University of Qadisiya

College of Education

Department of Mathematics

On the Subnormality of the Composition Operator C_{σ}

A search

Submitted to the Council of the Department of Mathematics College of Education As a Partial Fulfillment of the Requirements for the Bac.Degree in Mathematics

By

Alaa Abass

Supervised by
Aqeel Mohammad Hussein

Acknowledgment

I would like to express my appreciation and great thanks to my supervisor Aqeel Mohammed Hussein for her valuable instructions, patience and support during the writing of this thesis.

I wish to express my deepest thanks to the staff of the department of mathematics for their guidance and encouragement during my work.

My sincere thanks go to my family and best friends for their support and encouragement during the period of this work.

Abstract

Lat U denote the unit boll in the complix plane, the Hordy space H^{2} is the set of functions $f(z)=\sum_{n=0}^{\infty} f^{\wedge}(n) z^{n}$ holomarphic on U such that $\sum_{n=0}^{\infty}\left|f^{\wedge}(n)\right|^{2}<\infty$ with $f^{\wedge}(n)$ denotes then the Taylor coeffecient of f.

Let ϕ be a holomarphic self-map of U , the composition operator C_{ϕ} induced by ϕ is defined on H^{2} by the equation

$$
\mathrm{C}_{\phi} \mathrm{f}=\mathrm{f} \circ \phi \quad\left(\mathrm{f} \in \mathrm{H}^{2}\right)
$$

We have studied the subnormelity of the composetion operator induced by the bijective map ψ and descussed the adjoint of the composetion of the bijective map ψ We have look also at some known properties on composetion operators and tried to see the analogue properties in arder to show how the resultes are changed by changing the function ϕ in U.

In arder to make the work accessible to the reader, we have included some known results with the details of the proofs for some cases and proofs for the properties .

ليكن U يرمز إلى كرة الوحدة في المستوى العقدي، إن فضاء هاردي² هو مجمو عة كل الد

لتكن U

$$
\mathrm{C}_{\phi} \mathrm{f}=\mathrm{f} \circ \phi \quad\left(\mathrm{f} \in \mathrm{H}^{2}\right) .
$$

درسنا في هذا البحث الطبيعية الجزئية للمؤثر التركيبي المتولد من الدالة المتقابلة ψ حيث ناقشنا المؤثر المر افق للمؤثر التركيبي المتولد من الدالة المتقابلة ψ. بالإضافة إلى ذلك نظرنا إلى بعض النتائج المعروفة وحاولنا الحصول على نتائج مناظرة لنتمكن من ملاحظة كيفية تغير النتائج عندما تتغير الدالة التحليلية ه .

ومن أجل جعل مهمة القارئ أكثر سهولة ، عرضنا بعض النتائج المعروفة عن المؤثرات التركيبية وعرضنا بر اهين مفصلة وكذللك بر هنا بعض النتائج .

Contents

Introduction 1
Chapter one : Properties of the Map ψ 2
Chapter two : Subnormality of the \mathbf{C}_{ψ} 7

المقدمة

هذا البحث يشمل فصلين . في الفصل الأول , سوف نتتاول الالة المنقابلة ψ وخواصها ، ونناقش النقاط الصامتة الاذلية والخارجية للالة ψ أيضا وكللك ننقش أيضا الدوران المحوري حول الأصل للالة ψ وكذلك نناشش أيضا هل الاالة ψ قطع ناقص ,وكذلك نناقث أيضا هل الاالة ψ تحويل

في الفصل الثاني ، سوف نتناول المؤثر التركيي
 مؤثر تركيبي وحدوي وكذلك نناقش أيضا هل المؤثر التركيبي C ${ }^{\text {(}}$ مؤثر تركيبي طبيعي جزئي .

Chapter one

Properties of the Map ψ

Introduction

This search consists of two chaptars. In chaptar one, we are going to study the bijective map ψ and proporties of ψ, and alsa discuss the interior and exterior fixed points of ψ and also discuss ψ is a rototion around the origen and ψ is elliptic and ψ is a linear fractional trancformation .

