝑜
→   𝑌 be an 𝐹-continuous 𝐹-closed mapping such that 

𝑓−1(𝐸) ∈ 𝐼𝓍 ∩𝑲𝟏 whenever 𝐸 ∈ 𝐼𝓍 ∩ 𝑲𝟐. Then if Player I has a fuzzy 

winning strategy in 𝐺∗(𝑲𝟐, 𝑌), then Player I has a fuzzy winning strategy 

in 𝐺∗(𝑲𝟏, 𝑋).  



 

Proof.  

          Let 𝑆 be a fuzzy stationery winning strategy for Player I in 

 𝐺∗(𝑲𝟐, 𝑌).Therefore Player I wins every play of the 

form (𝑆(𝑌), 𝐹1, 𝑆(𝐹1), . . . . . ). Now we will define a function. 

𝑡: 𝐼𝓍  
𝑖𝑛𝑡𝑜
→   𝐼𝓍 ∩𝑲𝟏 As follows, Now 𝑓: 𝑋 

𝑖𝑛𝑡𝑜
→   𝑌 is 𝐹-closed and hence 

we take 

𝑃𝑛 = 𝑓
−1(𝐹𝑛) Where 𝑃𝑛 ∈ 𝐼

𝓍 and 𝑡(𝑃𝑛) = 𝑓
−1[𝑆(𝐹𝑛)] for an  𝑃𝑛 ∈ 𝐼

𝓍 

Now 𝑡(𝑃𝑛) = 𝑓
−1[𝑆(𝐹𝑛)] 

                 < 𝑓−1(𝐹𝑛)  

                 = 𝑃𝑛       . Thus 𝑡 is a fuzzy stationary strategy.  

 

Now consider the play (𝑡(𝑋),  𝑃1, 𝑡(𝑃1),… . )  

𝑡(𝑃𝑛) ∧ 𝑃𝑛+1 = 𝑓
−1[𝑆(𝐹𝑛)] ∧ 𝑃𝑛 

                     = 𝑓−1[𝑆(𝐹𝑛)] ∧ 𝑓
−1(𝐹𝑛+1) 

                     = 𝑓−1[𝑆(𝐹𝑛) ∧ 𝐹𝑛+1] 

                     = 𝑓−1(0)  

                     =  0. 

Also 𝑡(𝑋)  ∧ 𝑃1 = 𝑓
−1[𝑆(𝑋)] ∧ 𝑃1 

                        = 𝑓−1[𝑆(𝑋)] ∧ 𝑓−1(𝐹1) 

                        = 𝑓−1[𝑆(𝑋) ∧ 𝐹1] 

                        = 𝑓−1(0)  



                        = (0) . 

 

        Therefore from Result 2.2.7 it follows that 𝐼𝑛𝑓𝑃𝑛 = 𝑂 and hence 𝑡 is 

a winning strategy also. Thus 𝑡 is a fuzzy winning strategy for Player I 

in 𝐺∗(𝑲1, 𝑋). This completes the proof.  

        As an immediate consequence of Theorem 2.4,1 and Theorem 2.4.2 

we get the following two Theorems. 

2.2.3 Theorem 

Let 𝑋 and 𝑌 are two fuzzy topological spaces and 𝑓: 𝑋 
𝑖𝑛𝑡𝑜
→   𝑌 be 

an 𝐹-continuous function and 𝑓−1(𝐸) ∈ 𝐼𝓍 ∩𝑲1. 

Whenever 𝐸 ∈ 𝐼𝓍 ∩𝑲2. If Player II has a fuzzy winning strategy 

in 𝐺∗(𝑲1, 𝑋).Then Player II has a fuzzy winning strategy in  𝐺∗(𝑲2 , 𝑌). 

 

2.3.4 Theorem 

Let 𝑓: 𝑋 
𝑖𝑛𝑡𝑜
→   𝑌 be an 𝐹-continuous 𝐹-closed mapping such that 

𝑓−1(𝐸) ∈ 𝐼𝑌 ∩ 𝑲2 whenever 𝐸 ∈ 𝐼𝓍 ∩ 𝑲1. If Player II has a fuzzy 

winning strategy in  𝐺∗(𝑲2 , 𝑌) then Player II has a fuzzy winning 

strategy in 𝐺∗(𝑲1, 𝑋). 

 

2.3.5 Definition 

[𝑀; 𝐵2] Let 𝑂 ≤ 𝑎 < 1(𝑟𝑒𝑠𝑝. 𝑂 < 𝑎 ≤ 1).  



An 𝐹-closed 𝐹-continuous function 𝑓 from a fuzzy topological space 𝑋 to 

a fuzzy topological space 𝑌 is said to be 𝛼-perfect (𝑟𝑒𝑠𝑝. 𝛼∗-perfect) 

ifand only 𝑓−1(𝑦) is 𝛼∗-compact (𝑟𝑒𝑠𝑝. 𝛼∗-compact) for each 𝑦 ∈ 𝑌. 

 

2.3.6. Definition 

A class 𝑲 of fuzzy topological spaces is said to be 𝛼-perfect if 

𝑋 ∈ 𝐾 IS equivalent to 𝑌 ∈ 𝐾, provided that there exists an 𝛼-perfect map 

from 𝑋 onto 𝑌.  

From Theorems 2.4.1, 2.4.2, 2.4.3 and 2.4.4 next theorems follow 

immediately.  

 

2.3.7 Theorem 

Let 𝑲 be an 𝛼-perfect class .of fuzzy topological spaces and if 

there is an 𝛼-perfect map from 𝑋 on to 𝑌, then  

 (i) If Player I has a fuzzy winning strategy in  𝐺∗(𝐾 , 𝑋).then he has the 

same in 𝐺∗(𝑲𝟐, 𝑌).  

 (ii) If Player II has a fuzzy winning strategy in  𝐺∗(𝐾 , 𝑋).then he has the 

same in 𝐺∗(𝐾 , 𝑌). 
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