And Scientific Research
Al-Qadisiyah University

College of Education
Department of Mathematics

S- Essential and e-small submodules

A research

Submitted to the College of Education, University of Al-Qadisiya in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science in mathematics.

By

Ameer Ali

Supervised by
Farhan Dakhil Shyaa

صدق الله العلي العظيم
سورة النمل (40)

الشكر و الاهداء

إلى كل من علمني علما نافعا ولو حرفا, إلى كل من أنار لي الطريق إلى النجاح إلى من ارشدني وعلمني أنقتم بالثكر والعرفان الجزيل, للأستاذ /فرحان داخل الآي افادنا من علمه ممـا سـاعدنا فـي اعداد هذا المشـرو ع واخراجـه بهذه الصـوره اللتي اجتهـنا ان تكون بافضـل صـورة قدر المستطاع....... والثكر ايضـا الى كل من يقر أ هذا البحث بغرض الاطـالع والاستفادة منـهومن ثم المقدرة على التحديث والتطوير والوصول الـى اللفـل بـإذن الله والثكر الجزيل والامتــان الكبير الى الأب الغلي والأم الغالية فهما اعز النعم التي انعم الهه بها علينا فما كان لنا سندا وعونا لإعداد هذا البحث من خلال توفير الجو الملائم للار اسة والاستذكار . و لابد لنا ونحن نخطو خطواتتا الاخيرة في الحياة الجامعية من وففه نعود إلى الاعوام قضيناها في رحاب الجامعة مع أساتذتنا الكرام الذين قدموا لنا الكثير بـاذلين بذاللك جهودا كبيرة في بنـاء جيل الغد لتبعث ألامـة مـن جديدوفبـل أن نمضـي تقـم أسمـى آيـات الشكر و الامتتـان والنقدير والمحبةإلى الذين حملوا أقس رسالة في الحياة ...الى جميع أسـاتنتنا الافاضل.. الذين مهووا لنـا طريق العلم والمعرفة.

الاهداء

إلى اليد الطاهرة التي أز الت من أمامنا أثشواك الطريق
ورسمت المستقبل بخطوط من الامل والثقة

إلى الذي لا تفيه الكلمات و الثكر و العرفان بالجميل أبي الحبيب
إلى من ركع العطاء أمام قدميها
وأعطتنا من دمها وروحها و عمر ها حبا وتصميما
ودفعا لغٍد أجمل
إلى الغالية التي التي نرى الامل من عينيها أمي الحبيبة
إلى أز هار النرجس التي تفيض حباً وطفولةً ونقاءء
وعطر اً
إلى من أخذ بيدي ... ورسم الاملفي كل خطوة مثيتها
إلى أصدقائي الذين تسكن صور هم وأصو اتهم الاجمل في شكري الجزيل وامتناني

CONTANTES

NO	Subject	page
1	Introduction	1
2	Chapter one	3
3	Chapter two	
4	References	8

Introduction

Let M be an R -module. Asubmodule A of an R -module M is said to be essential in M (denoted by $\left.\mathrm{A} \leq{ }_{\text {ess }} \mathrm{M}\right)$ if $\mathrm{A} \cap \mathrm{W} \neq(0)$ for every non-zero submodule W of M equivalenty $\mathrm{A} \leq{ }_{\text {ess }} \mathrm{M}$ if whenever $\mathrm{A} \cap \mathrm{W}=0, \mathrm{~W} \leq \mathrm{M}$ then $\mathrm{W}=0$. Asubmodule A of an R -module M is said to be small in M if Whenever $\mathrm{N}+\mathrm{W}=\mathrm{M}$, W submodule of M implies $\mathrm{W}=\mathrm{M}$.

The socal of an R-module M is denoted by $\operatorname{Soc}(\mathrm{M})$ and defined as the sum of the simple submodules of M. If M has no simple submodule then we set $\operatorname{Soc}(M)=0$. Let M be a right $R-$ module The Jocobson radical of M denoted by $\mathrm{J}(\mathrm{M})$

And defined as the intersection of all maximal Submodules of M. If M has no maximal Submodules then we set $\mathrm{J}(\mathrm{M})=\mathrm{M}$. let M and N be modules over ring R. A function $\mathrm{f}: \mathrm{M} \longrightarrow \mathrm{N}$ is an R-module homomorphism if $\mathrm{f}(\mathrm{m}+\mathrm{n})=\mathrm{f}(\mathrm{m})+\mathrm{f}(\mathrm{n})$ and $\mathrm{f}(\mathrm{rm})=\mathrm{rf}(\mathrm{m})$ for all $m, n \in M$ and $r \in R$.

This work consists of two chapters. In chapter one we deal with certain know result which is useful throught this work. In chapter two we study e-small and s- Essential submodules . Let N be a submodule of a module $\mathrm{M} . \mathrm{N}$ is said to be e- samall in M if $\mathrm{N}+\mathrm{L}=\mathrm{M}$, When $\mathrm{L} \ll_{\text {ess }}$ implies $L=M$. And Let N be a submodule of a module M. N is said to be e- small in M if $N \cap$ $\mathrm{L}=0$, When $\mathrm{L} \ll_{\text {ess }}$ implies $\mathrm{L}=0$. and some properties about it .Let N be a submodule of a module M. Also who show that $N \lll<$ ess M if and only if $X+N=M$, then X is a direct summand of M with M / X a semisimple module.As well as explain us who close tha notion of s - Essential submodules at to then of Essential submodule in addition. We use the concepts of e-small and s-essential submodules to characterize some properties of homomorphisms.

Let $0 /=K \leq M$ be a module. Then $K \unlhd_{s} M$ if and only if for each $0 /=x \in M$, if $R x \ll M$, then there is an element $\mathrm{r} \in \mathrm{R}$ such that $0 \neq \mathrm{rx} \in \mathrm{K}$. Let N be a module and $\mathrm{N}, \mathrm{K}, \mathrm{L}$ are submodules of M with $K \subseteq N$. If $N \lll$ ess M, then $K \lll$ ess M and $N / K \lll<$ ess $M / K ., N+L \ll e M$ if and only if $N \lll<$ ess M and $L \lll$ ess M.,If $K \lll<$ ess M and $f: M \rightarrow N$ is a homomorphism, then $f(K) \lll \ll$ ess N. if $K \lll \ll$ ess $M \subseteq N$, then $K \lll \ll$ ess N.

