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Introduction

Let M be an R-module. Asubmodule A of an R-module M is said to be essential in M ( denoted
by A < «M) if AN W= (0) for every non-zero submodule W of M equivalenty A < (M if
whenever AN W= 0, W<M then W= 0. Asubmodule A of an R-module M is said to be
small in M if Whenever N+W=M ,W submodule of M implies W=M.

The socal of an R-module M is denoted by Soc(M) and defined as the sum of the simple
submodules of M. If M has no simple submodule then we set Soc(M) =0 . Let M be a right R-
module The Jocobson radical of M denoted by J(M)

And defined as the intersection of all maximal Submodules of M . If M has no maximal
Submodules then we set J(M)=M . let M and N be modules over ring R. A function

f: M ——> N is an R-module homomorphism if f (m+ n) = f(m) + f(n) and f (rm ) = rf (m) for
allmm €M andr € R.

This work consists of two chapters . In chapter one we deal with certain know result which is
useful throught this work .In chapter two we study e- small and s- Essential submodules . Let
N be a submodule of a module M . N is said to be e- samall in M if N+L=M, When L<
implies L=M. And Let N be a submodule of a module M. N is said to be e- small in M if N N
L=0, When LK implies L=0. and some properties about it .Let N be a submodule of a
module M . Also who show that N <M if and only if X+N = M, then X is a direct summand
of M with M/X a semisimple module.As well as explain us who close tha notion of s- Essential
submodules at to then of Essential submodule in addition. We use the concepts of e-small

and s-essential submodules to characterize some properties of homomorphisms.



Let 0/~ K <M be a module. Then K =s M if and only if for each 0/~ x € M, if Rx << M, then
there is an element r € R such that 0 #rx € K. Let N be a module and N,K,L are submodules
of M with K € N. I[f N < M, then K <. M and N/K <. M/K., N+ L «<e M if and only if
N Kes M and L K MLIFK < M and £: M — N is a homomorphism, then f(K) < N.

1If K < M € N, then K < N.
Assume that K, €M, EM, K, EM, EMand M =M, @ M,, then K; @ K, K. M; &M, if
and only if K| < M| and K, <5 M.

Let M be a module. Then Rad.(M)=P { NS M | N K5 M}. Soc(M)=N{L<M|L Ss M}.
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Essential and Small submodules :-

Definition ( 1.1)[5] :- A submodul A of an R-module M is said to be essential in M (denoted
by A <, M), it ANW # (0) for every non-zero submodul W of M.Equivalently A <,;; M

if wheneverANW =0,W < M then W = 0."
Example (1.2):- Find an essential in Z;,

Solution/
M=Z,,

<0>={0}
<2>={0,2,4,6,8,10}
<3>={0,3,6,9}
<4>={0,4,8}
<6>={0,6}
<12>={0,12,2,3,4,5,6,7,8,9,10,11}
<0> N<2> =0, <0> N <3> =0, <O>N<4> =0 , <0> N<6> =0

<0>={0} is X ess
<2>N<0>=0

<2> N<3>={0,6}
<2>N<4>={0,4,8}
<2> N<6>={0,6}

<2>N<12>=1{0,2,4,6,8,10}



<2>18 < g
<3>N<0> =0
<3>N<2>={0,6}
<3>N<4>={0}
<3> 8K ess
< 4> N<0> =0 < 4> N<3>={0} <4> N<2>={0,4,8}

<4>1s ﬁ\ ess

<6>N<0>=0 <4>N<3>={0,6} <6>N<2>={0,6} <6>N<4>={0}

<6> 1s g ess
<12>N <0>=0 <12>N<2>=1{0,2,4,6,8,10} <12>N <3>={0,3,6,9}
<12>N <4>={0,4,8} <12>N <6>={0,6} <12>N <12>=Z,

<1258 X o

Definition (1.3) [5] :- Let N be a submodule of module M

N is said small in M if whenever M = N + W , W submodul of M implies

W =M.

For example ,<2> is a small in M, where M = Z,.