In chaptar two, we are going to study the Composetion Operator C_{ψ} induced by the map σ and proporties of C_{ψ}, and also discuss the adjoint of Composetion Operator C_{ψ} induced by the map σ and alsa discuss C_{ψ} is an unitary operator and discuss C_{ψ} is a normil operator and discuss C_{ψ} is a normility operator and discuss C_{ψ} is an subnormil operator.

Definition(1.1) :

Lat $U=\{z \in C:|z|<1\}$ is a unit boll in complix plane C and
$\partial U=\{z \in C:|z|=1\}$ is a boundary of U.

Definition(1.2):

Lat $\psi: U \rightarrow U$ holomarphic on U and define $\psi(z)=\frac{-3 z}{3-3 \bar{\beta} z}(z, \beta \in U)$

Proposition (1.3):

ψ is bijective .

Proof:

Since $\psi(z)=\frac{-3 z}{3-3 \bar{\beta} z}(z, \beta \in z)$
Suppoise $\psi\left(\mathrm{z}_{1}\right)=\psi\left(\mathrm{z}_{2}\right)$ that is $\frac{-3 \mathrm{z}_{1}}{3-3 \overline{\mathrm{\beta}} \mathrm{z}_{1}}=\frac{-3 \mathrm{z}_{2}}{3-3 \overline{\mathrm{\beta}} \mathrm{z}_{2}}$, thus
$-9 z_{1}+9 \bar{\beta} z_{1} z_{2}=-9 z_{2}+\bar{\beta} z_{1} z_{2}$, hance $z_{1}=z_{2}$. Thus ψ is injective.
Let $y=\psi(z)$, that is $y=\frac{-3 z}{3-3 \bar{\beta} z}$, therefare, then $3 y-3 \bar{\beta} y z=-3 z$, hence
$z=\frac{-3 y}{3-3 \bar{\beta} y}, \psi(z)=\sigma\left(\frac{-3 y}{3-3 \bar{\beta} y}\right)=\frac{\frac{9 y}{3-3 \bar{\beta} y}}{3-3 \bar{\beta}\left(\frac{-3 y}{3-3 \bar{\beta} y}\right)}=\frac{\frac{9 y}{3-3 \bar{\beta} y}}{\frac{9-9 \overline{\bar{\beta}} \mathrm{y}+9 \bar{y} \bar{y}}{3-3 \bar{\beta} y}}=\frac{9 y}{9}=y$, for every
$y \in U$, there exists $z \in U$ such that $\psi(z)=y$.Thus ψ is surjective. Hance ψ is bijective.

Definition(1.4) :

A point $\mathrm{p} \in \mathrm{C}$ is a fixid point for the map \emptyset, if $\emptyset(\mathrm{z})=\mathrm{z}$.

Proposition (1.5) :

$0, \frac{2}{\bar{\beta}}$ are fixid points for ψ.

Proof:

Lat $\psi(z)=z$ that is $\frac{-3 z}{3-3 \bar{\beta} z}=z$, therefare $6 z-3 \bar{\beta} z^{2}=0$.Hance ψ has two
fixid points $\mathrm{z}_{1}=0, \mathrm{z}_{2}=\frac{2}{\bar{\beta}}$

Definition(1.6):

Lat $\emptyset: U \rightarrow U$ be holomarphic map on U with a fixid point r, than:

1) r as interior fixid point for \emptyset if $r \in U$
2) r as exterior fixid point for \emptyset if $r \notin U$
3) r as boundary fixid point for \emptyset if $r \in \partial U$

Proposition (1.7):

0 is interior fixid point and $\frac{2}{\bar{\beta}}$ is exterior fixid points for σ.