Assume that $\mathrm{K}_{1} \subseteq \mathrm{M}_{1} \subseteq \mathrm{M}, \mathrm{K}_{2} \subseteq \mathrm{M}_{2} \subseteq \mathrm{M}$ and $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$, then $\mathrm{K}_{1} \oplus \mathrm{~K}_{2} \lll{ }_{\text {ess }} \mathrm{M}_{1} \oplus \mathrm{M}_{2}$ if and only if $\mathrm{K}_{1} \lll$ ess M_{1} and $\mathrm{K}_{2} \lll$ ess M_{2}.

Chapter

One

Preliminarie

Essential and Small submodules :-

Definition (1.1)[5] :- A submodul A of an R-module M is said to be essential in M (denoted by $\left.A \leq_{\text {ess }} M\right)$, if $A \cap W \neq(0)$ for every non-zero submodul W of M. Equivalently $A \leq_{\text {ess }} M$ if whenever $A \cap W=0, W \leq M$ then $W=0 . "$

Example (1.2):- Find an essential in Z_{12}
Solution/

$$
\mathrm{M}=\mathrm{Z}_{12}
$$

$<0>=\{0\}$
$<2>=\{0,2,4,6,8,10\}$
$<3>=\{0,3,6,9\}$
$<4>=\{0,4,8\}$
$<6>=\{0,6\}$
$<12>=\{0,12,2,3,4,5,6,7,8,9,10,11\}$
$<0>\cap<2>=0,<0>\cap<3>=0,<0>\cap<4>=0,<0>\cap<6>=0$

$$
<0>=\{0\} \text { is } \nsucceq \text { ess }
$$

$<2>\cap<0>=0$

$$
\begin{aligned}
& <2>\cap<3>=\{0,6\} \\
& <2>\cap<4>=\{0,4,8\} \\
& <2>\cap<6>=\{0,6\} \\
& <2>\cap<12>=\{0,2,4,6,8,10\}
\end{aligned}
$$

$$
<2>\text { is } \leq \text { ess }
$$

$$
\begin{aligned}
& <3>\cap<0>=0 \\
& <3>\cap<2>=\{0,6\} \\
& <3>\cap<4>=\{0\} \\
& <3>\text { is } \Varangle \text { ess } \\
& <4>\cap<0>=0 \quad<4>\cap<3>=\{0\} \quad<4>\cap<2>=\{0,4,8\} \\
& <4>\text { is } \Varangle \text { ess } \\
& <6>\cap<0>=0 \quad<4>\cap<3>=\{0,6\} \quad<6>\cap<2>=\{0,6\} \quad<6>\cap<4>=\{0\} \\
& <6>\text { is } \nmid \text { ess } \\
& <12>\cap<0>=0 \quad<12>\cap<2>=\{0,2,4,6,8,10\} \quad<12>\cap<3>=\{0,3,6,9\} \\
& <12>\cap<4>=\{0,4,8\} \quad<12>\cap<6>=\{0,6\} \quad<12>\cap<12>=\mathrm{Z}_{12} \\
& <12>\text { is } ذ_{\text {ess }}
\end{aligned}
$$

Definition (1.3) [5] :- Let N be a submodule of module M

N is said small in M if whenever $\mathrm{M}=\mathrm{N}+\mathrm{W}, W$ submodul of M implies $W=\mathrm{M}$.

For example,$<2>$ is a small in M, where $M=\mathrm{Z}_{4}$.

Definition (1.4)[5]:- Let A is submodule of module M A is direct summand of M and denoted by $\mathrm{A} \oplus \mathrm{B}=\mathrm{M}$ if $M=A+B$ and $\mathrm{A} \cap \mathrm{B}=0$.

Definition (1.5) [5]: - Let M be an R-module N, A is called Semisimple if $\mathrm{A} \leq \mathrm{M}$ then $\mathrm{A} \subseteq \oplus \mathrm{M}$

Definition (1.6) [5] :- for R-modules N and $A . N$ is said to be A-projective, if every submodule X of A, any homomorphism $\emptyset: N \mapsto \frac{A}{X}$ can be lifted to a homorphism, $\psi: N \mapsto A$, that is if $\pi: A \mapsto \frac{A}{X}$, be the-natural epiomorphism, then there exists a homorphism $\psi: N \mapsto A$
such that $\pi \circ \psi=\emptyset$.

M is called projective if M is N-projective for every R-module N. If M is M-projective, M is called self-projective".

For examples:
(1) Z as Z-module is projective.
(2) Z_{2} as Z-module is self-projective.
$Z_{P} \infty$ as Z - module is Z-projective.

Definition (1.7) [5] : The socal of a an R-module M is denoted by $\operatorname{Soc}(M)$ and defined as the sum of the simple submodules of M. If M has no simple submodule then we $\operatorname{set} \operatorname{Soc}(M)=0$.

For examples :
(1) $\operatorname{Soc}\left(Z_{Z}\right)=0$;
(2) $\operatorname{Soc}\left(Z_{6}\right)=Z_{6}$;
(3) $\operatorname{Soc}\left(Z_{4}\right)=\langle 2\rangle$.

Definition (1.8) [5] :- Let M be a right R-module. The Jocobson radical of M denoted by $\mathrm{J}(M)$ and defined as the intersection of all maximal submodules of M. If M has no maximal submodule, then we $\operatorname{set} \mathrm{J}(M)=M$.

For examples :
(1) $\mathrm{J}\left(Z_{Z}\right)=0$;
(2) $\mathrm{J}\left(Z_{6}\right)=0$;
(3) $\mathrm{J}\left(Q_{Z}\right)=Q_{Z}$;
(4) $\mathrm{J}\left(Z_{4}\right)=\langle 2>$.