Definition (1.4)[5]:- Let A is submodule of module M A is direct summand of M and

denoted by A@GB=M if M = A + B and ANB=0.

Definition (1.5) [5]: - Let M be an R-module N, A is called Semisimple if A<M  then

AcCOM
Definition ( 1.6) [S] :- for R-modules N and A. N is said to be A- projective, if every
submodule X of A, any homomorphism @: N +— % can be lifted to a homorphism, Y: N +— 4,

thatisif m: 4 +— %v be the-natural epiomorphism, then there exists a homorphism : N +— A

A———> A/X
such that w o Y = Q. T

M is called projective if M is N-projective for every R-module N. If M is M-projective, M is

called self-projective”.
For examples:

(1)Z as Z-module is projective.
(2) Z, as Z-module is self-projective.

Zpw as Z- module is Z-projective.

Definition (1.7) [5] : The socal of a an R-module M is denoted by Soc(M) and defined as

the sum of the simple submodules of M. If M has no simple submodule then we set Soc(M)=0.



For examples :
(I)Soc(Zz) = 0;
(2)Soc(Z6)= Zs;
(3)Soc(Z,) =< 2 >.

Definition ( 1.8) [S] :- Let M be a right R-module . The Jocobson radical of M denoted

by J(M) and defined as the intersection of all maximal submodules of M. If M has no maximal

submodule, then we set J(M) = M.
For examples :
(1) JZz) = 0;
(2)1(Z¢) = 0;
(3)J(Qz) = Qz;

@) J(Z,) =< 2 >.

Definition (1.9) [5] :- Let M and N be modules over ring R. A function f: M — N is an
R-module homomorphism if f(m +n) = f(m) + f(n) and f(rm) = rf(m) forall myne M

and r € R.
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e-Small and s-Essential Submodules:-

All result of this chapter from [14]

Definition (2.1) :- Let N be a submodule of a module M.

N is said to be e- samall in M if N+L=M, When LK implies L=M

Example(2.2) :- find an e-small in Zy,
N={0,4,8,12,16,20} L={0,2,4,6,8,10,12,14,16,18,20,22}
Solution/
N is e-small of M

Since L essential of M L+N=M

Definition ( 2.3) :- Let N be a submodule of a module M.

N is said to be e- small in M if N N L=0, When L& implies L=0

Example (2.4) :- find a s- essential in Z;
L={0,2,4} N={0,3}

N is e-small of M

KNN =0 ,KKN

Proposition 2.5 -: Let N be a submodule of a module M. The following are equivalent.
(1) N KeseM;

(2) if X+N =M, then X is a direct summand of M with M/X a semisimple module.



Proof :
(1) = (2). Let Y be a complement of X in M, then X @ Y <ess M. Since

X+ Y+ N=M and N < M, it follows that X @ Y = M. To see that M/X =Y is semisimple,
let A be a submodule of Y . Then X + A + N = M. Arguing as above with X + A replacing X,
we have that X + A = X @ A is a direct summand of M, implying that A is a direct summand

of Y , so M/X is semisimple.

(2) = (1). Let K <essM and K + N = M, then K is a direct summand of M, so K=M. We

have N < M. In particular if M is a projective module, then every e-small submodule N

of M
The next proposition, which will be used frequently, explains how close the notion of s-
essential submodules is to that of essential submodules.

Proposition 2.6:- Let 0#K <M be a module. Then K Ss M if and only if

for each 0 #x € M, if Rx <« M, then there is an element r € R such that 0#rx € K.
Proof. -:

Let K be a submodule of M and K Ss M. For each 0#£x € M, if Rx < M, then Rx#0 and K N

Rx # 0. Thus there 1s an element r € R such that 0#rx € K.

(<) Suppose L is a small submodule of M and 0#x € L. We have Rx << M, hence there exists

an element r € R such that 0#rx € KNL. That is, KSQs M.

10



Proposition 2.7. Let M be a module.

(1) Assume that N,K,L are submodules of M with K € N.