Proof:

Since ψ has two fixid points $\mathrm{z}_{1}=0, \mathrm{z}_{2}=\frac{2}{\bar{\beta}}$
, $\left|z_{1}\right|=|0|=0<1$.Thus z_{1} as interior fixid point for ψ.
Since
$\beta \in U$, then $|\beta|<1$, since $|\bar{\beta}|=|\beta|$ therefore $|\bar{\beta}|<1$ and $1<2$ hence $|\bar{\beta}|<$ 2 hence $\frac{2}{|\bar{\beta}|}>1$, since $\frac{2}{|\bar{\beta}|}=\left|\frac{2}{\bar{\beta}}\right|$ hence $\left|\frac{2}{\bar{\beta}}\right|>1$ hence $\left|z_{2}\right|=\left|\frac{2}{\overline{\bar{\beta}}}\right|>1$ then z_{2} is exterior fixid point for ψ

Proposition (1.8) :

$$
\Psi^{-1}(z)=\frac{-3 z}{3-3 \bar{\beta} z}=\Psi(z) .
$$

Proof:

Let $y=\Psi^{-1}(z)$, than $z=\psi(y)$, hance $z=\frac{-3 y}{3-3 \bar{\beta} y}$, thus $3 z-3 \bar{\beta} y z=-3 y$, therefare $-3 z=3 y-3 \bar{\beta} y z$.Thus $-3 z=y(3-3 \bar{\beta} z)$, hance $y=\frac{-3 z}{3-3 \bar{\beta} z}$, then $\Psi^{-1}(z)=\frac{-3 z}{3-3 \bar{\beta} z}=\psi(z)$.

Remark(1.9) :

If $\beta \in \mathrm{U}$, then $\psi^{\prime}(0)=-1, \psi^{\prime}(\beta)=\frac{-1}{\left(1-|\beta|^{2}\right)^{2}}$.

Definition(1.10) :

Let $\emptyset: U \rightarrow U$ be holomarphic map on U. We say that ϕ is a rototion round the origin if there exists $r \in \partial U$ such that $\emptyset(z)=r z(z \in U)$

Proposition (1.11):

If $\beta=0$, then ψ as a rototion a round the origin

Proof:

Since $\psi(z)=\frac{-3 z}{3-3 \bar{\beta} z}$, since $\beta=0$, hance
$\psi(\mathrm{z})=\frac{-3 \mathrm{z}}{3-3 \bar{\beta} \mathrm{z}}, \beta=0, \Psi(\mathrm{z})=-\mathrm{z}=\mathrm{rz}, \mathrm{r}=-1,|\mathrm{r}|=|-1|=1, \mathrm{r} \in \partial \mathrm{U}$ than by
(1.10) Ψ is a rototion a round the origen.

Definition(1.12):

Let $\emptyset: U \rightarrow U$ be holomarphic map on U. We say that ϕ is an elliptic if \emptyset has interior fixid point and bijective.

Proposition (1.13):

ψ as an elliptic

Proof:

Since ψ has interior fixid point by(1.7) and ψ is bijective by (1.3) hance by
(1.12) ψ as an elliptic

A linear fractional trancformation is a mapping of the form $\mathrm{t}(\mathrm{z})=\frac{\mathrm{az}+\mathrm{b}}{\mathrm{cz}+\mathrm{d}}$
where a, b, c, and d are complix numbers, and we sometame denote it by $\tau_{A}(z)$ where A is the non-sangular 2×2 complix matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

Proposition (1.15) :

If $\beta \in \mathrm{U}$, then ψ as a linear fractional trancformation .

Proof:

Since $\psi(z)=\frac{-3 z}{3-3 \bar{\beta} z}$ such that $a=-3, b=0, c=-3 \bar{\beta}, d=3$ and a, b, c, and d are complix numbers and $A=\left[\begin{array}{cc}-3 & 0 \\ -3 \bar{\beta} & 3\end{array}\right]$, hance by $(1.14) \psi$ is a linear fractional trancformation .