Definition (1.9) [5] :- Let M and N be modules over ring R. A function $f: M \mapsto N$ is an R-module homomorphism if $f(m+n)=f(m)+f(n)$ and $f(r m)=r f(m)$ for all $m, n \in M$ and $r \in R$.

Chapter

Two

e-smallands-essential submodul

e-Small and s-Essential Submodules:-

All result of this chapter from [14]

Definition (2.1) :- Let N be a submodule of a module M .
N is said to be e- samall in M if $\mathbf{N}+\mathbf{L}=\mathbf{M}$, When $\mathbf{L} \ll_{\text {ess }}$ implies $\mathbf{L}=\mathbf{M}$
Example(2.2) :- find an e-small in Z_{24}

$$
\mathbf{N}=\{0,4,8,12,16,20\}
$$

$$
\mathbf{L}=\{0,2,4,6,8,10,12,14,16,18,20,22\}
$$

Solution/

\mathbf{N} is \mathbf{e}-small of \mathbf{M}

Since \mathbf{L} essential of $\mathbf{M} \mathbf{L}+\mathbf{N}=\mathbf{M}$

Definition (2.3) :- Let N be a submodule of a module M .
\mathbf{N} is said to be \mathbf{e} - small in \mathbf{M} if $\mathbf{N} \cap \mathbf{L}=\mathbf{0}$, When $\mathbf{L} \ll_{\text {ess }}$ implies $\mathbf{L}=\mathbf{0}$
Example (2.4) :- find a \mathbf{s} - essential in \mathbf{Z}_{6}

$$
\mathrm{L}=\{0,2,4\} \quad \mathrm{N}=\{0,3\}
$$

\mathbf{N} is \mathbf{e}-small of \mathbf{M}
$\mathbf{K} \cap \mathbf{N}=\mathbf{0}, \mathbf{K} \ll \mathbf{N}$

Proposition 2.5 -: Let N be a submodule of a module M . The following are equivalent.
(1) $\mathrm{N} \ll_{\text {ess }} \mathrm{M}$;
(2) if $X+N=M$, then X is a direct summand of M with M / X a semisimple module.

Proof :

(1) \Rightarrow (2). Let \mathbf{Y} be a complement of \mathbf{X} in \mathbf{M}, then $\mathbf{X} \oplus \mathbf{Y} \leq_{\text {ess }} \mathbf{M}$. Since
$\mathbf{X}+\mathbf{Y}+\mathbf{N}=\mathbf{M}$ and $\mathbf{N}<_{\text {ess }} \mathbf{M}$, it follows that $\mathbf{X} \oplus \mathbf{Y}=\mathbf{M}$. To see that $\mathbf{M} / \mathbf{X} \cong \mathbf{Y}$ is semisimple, let A be a submodule of Y . Then $\mathrm{X}+\mathrm{A}+\mathrm{N}=\mathrm{M}$. Arguing as above with $\mathrm{X}+\mathrm{A}$ replacing \mathbf{X}, we have that $\mathbf{X}+\mathbf{A}=\mathbf{X} \oplus \mathrm{A}$ is a direct summand of \mathbf{M}, implying that \mathbf{A} is a direct summand of \mathbf{Y}, so \mathbf{M} / \mathbf{X} is semisimple.
(2) $\Rightarrow \mathbf{(1)}$. Let $\mathbf{K} \leq_{\text {ess }} \mathbf{M}$ and $\mathbf{K}+\mathbf{N}=\mathbf{M}$, then K is a direct summand of \mathbf{M}, so $\mathbf{K}=\mathbf{M}$. We have $\mathbf{N} \ll_{\text {ess }} \mathbf{M}$. In particular if \mathbf{M} is a projective module, then every e-small submodule N of M

The next proposition, which will be used frequently, explains how close the notion of sessential submodules is to that of essential submodules.

Proposition 2.6:- Let $\mathbf{0} \neq \mathbf{K} \leq \mathbf{M}$ be a module. Then $\mathbf{K} \leq s \mathbf{M}$ if and only if for each $\mathbf{0} \neq \mathbf{x} \in \mathbf{M}$, if $\mathbf{R x} \ll \mathbf{M}$, then there is an element $\mathbf{r} \in \mathbf{R}$ such that $\mathbf{0} \neq \mathbf{r x} \in \mathbf{K}$.

Proof. -:

Let \mathbf{K} be a submodule of \mathbf{M} and $\mathbf{K} \unlhd s$. For each $\mathbf{0} \neq \mathbf{x} \in \mathbf{M}$, if $\mathbf{R x} \ll \mathbf{M}$, then $\mathbf{R x} \neq \mathbf{0}$ and $\mathbf{K} \cap$ $\mathbf{R x} \neq \mathbf{0}$. Thus there is an element $\mathbf{r} \in \mathbf{R}$ such that $\mathbf{0} \neq \mathbf{r x} \in \mathbf{K}$.
(\Leftarrow) Suppose \mathbf{L} is a small submodule of \mathbf{M} and $\mathbf{0} \neq \mathbf{x} \in \mathbf{L}$. We have $\mathbf{R x} \ll \mathbf{M}$, hence there exists an element $\mathbf{r} \in \mathbf{R}$ such that $\mathbf{0} \neq \mathbf{r x} \in \mathbf{K} \cap \mathbf{L}$. That is, $\mathbf{K} \boldsymbol{\Delta} \mathbf{s} \mathbf{M}$.