(2) If N Kes M, then K Kess M and N/K Kegs M/K.

(b) N+ L «e M if and only if N <« M and L < M.

(2) f K Ks M and f: M — N is a homomorphism, then f(K) < N.
In particular

1If K< M € N, then K < N.

(3) Assume that K€M, €M, K, €M, €M and M =M, @ M,, then
K; ® K; K.s M; @M, if and only if K; <. M; and K; K5 M.
Proof:-

(1) (a) Suppose that L<essM and L+K = M, then N+L = M, thusL = M for N <, M, s0 K < M
If L <M with L/K <ess M/K and L/K +N/K = M/K, then N+ L = M and L<ess M.
Hence L =M and L/K = M/K. Therefore N/K <. M/K.

(b) The necessity follows immediately from (a). Conversely, suppose K <ess M with
N+ L +K =M, then L +K =M since L +K <ssM and N «<e M. Whence K = M for
K <essM and L K M.
(2) Suppose that A<ess N and A+(K) = N. Then f«—(A) <ess M, and f«—(A)+K =M
Since K K M, we have f«—(A) = M. Thus f(K) € A and A = N. So f(K) < N.

(3) Immediate from (1) and (2).

11



It is proved in [13, Lemma 1.3] that if K << M and N/K « M/K, then N < M.
The following example shows that the converse of Proposition 2.5 (a) is false.
Example 2.8. Assume that R =Z, M = Z,4 K = 6Z,4 and N = 3Z,4. Then K << M and
N/K <. M/K. But N i1s not e-small in M.
Dually, we have the following conclusions on s-essential submodules.
Proposition 2.9.Let M be a module.
(1) Assume that N,K,L are submodules of M with K € N.
(a) f KSs M, then K =2s N and N s M.
(b) NN LSsMifand only if N s M and L Ss M.
2)If KSs Nand f: M — N is a homomorphism, then f«—(K) Ss M.
(3) Assume that KI€EM; €E M, K, €M, S M and M =M, @ M,, then
K; ® K, s M, @M, if and only if K; s M1 and K, Ss M,.
The converse of Proposition 2.7 (1)(a) is not true

Example 2.10. Let R = Z, M = Z34, N = 6Z3¢ and K = 18Z;5. Then K s N, N s M. But K is

not s-essential in M.
The socle and radical of a module are important in the study of modules and rings. In [13], the
radical of a module M is generalized as follows
M) =N{ K<M | M/K is singular and simple}.
Furthermore, we have

Definition 2.11. Let M be a module. Define

Rad. (M) =N{ N <essM | N is maximal in M },

12



And

Socy(M) =X{ N K M | N is minimal in M }.
Obviously,

Socy(M) € Rad(M) € (M) € Rad.(M)
and

Socy(M) € Soc(M) € Rad.(M).
In the following we use e-small submodules and s-essential submodules to characterize
Rad.(M) and Socy(M).
Theorem 2.10:- Let M be a module. Then

(1)Rad.(M)=P { NS M | N <, M}.

(2) Soc(M)=N{L<M| L 3s M}.
Proof. (1). Let U=P { N € M | N <, M}. Suppose that L. <. M and K <ess M is maximal in
M, hence L < K. Otherwise, we have K + L = M. But L <. M, hence K=M, a
contradiction. It follows that U € Rad.(M). On the other hand, for x € Rad.(M) suppose that
RXx is not e-small in M.
Set

I'={B|B#M,B <es M and R, + B=M}.