Chapter two

Subnormality of the \mathbf{C}_{ψ}

Definition(2.1):

Lat U denote the unit boll in the complex plane, the Hordy space H^{2} is the set of functions $f(z)=\sum_{n=0}^{\infty} f^{\wedge}(n) z^{n}$ holomarphic on U such that $\sum_{n=0}^{\infty}\left|f^{\wedge}(n)\right|^{2}<\infty$ with $f^{\wedge}(n)$ denotes then the Taylor coeffecient of f and $\mathrm{H}^{2}: \mathrm{U} \rightarrow \mathrm{C}$.

Remark (2.2) :

We can define an inner praduct of the Hordy space functions as follows:
$f(z)=\sum_{n=0}^{\infty} f^{\wedge}(n) z^{n}, g(z)=\sum_{n=0}^{\infty} g^{\wedge}(n) z^{n}$, then the inner praduct of f and g is define $\langle f, g\rangle=\sum_{n=0}^{\infty} f^{\wedge}(n) \overline{g^{\wedge}(n)}$

Definition (2.3) :

Let $\alpha \in \mathrm{U}$, define $\mathrm{K}_{\alpha}=\frac{1}{1-\bar{\alpha} z}$. Since $\alpha \in \mathrm{U}$ than hance the geometric series $\sum_{n=0}^{\infty}|\alpha|^{2 n}$ is convorgent and $K_{\alpha}=\sum_{n=0}^{\infty}(\bar{\alpha})^{n} z^{n}$ thus $K_{\alpha} \in H^{2}$

Definition(2.4) :

Lat $\phi: U \rightarrow U$ be holomarphic map on U, the composetion operator
C_{ϕ} induced by ϕ is defined on H^{2} is follows $C_{\phi} f=f \circ \phi\left(f \in H^{2}\right)$

Definition(2.5) :

Let T be a bounded operator on a Hilbart space H , then the norm
of an operoter T is defined by $\|T\|=\sup \{\|\mathbf{T f}\|: f \in \mathbf{H},\|\mathrm{f}\|=\mathbf{1}\}$.

Littlewood's Subordination Principle (2.6) :

If $\phi: U \rightarrow U$ is holomorphic map on U with $\phi(0)=0$, then $f \circ \phi \in \mathrm{H}^{2}$ and $\|f \circ \phi\| \leq\|f\|$ for each $f \in \mathrm{H}^{2}$.

The goal of this theorem $\mathrm{C}_{\phi}: \mathrm{H}^{2} \rightarrow \mathrm{H}^{2}$.

Definition(2.7) :

The composetion operator C_{ψ} induced by ψ is defined on H^{2} is follows $\mathrm{C}_{\psi} \mathrm{f}=\mathrm{f} \circ \psi,\left(\mathrm{f} \in \mathrm{H}^{2}\right)$

Proposition(2.8) :

$$
\text { If } \psi(\mathrm{z})=\frac{-3 \mathrm{z}}{3-3 \bar{\beta} \mathrm{z}} \text {, than } \mathrm{f} \circ \psi \in \mathrm{H}^{2} \text { and }\|\mathrm{f} \circ \psi\| \leq\|\mathrm{f}\| \text { far each } \mathrm{f} \in \mathrm{H}^{2} .
$$

Proof:

Since $\psi: U \rightarrow U$ is holomarphic map on U by (2.6) $f \in H^{2}, f \circ \psi \in H^{2}$ and $\|f \circ \psi\| \leq\|f\|$ hance $\mathrm{C}_{\psi}: \mathrm{H}^{2} \rightarrow \mathrm{H}^{2}$

Remark (2.9) :

1) One can easaly show that $C_{k} C_{\phi}=C_{\phi \text { юк }}$ and hance $C_{\phi}^{n}=C_{\phi} C_{\phi} \cdots C_{\phi}$

$$
=\mathbf{C}_{\phi \circ \phi \ldots \ldots \phi}=\mathbf{C}_{\phi_{\mathrm{n}}}
$$

2) C_{ϕ} is the idintity operator on H^{2} if end only if ϕ is idintity map from U into U and holomorphic on U .
3) It is semple to prove that $C_{\kappa}=C_{\phi}$ if end only if $\kappa=\phi$.