Proposition 2.7. Let \mathbf{M} be a module.
(1) Assume that $\mathbf{N}, \mathbf{K}, \mathbf{L}$ are submodules of \mathbf{M} with $\mathbf{K} \subseteq \mathbf{N}$.
(a) If $\mathbf{N}<_{\text {ess }} \mathbf{M}$, then $\mathbf{K}<_{\text {ess }} \mathbf{M}$ and $\mathbf{N} / \mathbf{K}<_{\text {ess }} \mathbf{M} / \mathbf{K}$.
(b) $\mathrm{N}+\mathrm{L} \ll \mathrm{e} \mathbf{M}$ if and only if $\mathbf{N} \ll_{\text {ess }} \mathbf{M}$ and $\mathbf{L}<_{\text {ess }} \mathbf{M}$.
(2) If $\mathbf{K}<_{\text {ess }} \mathbf{M}$ and $\mathbf{f}: \mathbf{M} \rightarrow \mathbf{N}$ is a homomorphism, then $\mathbf{f}(\mathbf{K})<_{\text {ess }} \mathbf{N}$.

In particular

 if $\mathbf{K} \lll<$ ess $\mathbf{M} \subseteq \mathbf{N}$, then $\mathbf{K} \ll_{\text {ess }} \mathbf{N}$.(3) Assume that $\mathbf{K}_{\mathbf{1}} \subseteq \mathbf{M}_{\mathbf{1}} \subseteq \mathbf{M}, \mathbf{K}_{\mathbf{2}} \subseteq \mathbf{M}_{\mathbf{2}} \subseteq \mathbf{M}$ and $\mathbf{M}=\mathbf{M}_{\mathbf{1}} \oplus \mathbf{M}_{\mathbf{2}}$, then $K_{1} \oplus K_{2}<_{\text {ess }} M_{1} \oplus M_{2}$ if and only if $K_{1}<_{\text {ess }} M_{1}$ and $K_{2} \lll$ ess M_{2}.

Proof:-

(1) (a) Suppose that $\mathbf{L} \mathbf{L e s s} \mathbf{M}$ and $\mathbf{L}+\mathbf{K}=\mathbf{M}$, then $\mathbf{N}+\mathbf{L}=\mathbf{M}$, thus $\mathbf{L}=\mathbf{M}$ for $\mathrm{N}<_{\text {ess }} \mathbf{M}$, so $\mathbf{K}<_{\text {ess }} \mathbf{M}$ If $\mathbf{L} \leq \mathbf{M}$ with $\mathbf{L} / \mathbf{K} \leq_{\text {ess }} \mathbf{M} / \mathbf{K}$ and $\mathbf{L} / \mathbf{K}+\mathbf{N} / \mathbf{K}=\mathbf{M} / \mathbf{K}$, then $\mathbf{N}+\mathbf{L}=\mathbf{M}$ and $\mathbf{L} \leq_{\text {ess }} \mathbf{M}$. Hence $\mathbf{L}=\mathbf{M}$ and $\mathbf{L} / \mathbf{K}=\mathbf{M} / \mathbf{K}$. Therefore $\mathbf{N} / \mathbf{K}<_{\text {ess }} \mathbf{M} / \mathbf{K}$.
(b) The necessity follows immediately from (a). Conversely, suppose $\mathbf{K} \leq_{\text {ess }} \mathbf{M}$ with $\mathbf{N}+\mathbf{L}+\mathbf{K}=\mathbf{M}$, then $\mathbf{L}+\mathbf{K}=\mathbf{M}$ since $\mathbf{L}+\mathbf{K} \leq_{\text {ess }} \mathbf{M}$ and $\mathbf{N} \ll \mathbf{e} \mathbf{M}$. Whence $\mathbf{K}=\mathbf{M}$ for $\mathbf{K} \leq_{\text {ess }} \mathbf{M}$ and $\mathbf{L} \lll{ }_{\text {ess }} \mathbf{M}$.
(2) Suppose that $\mathbf{A} \leq_{\text {ess }} \mathbf{N}$ and $\mathbf{A}+\mathbf{f}(\mathbf{K})=\mathbf{N}$. Then $\mathbf{f} \leftarrow(\mathbf{A}) \leq_{\text {ess }} \mathbf{M}$, and $\mathbf{f} \leftarrow \mathbf{(A)}+\mathrm{K}=\mathbf{M}$ Since $\mathbf{K}<_{\text {ess }} \mathbf{M}$, we have $\mathbf{f} \leftarrow(\mathbf{A})=\mathbf{M}$. Thus $\mathbf{f}(\mathbf{K}) \subseteq \mathbf{A}$ and $\mathbf{A}=\mathbf{N}$. So $\mathbf{f}(\mathbf{K})<_{\text {ess }} \mathbf{N}$.
(3) Immediate from (1) and (2).

It is proved in [13, Lemma 1.3] that if $K \ll M$ and $N / K \ll M / K$, then $N \ll M$.

The following example shows that the converse of Proposition 2.5 (a) is false.

Example 2.8. Assume that $R=\mathbb{Z}, M=\mathbb{Z}_{24} K=\mathbf{6}_{24}$ and $N=\mathbf{3} \mathbb{Z}_{24}$. Then $K \ll M$ and $\mathbf{N} / \mathbf{K}<_{\text {ess }} \mathbf{M} / \mathbf{K}$. But \mathbf{N} is not e-small in \mathbf{M}.

Dually, we have the following conclusions on s-essential submodules.