Clearly, I' is a non-empty subposet of the lattice of submodules of M. By the
Maximal Principle, I" has a maximal element, say By. Now we claim that By is
maximal in M. Otherwise, there is a submodule C of M such that By & C & M,

thus

13



Ri,+C2R,+By=M

and C <essM, hence C € I', which contradicts the maximality of By. So By is maximal in M and
By <ess M. Thus x € Rad. (M) € B, and R, € B,.
Since R, + By = M, it follows that B, = M, a contradiction. So R, <. M, hence
Rad.(M) € U. Therefore

Rad.(M) = { NCS M | N s M}.
(2). Let S=N { L<M | L Ss M}. Suppose that L Ss M and K « M is minimal inM, then
K < L. Otherwise, KNL = 0, hence K = 0, a contradiction. So Soc(M) € S. Note that S ESoc(M),
thus Socy(M) and S are semisimple
modules. If S " Socy(M), there is a simple module T such that T <S and T is not small in M.
Let K be a proper submodule such that K+ T = M.
(@) If K N T #0, then T € K, hence K= M, a contradiction.
OGIEKNT=0,then M=K @ T .Forcach H<M, if H <« M and KNH = 0, then H+K is a
proper submodule of M and H = (H + K)/K is a submodule ofM/K, where M/K =T is a

simple module. Thus H= 0. Then K s M, that is, T € S € K, a contradiction.

Thus T <« M, a contradiction. Therefore S = gcs(M).
Corollary 2.12. Let M and N be modules.
(1) If f : M — N is an R—homomorphism, then f(Rad.(M)) € Rad.(N). In particular, Rade(M)

is a fully invariant submodule of M.

14



(2) If every proper essential submodule of M is contained in a maximal submodule of M, then

Rad.(M) is the unique largest e-small submodule of M.

Proof.

(1) By Proposition 2.7 and Proposition 2.12.

(2) For each essential submodule K of M, if K # M, there is a maximal submodule L. of M such
that K € L, then L<ess M. By the definition of Rad.(M), Rad.(M) € L.

So Rad,(M) + K € L & M. Thus Rad.(M) < M.

Dually, we have

Corollary 2.13. Let M and N be modules. Then

(1) If £ : M — N 1s an R—~homomorphism, then f(Socy(M)) € Socy(N). Therefore,

Socs(M) is a fully invariant submodules of M.

(2) If M = @ni=1Mi, then Socy(M) =@n i=1Socy(Mi).

(3) If every non-zero small submodule of M contains a minimal submodule of M, then

Socy(M) is the unique least s-essential submodule of M.

15



Example 2.14. Let R=7Z, M = Z,, and N < M. All submodules of M have the following

properties.
N<M Small e-small essential s-essential

Loy X X v v

274 X Vv v Vv

3704 X X X V

AL X v v v

674 Vv Vv x Vv

874 X v X X

1274 vV v X v

0 v v x x

According to the above chart, we have

(1) Rad(M) = 6224, Rade(M) = 2224, SOC(M) = 4Zz4 and SOCS(M) =12224

(2) Soc,(M) & Rad(M) & Rad.(M) and Soc(M) & Soc(M) & Rad.(M

16




E-small and s-essential homomorphisms
Definition 2.15. Let M and N be modules.
(1) An epimorphism g : M — N is e-small in case Kerg < M.

(2) A monomorphism f: M — N is s-essential in case Imf <s M.

In the following, we give a useful characterization of e-small homomorphisms

and s-essential homomorphisms.

Proposition 2.16. Let M and N be modules.

(1) An epimorphism g : M — N is e-small if and only if for each essential monomorphism h, if
gh is epic, then h is epic.
(2) A monomorphism f: M — N is s-essential if and only if for each small

epimorphism h, if hf is monic, then h is monic.

Proof.

(1) Let g : M — N be an epimorphism and K = Kerg. Then there is a

unique isomorphism v : M/K — N, such that vt = g where m: M — M/K.

Thus it follows that for each homomorphism h, vith = gh is epic if and only ifrh is epic.

(=) If g is e-small, then K <, M. Since nth is epic, we have Im h+K = M.

17



Note that h is an essential monomorphism, hence Imh<ess M, thus Imh = M. So
h is epic.

(&) Let L be an essential submodule of M. Let iL : L — M be the inclusion.
Then i L is essential. If K + L = M, then wiL is epic. By hypothesis, i L is epic,
that is, L = M. So K < M, hence g is e-small.

(2) Dual to (1).

Proposition 2.17. Suppose that the following diagram of modules and homomorphisms

1s commutative and has exact rows.