Proposition 2.9.Let \mathbf{M} be a module.
(1) Assume that $\mathbf{N}, \mathbf{K}, \mathbf{L}$ are submodules of \mathbf{M} with $\mathbf{K} \subseteq \mathbf{N}$.
(a) If $\mathbf{K} \unlhd \mathbf{s} \mathbf{M}$, then $\mathbf{K} \unlhd \mathbf{s} \mathbf{N}$ and $\mathbf{N} \unlhd \mathbf{s} \mathbf{M}$.
(b) $\mathbf{N} \cap \mathbf{L} \unlhd \mathbf{s} \mathbf{M}$ if and only if $\mathbf{N} \unlhd \mathbf{s} \mathbf{M}$ and $\mathbf{L} \unlhd \mathbf{s} \mathbf{M}$.
(2) If $\mathbf{K} \unlhd \mathbf{s} \mathbf{N}$ and $\mathbf{f}: \mathbf{M} \rightarrow \mathbf{N}$ is a homomorphism, then $\mathbf{f} \leftarrow(\mathbf{K}) \unlhd \mathbf{s} \mathbf{M}$.
(3) Assume that $\mathbf{K} \mathbf{1} \subseteq \mathbf{M}_{\mathbf{1}} \subseteq \mathbf{M}, \mathbf{K}_{\mathbf{2}} \subseteq \mathbf{M}_{\mathbf{2}} \subseteq \mathbf{M}$ and $\mathbf{M}=\mathbf{M}_{\mathbf{1}} \oplus \mathbf{M}_{\mathbf{2}}$, then
$\mathbf{K}_{\mathbf{1}} \oplus \mathbf{K}_{\mathbf{2}} \unlhd s \mathbf{M}_{\mathbf{1}} \oplus \mathbf{M}_{\mathbf{2}}$ if and only if $\mathbf{K}_{\mathbf{1}} \unlhd \mathbf{s} \mathbf{M} \mathbf{1}$ and $\mathbf{K}_{\mathbf{2}} \unlhd \mathbf{s} \mathbf{M}_{\mathbf{2}}$.
The converse of Proposition 2.7 (1)(a) is not true

Example 2.10. Let $R=\mathbb{Z}, \mathbf{M}=\mathbb{Z}_{36}, \mathbf{N}=\mathbf{6} \mathbb{Z}_{36}$ and $K=18 \mathbb{Z}_{36}$. Then $K \unlhd \mathbf{s} \mathbf{N}, \mathbf{N} \unlhd \mathbf{s} \mathbf{M}$. But K is not s-essential in \mathbf{M}.

The socle and radical of a module are important in the study of modules and rings. In [13], the radical of a module M is generalized as follows
$(\mathbf{M})=\cap\{\mathbf{K} \leq \mathbf{M} \mid \mathbf{M} / \mathbf{K}$ is singular and simple $\}$.
Furthermore, we have

Definition 2.11. Let M be a module. Define

$$
\operatorname{Rad}_{e}(M)=\cap\left\{N \leq_{\text {ess }} M \mid N \text { is maximal in } M\right\}
$$

And
$\operatorname{Soc}_{\mathbf{s}}(\mathbf{M})=\mathbf{X}\{\mathbf{N} \ll \mathbf{M} \mid \mathbf{N}$ is minimal in $\mathbf{M}\}$.

Obviously,

$\operatorname{Soc}_{\mathbf{s}}(\mathbf{M}) \subseteq \operatorname{Rad}(\mathbf{M}) \subseteq(\mathbf{M}) \subseteq \operatorname{Rad}_{\mathrm{e}}(\mathbf{M})$
and
$\operatorname{Soc}_{\mathrm{s}}(\mathbf{M}) \subseteq \operatorname{Soc}(\mathbf{M}) \subseteq \operatorname{Rad}_{\mathrm{e}}(\mathbf{M})$.
In the following we use e-small submodules and s-essential submodules to characterize $\operatorname{Rad}_{\mathrm{e}}(\mathbf{M})$ and $\operatorname{Soc}_{\mathbf{s}}(\mathbf{M})$.

Theorem 2.10:- Let \mathbf{M} be a module. Then
(1) $\operatorname{Rad}_{\mathrm{e}}(\mathbf{M})=\mathbf{P}\left\{\mathbf{N} \subseteq \mathbf{M} \mid \mathbf{N}<_{\text {ess }} \mathbf{M}\right\}$.
(2) $\operatorname{Soc}_{\mathrm{s}}(\mathbf{M})=\cap\{\mathbf{L} \leq \mathbf{M} \mid \mathbf{L} \leq \mathbf{s} \mathbf{M}\}$.

Proof. (1). Let $\mathbf{U}=\mathbf{P}\left\{\mathbf{N} \subseteq \mathbf{M} \mid \mathbf{N} \ll_{\text {ess }} \mathbf{M}\right\}$. Suppose that $\mathbf{L}<_{\text {ess }} \mathbf{M}$ and $\mathbf{K} \leq_{\text {ess }} \mathbf{M}$ is maximal in \mathbf{M}, hence $\mathbf{L} \leq \mathbf{K}$. Otherwise, we have $\mathbf{K}+\mathbf{L}=\mathbf{M}$. But $\mathbf{L}<_{\text {ess }} \mathbf{M}$, hence $\mathbf{K}=\mathbf{M}$, a contradiction. It follows that $\mathbf{U} \subseteq \operatorname{Rad}_{\mathbf{e}}(\mathbf{M})$. On the other hand, for $\mathbf{x} \in \operatorname{Rad}_{\mathbf{e}}(\mathbf{M})$ suppose that $\mathbf{R x}$ is not e-small in \mathbf{M}.

Set

$$
\Gamma=\left\{B \mid B \neq M, B \leq_{\text {ess }} M \text { and } R_{x}+B=M\right\} .
$$

Clearly, Γ is a non-empty subposet of the lattice of submodules of M. By the Maximal Principle, Γ has a maximal element, say B_{0}. Now we claim that B_{0} is maximal in M . Otherwise, there is a submodule C of M such that $\mathrm{B}_{0} \varsubsetneqq \mathrm{C} \varsubsetneqq \mathrm{M}$, thus

$$
\mathbf{R}_{\mathbf{x}}+\mathbf{C} \supseteq \mathbf{R}_{\mathbf{x}}+\mathbf{B}_{0}=\mathbf{M}
$$

and $\mathbf{C} \leq_{\text {ess }} \mathbf{M}$, hence $\mathbf{C} \in \boldsymbol{\Gamma}$, which contradicts the maximality of $\mathbf{B}_{\mathbf{0}}$. So $\mathbf{B}_{\mathbf{0}}$ is maximal in \mathbf{M} and $\mathbf{B}_{0} \leq_{\text {ess }} \mathbf{M}$. Thus $\mathbf{x} \in \operatorname{Rad}_{\mathrm{e}}(\mathbf{M}) \subseteq \mathbf{B}_{0}$ and $\mathbf{R}_{\mathrm{x}} \subseteq \mathbf{B}_{\mathbf{0}}$.

Since $\mathbf{R}_{\mathbf{x}}+\mathbf{B}_{\mathbf{0}}=\mathbf{M}$, it follows that $\mathrm{B}_{0}=\mathbf{M}$, a contradiction. So $\mathbf{R}_{\mathbf{x}} \lll<$ ess \mathbf{M}, hence $\operatorname{Rad}_{\mathbf{e}}(\mathbf{M}) \subseteq \mathbf{U}$. Therefore

$$
\operatorname{Rad}_{\mathrm{e}}(\mathbf{M})=\sum\{\mathbf{N} \subseteq \mathbf{M} \mid \mathbf{N} \lll<\text { ess } \mathbf{M}\} .
$$

(2). Let $\mathbf{S}=\cap\{\mathbf{L} \leq \mathbf{M} \mid \mathbf{L} \leq \mathbf{s} \mathbf{M}\}$. Suppose that $\mathbf{L} \unlhd \mathbf{s} \mathbf{M}$ and $\mathbf{K} \ll \mathbf{M}$ is minimal in \mathbf{M}, then $\mathbf{K} \leq \mathbf{L}$. Otherwise, $\mathbf{K} \cap \mathbf{L}=\mathbf{0}$, hence $\mathbf{K}=\mathbf{0}$, a contradiction. $\operatorname{So~}_{\operatorname{Soc}}^{\mathbf{s}}(\mathbf{M}) \subseteq \mathbf{S}$. Note that $\mathbf{S} \subseteq \operatorname{Soc}(\mathbf{M})$, thus $\operatorname{Soc}_{\mathbf{s}}(\mathbf{M})$ and S are semisimple modules. If $\mathbf{S}{ }^{\prime \prime} \mathbf{S o c}_{\mathbf{s}}(\mathbf{M})$, there is a simple module \mathbf{T} such that $\mathbf{T} \leq \mathbf{S}$ and T is not small in \mathbf{M}. Let \mathbf{K} be a proper submodule such that $\mathbf{K}+\mathbf{T}=\mathbf{M}$.
(a) If $\mathbf{K} \cap \mathbf{T} \neq \mathbf{0}$, then $\mathbf{T} \subseteq \mathbf{K}$, hence $\mathbf{K}=\mathbf{M}$, a contradiction.
(b) If $\mathbf{K} \cap \mathbf{T}=\mathbf{0}$, then $\mathbf{M}=\mathbf{K} \bigoplus \mathbf{T}$. For each $\mathbf{H} \leq \mathbf{M}$, if $\mathbf{H} \ll \mathbf{M}$ and $\mathbf{K} \cap \mathbf{H}=0$, then $\mathbf{H}+\mathbf{K}$ is a proper submodule of \mathbf{M} and $H \cong(\mathbf{H}+\mathbf{K}) / \mathbf{K}$ is a submodule of \mathbf{M} / \mathbf{K}, where $\mathbf{M} / \mathbf{K} \cong \mathbf{T}$ is a simple module. Thus $\mathbf{H}=\mathbf{0}$. Then $\mathbf{K} \unlhd \mathbf{s} \mathbf{M}$, that is, $\mathbf{T} \subseteq \mathbf{S} \subseteq \mathbf{K}$, a contradiction.

Thus $\mathbf{T} \ll \mathbf{M}$, a contradiction. Therefore $\mathbf{S}={ }_{\text {Socs }}(\mathbf{M})$.
Corollary 2.12. Let \mathbf{M} and \mathbf{N} be modules.
(1) If $\mathbf{f}: \mathbf{M} \rightarrow \mathbf{N}$ is an \mathbf{R}-homomorphism, then $\mathbf{f}\left(\operatorname{Rad}_{\mathbf{e}}(\mathbf{M}) \mathbf{(} \subseteq \operatorname{Rad}_{\mathbf{e}}(\mathbf{N})\right.$. In particular, $\operatorname{Rade}(\mathbf{M})$ is a fully invariant submodule of \mathbf{M}.
(2) If every proper essential submodule of \mathbf{M} is contained in a maximal submodule of \mathbf{M}, then $\operatorname{Rad}_{\mathbf{e}}(\mathbf{M})$ is the unique largest e-small submodule of M .

Proof.

(1) By Proposition 2.7 and Proposition 2.12.
(2) For each essential submodule \mathbf{K} of \mathbf{M}, if $\mathbf{K} \neq \mathbf{M}$, there is a maximal submodule \mathbf{L} of \mathbf{M} such that $\mathbf{K} \subseteq \mathbf{L}$, then $\mathbf{L} \leq_{\text {ess }} \mathbf{M}$. By the definition of $\operatorname{Rad}_{\mathbf{e}}(\mathbf{M}), \operatorname{Rad}_{\mathrm{e}}(\mathbf{M}) \subseteq \mathbf{L}$.

So $\operatorname{Rad}_{\mathrm{e}}(\mathbf{M})+\mathbf{K} \subseteq \mathbf{L} \varsubsetneqq \mathbf{M}$. Thus $\operatorname{Rad}_{\mathrm{e}}(\mathbf{M}) \ll_{\text {ess }} \mathbf{M}$.
Dually, we have

Corollary 2.13. Let \mathbf{M} and \mathbf{N} be modules. Then
(1) If $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ is an R -homomorphism, then $\mathrm{f}\left(\operatorname{Soc}_{s}(\mathrm{M})\right) \subseteq \operatorname{Soc}_{\mathrm{s}}(\mathrm{N})$. Therefore, Socs(M) is a fully invariant submodules of M.
(2) If $M=\oplus n i=1 M i$, then $\operatorname{Soc}_{s}(M)=\oplus n i=1 \operatorname{Soc}_{s}(M i)$.
(3) If every non-zero small submodule of \mathbf{M} contains a minimal submodule of \mathbf{M}, then
$\operatorname{Soc}_{s}(\mathbf{M})$ is the unique least s-essential submodule of \mathbf{M}.