0 A B C 0
« .'#l ”fJ
j‘l yl
0 A B C’ 0

(1) If o is epic and g is e-small, then g’ is e-small.

2)If v 1s monic and f" is s-essential, then f is s-essenti
i

18



Proof.

(1) Assume that g is e-small, then Kerg «<e B and B(Kerg) <. B'. It suffices to show

Kerg’ < B(Kerg). Let b’ € Kerg'. Since the bottom row is exact, there is an element a € A with
a(a) =b’. Since the diagram commutes

and the top row is exact, b’ = f'a(a) = Bf(a) and gf(a) = 0. Thus there is a

f(a) € Kerg such that B(f(a)) =b’. So b’ € B(Kerg), hence Kerg' <., B'.

(2)Dual to (1).

Corollary 2.19. Consider the following diagram

A B
f'zl lﬂz
L D

]
%

—_—
.'.“i 1

(1) Assume that the diagram is a pullback of B, and B,. If B; is a s-essential

monomorphism, so is a.

(2) Assume that the diagram is a pushout of a;and o,. If a;is an e-small

epimorphism, so is B;.

19



Proof.
(1) Assume that the diagram is a pullback of B; and B, with B; a s-essential
monomorphism. Then we have a full commutative diagram with exact rows by

[7, Proposition 5.1].

0 A B L 0
1
0 C—>D—>1 0
B1

By Proposition 3.3, a; 1s a s-essential monomorphism.

(2) Dual to (1).

Let R and S be two rings, if F : Mod—R — Mod—S define a Morita equivalence,by Proposition
3.2 we note that f: M — N is e-small (resp., s-essential)

if and only if F(f) : F(M) — F(N) is e-small (resp., s-essential).

For two rings R and S, a bimodule SUR is said to define a Morita duality,

if sUg is a faithfully balanced bimodule such that SU and UR are injective
cogenerators. A presentation of Morita duality can be found in [2, §23, §24] and
Small-Essential Submodules and Morita Duality 1059

[11]. If M is a right R-module (left S-module), we let M* = SHomR(M,U) (=
HomS(M,U)R), andM is said to be U-reflexive if the evaluation homomorphism
eM : M — M** is an isomorphism. According to [2], let Rg[U] and Sg[U]

denote the class of all U-reflexive right R-modules and that of all U-reflexive left

20



S-modules, respectively.

Theorem 2.20. Assume that sUrdefines a Morita duality and f: M — N. If M,N are
U-reflexive, then

(1) fis an e-small epimorphism if and only if f* : N* — M~ is a s-essential
monomorphism.

(2) fis a s-essential monomorphism if and only if f* : N* — M* is an e-small epimorphism.

Proof. (1) Let f: M — N be an e-small epimorphism, then f* : N* — M~ is
monic by [2, Corollary 24.2]. We claim that f* is a s-essential monomorphism.
Suppose that h : M* — H is such that hf* is a monomorphism and h is

a small epimorphism, then (hf*)* = f**h* is an epimorphism and h* is an
essential monomorphism. Since MR and NR are U-reflexive, the evaluation
homomorphisms oM : M — M** and oN : N — N** are isomorphisms, that is,

the following diagram commutes:

f

M———N

oM l lg;\r
f**

M** ——= N**

Since fis an e-small epimorphism, f** is an e-small epimorphism. By Proposition
3.2, h* is epic. By [2, Corollary 24.2] h is monic. Therefore f* is a s-essential
monomorphism by Proposition 3.2.

Conversely, let f* : N* — M* be a s-essential monomorphism. By [2, Corollary

21



24.2],f: M — N is an epimorphism. We shall prove that f is e-small.

Suppose that h : H — M is an essential monomorphism such that fh is

epimorphic, then (fh)* = h*f* is monic and h* is a small epimorphism. By
Proposition 3.2, h* is monomorphism. By [2, Corollary 24.2], h is an epimorphism.
So f'is an e-small epimorphism by Proposition 3.2.

Dually, (2) can be proved.

22
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