Example 2.14. Let $\mathbf{R}=\mathbb{Z}, \mathbf{M}=\mathbb{Z}_{24}$ and $\mathbf{N} \leq \mathbf{M}$. All submodules of \mathbf{M} have the following properties.

$\mathbf{N} \leq \mathbf{M}$	Small	e-small	essential	s-essential
\mathbb{Z}_{24}	\times	\times	$\sqrt{ }$	$\sqrt{ }$
$2 \mathbb{Z}_{24}$	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
$3 \mathbb{Z}_{24}$	\times	\times	\times	$\sqrt{ }$
$4 \mathbb{Z}_{24}$	\times	$\sqrt{ }$	\times	$\sqrt{ }$
$6 \mathbb{Z}_{24}$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$
$8 \mathbb{Z}_{24}$	\times	$\sqrt{ }$	\times	\times
$12 \mathbb{Z}_{24}$	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$
0	$\sqrt{ }$	$\sqrt{ }$		

According to the above chart, we have

(1) $\operatorname{Rad}(M)=\mathbf{6} \mathbb{Z}_{24}, \operatorname{Rad}_{e}(M)=\mathbf{2}_{\mathbf{Z}} \mathbf{2 4}, \operatorname{Soc}(M)=\mathbf{4} \mathbb{Z}_{\mathbf{2 4}}$ and $\operatorname{Soc}_{\mathbf{s}}(M)=\mathbf{1 2}_{\mathbf{Z}}$
(2) $\operatorname{Soc}_{\mathrm{s}}(\mathbf{M}) \varsubsetneqq \operatorname{Rad}(\mathbf{M}) \varsubsetneqq \operatorname{Rad}_{\mathrm{e}}(\mathbf{M})$ and $\operatorname{Soc}_{\mathrm{s}}(\mathbf{M}) \varsubsetneqq \operatorname{Soc}(\mathrm{M}) \varsubsetneqq \operatorname{Rad}_{\mathrm{e}}(\mathbf{M}$

E-small and s-essential homomorphisms

Definition 2.15. Let M and N be modules.
(1) An epimorphism g: $\mathrm{M} \rightarrow \mathrm{N}$ is e-small in case $\mathrm{Kerg}<_{\text {ess }} \mathrm{M}$.
(2) A monomorphism $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ is s-essential in case $\operatorname{Imf} \unlhd_{\mathrm{s}} \mathrm{M}$.

In the following, we give a useful characterization of e-small homomorphisms and s-essential homomorphisms.

Proposition 2.16. Let M and N be modules.
(1) An epimorphism $\mathrm{g}: \mathrm{M} \rightarrow \mathrm{N}$ is e-small if and only if for each essential monomorphism h, if $\mathrm{g} h$ is epic, then h is epic.
(2) A monomorphism $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ is s-essential if and only if for each small epimorphism h, if $h \mathrm{f}$ is monic, then h is monic.

Proof.

(1) Let $\mathrm{g}: \mathrm{M} \rightarrow \mathrm{N}$ be an epimorphism and $\mathrm{K}=$ Kerg. Then there is a unique isomorphism $\mathrm{v}: \mathrm{M} / \mathrm{K} \rightarrow \mathrm{N}$, such that $\mathrm{v} \pi=\mathrm{g}$ where $\pi: \mathrm{M} \rightarrow \mathrm{M} / \mathrm{K}$.

Thus it follows that for each homomorphism $h, v \pi h=\mathrm{g} h$ is epic if and only if πh is epic.
\Leftrightarrow If g is e-small, then $\mathrm{K}<_{\text {ess }} \mathrm{M}$. Since πh is epic, we have $\operatorname{Im} h+\mathrm{K}=\mathrm{M}$.

Note that h is an essential monomorphism, hence $\operatorname{Im} h \leq_{\text {ess }} \mathrm{M}$, thus $\operatorname{Im} h=\mathrm{M}$. So h is epic.
(\Leftarrow) Let L be an essential submodule of M . Let $\mathrm{iL}: \mathrm{L} \rightarrow \mathrm{M}$ be the inclusion.

Then $i L$ is essential. If $K+L=M$, then $\pi i L$ is epic. By hypothesis, $i L$ is epic, that is, $\mathrm{L}=\mathrm{M}$. So $\mathrm{K}<_{\text {ess }} \mathrm{M}$, hence g is e-small.
(2) Dual to (1).

Proposition 2.17. Suppose that the following diagram of modules and homomorphisms is commutative and has exact rows.

(1) If α is epic and g is e-small, then g^{\prime} is e-small.
(2) If γ is monic and f^{\prime} is s-essential, then f is s-essenti

Proof.

(1) Assume that g is e-small, then $\operatorname{Kerg} \ll e \mathrm{~B}$ and $\beta(\operatorname{Kerg}) \ll_{\text {ess }} \mathrm{B}^{\prime}$. It suffices to show $\mathrm{Kerg}^{\prime} \leq \beta(\mathrm{Kerg})$. Let $\mathrm{b}^{\prime} \in \mathrm{Kerg}^{\prime}$. Since the bottom row is exact, there is an element $\mathrm{a} \in \mathrm{A}$ with $\alpha(a)=b^{\prime}$. Since the diagram commutes
and the top row is exact, $b^{\prime}=f^{\prime} \alpha(a)=\beta f(a)$ and $g f(a)=0$. Thus there is a
$f(a) \in \operatorname{Kerg}$ such that $\beta(f(a))=b^{\prime}$. So $b^{\prime} \in \beta(\operatorname{Kerg})$, hence $\operatorname{Kerg}^{\prime} \ll_{\text {ess }} B^{\prime}$.
(2)Dual to (1).

Corollary 2.19. Consider the following diagram

(1) Assume that the diagram is a pullback of β_{1} and β_{2}. If β_{1} is a s-essential monomorphism, so is α_{1}.
(2) Assume that the diagram is a pushout of α_{1} and α_{2}. If α_{1} is an e-small epimorphism, so is β_{1}.

Proof.

(1) Assume that the diagram is a pullback of β_{1} and β_{2} with β_{1} a s-essential monomorphism. Then we have a full commutative diagram with exact rows by [7, Proposition 5.1].

By Proposition 3.3, α_{1} is a s-essential monomorphism.
(2) Dual to (1).

Let R and S be two rings, if $\mathrm{F}: \operatorname{Mod}-\mathrm{R} \rightarrow \operatorname{Mod}-\mathrm{S}$ define a Morita equivalence, by Proposition 3.2 we note that $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ is e-small (resp., s-essential) if and only if $\mathrm{F}(\mathrm{f}): \mathrm{F}(\mathrm{M}) \rightarrow \mathrm{F}(\mathrm{N})$ is e-small (resp., s-essential).

For two rings R and S , a bimodule SUR is said to define a Morita duality, if ${ }_{\mathrm{S}} \mathrm{U}_{\mathrm{R}}$ is a faithfully balanced bimodule such that SU and UR are injective cogenerators. A presentation of Morita duality can be found in [2, §23, §24] and Small-Essential Submodules and Morita Duality 1059 [11]. If M is a right R -module (left S-module), we let $\mathrm{M}^{*}=\operatorname{SHomR}(\mathrm{M}, \mathrm{U})(=$ HomS(M,U)R), andM is said to be U-reflexive if the evaluation homomorphism $e M: M \rightarrow M^{* *}$ is an isomorphism. According to [2], let $R_{R}[U]$ and $S_{R}[U]$ denote the class of all U-reflexive right R-modules and that of all U-reflexive left

S-modules, respectively.
Theorem 2.20. Assume that ${ }_{s} U_{R}$ defines a Morita duality and $f: M \rightarrow N$. If M, N are U-reflexive, then
(1) f is an e-small epimorphism if and only if $\mathrm{f}^{*}: \mathrm{N}^{*} \rightarrow \mathrm{M}^{*}$ is a s-essential monomorphism.
(2) f is a s-essential monomorphism if and only if $f^{*}: N^{*} \rightarrow M^{*}$ is an e-small epimorphism.

Proof. (1) Let $f: M \rightarrow N$ be an e-small epimorphism, then $f^{*}: N^{*} \rightarrow M^{*}$ is monic by [2, Corollary 24.2]. We claim that $\mathrm{f} *$ is a s-essential monomorphism.

Suppose that $h: \mathrm{M}^{*} \rightarrow \mathrm{H}$ is such that $h \mathrm{f} *$ is a monomorphism and h is a small epimorphism, then $\left(h f^{*}\right)^{*}=f^{* *} h^{*}$ is an epimorphism and h^{*} is an essential monomorphism. Since MR and NR are U-reflexive, the evaluation homomorphisms $\sigma_{\mathrm{M}}: \mathrm{M} \rightarrow \mathrm{M}^{* *}$ and $\sigma_{\mathrm{N}}: \mathrm{N} \rightarrow \mathrm{N}^{* *}$ are isomorphisms, that is, the following diagram commutes:

Since f is an e-small epimorphism, $\mathrm{f}^{* *}$ is an e-small epimorphism. By Proposition 3.2, h^{*} is epic. By [2, Corollary 24.2] h is monic. Therefore f^{*} is a s-essential monomorphism by Proposition 3.2.

Conversely, let $\mathrm{f}^{*}: \mathrm{N}^{*} \rightarrow \mathrm{M}^{*}$ be a s-essential monomorphism. By [2, Corollary
24.2], $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ is an epimorphism. We shall prove that f is e-small.

Suppose that $h: \mathrm{H} \rightarrow \mathrm{M}$ is an essential monomorphism such that $\mathrm{f} h$ is epimorphic, then (fh)* $=h^{*} \mathrm{f}^{*}$ is monic and h^{*} is a small epimorphism. By

Proposition 3.2, h^{*} is monomorphism. By [2, Corollary 24.2], h is an epimorphism.
So f is an e-small epimorphism by Proposition 3.2.
Dually, (2) can be proved.

References

[1] C. Abdioglu, M.T. Kosan and S. Sahinkaya, On modules for which all submodulesare projection invariant and the lifting condition, Southeast Asian Bull. Math. 34
(2010) 807-818.
[2] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, 1992.
[3] A. Ghorbani and A. Haghany, Generalized Hopfian modules, J. Algebra 255 (2002) 324-341.
[4] A. Ghorbani and A. Haghany, Duality for weakly co-Hopfian and generalized Hopfian modules, Comm Algebra 31 (2003) 2811-2817.
[5] K.R. Goodeal, Ring Theory: Nonsingular Rings and Modules, Marcel Dekker,1976.
[6] W.W. Leonard, Small modules, Pro. Amer. Math. Soc. 17 (1966) 527-531.
[7] B. Stenstr"om, Rings of Quotients, Springer-Verlag, 1975.
[8] K. Varadarajan, Hopfian and co-Hopfian objects, Publications Mathematiques 36 (1992) 293-317.
[9] Y.H. Xu and K.P. Shum, Morita equivalence for infinite matrix rings, Comm.Algebra 27 (4) (1999) 17511782.1062 D.X. Zhou and X.R. Zhang
[10] W.M. Xue, Hopfian and co-Hopfian modules, Comm. Algebra 23 (1995) 1219-1229.
[11] W.M. Xue, Rings with Morita Duality, In: Lect. Notes Math. 1523, Springer-Verlag, 1992.
[12] X.R. Zhang and D.X. Zhou, Relative essential submodules and Morita duality, J.Fujian Norm. Univ. (Nat. Sci.) 26 (5) (2010) 1-5.
[13] Y.Q. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq. 7 (3) (2000) 305-318
[14] D.X Zhou and X.R. Zhang , Southeast Asian Bulletin of Mathematics (2011) 35: 1051-1062