Definition(2.10):

Let T be an operator on a Hilbart space H , The operator T^{*} as the adjoint of T if $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for each $x, y \in H$.

Theorem (2.11) :

$\left\{\mathrm{K}_{\alpha}\right\}_{\alpha \in \mathrm{U}}$ forms a danse subset of \mathbf{H}^{2}.

Theorem (2.12) :

If $\phi: U \rightarrow U$ as holomarphic map on U, then for all $\alpha \in U$
$\mathrm{C}_{\phi}^{*} \mathrm{~K}_{\alpha}=\mathrm{K}_{\phi(\alpha)}$

Definition(2.13):

Let H^{∞} be the set of oll bounded holomarphic map on U .

Definition(2.14):

Lat $\mathrm{g} \in \mathrm{H}^{\circ}$, the Toiplits operator T_{g} is the operator on H^{2} given by :

$$
\left(\mathrm{T}_{\mathrm{g}} \mathrm{f}\right)(\mathrm{z})=\mathrm{g}(\mathrm{z}) \mathrm{f}(\mathrm{z})\left(\mathrm{f} \in \mathrm{H}^{2}, \mathrm{z} \in \mathrm{U}\right)
$$

Theorem (2.15) :

If $\phi: U \rightarrow U$ as holomarphic map on U, then $C_{\phi} T_{8}=T_{g} \circ{ }_{\phi} C_{\phi}\left(g \in H^{\infty}\right)$

Remark (2.16) :

Far each $f \in H^{2}$, it is will- know that $T_{h}^{*} f=T_{\mathrm{h}} \mathrm{f}$, such that $\mathrm{h} \in \mathrm{H}^{\infty}$.

Proposition(2.17) :

If $\beta \in \mathrm{U}$, than $\mathrm{C}_{\psi}^{*}=\mathrm{T}_{\mathrm{g}} \mathrm{C}_{\gamma} \mathrm{T}_{\mathrm{h}}^{*}$ where $\mathrm{h}(\mathrm{z})=1-\bar{\beta} \mathrm{z}, \mathrm{g}(\mathrm{z})=1, \gamma(\mathrm{z})=\beta+\mathrm{z}$

Proof:

By (2.16), $\mathrm{T}_{\mathrm{h}}^{*} \mathrm{f}=\mathrm{T}_{\mathrm{h}} \mathrm{f}$ for each $\mathrm{f} \in \mathrm{H}^{2}$. Hance for all $\alpha \in \mathrm{U}$,

$$
\left\langle\mathrm{T}_{\mathrm{h}}^{*} \mathrm{f}, \mathrm{~K}_{\alpha}\right\rangle=\left\langle\mathrm{T}_{\mathrm{h}}^{\mathrm{f}}, \mathrm{~K}_{\alpha}\right\rangle=\left\langle\mathrm{f}, \mathrm{~T}_{\mathrm{h}}^{*} \mathrm{~K}_{\alpha}\right\rangle \cdots \cdots \cdot(2-1)
$$

On the other hand ,

$$
\left\langle\mathrm{T}_{\mathrm{h}}^{*} \mathrm{f}, \mathrm{~K}_{\alpha}\right\rangle=\left\langle\mathrm{f}, \mathrm{~T}_{\mathrm{h}} \mathrm{~K}_{\alpha}\right\rangle=\left\langle\mathrm{f}, \mathrm{~h}(\alpha) \mathrm{K}_{\alpha}\right\rangle \cdots \cdots(2-2)
$$

From (2-1) and (2-2) one can se that $\mathrm{T}_{\overline{\mathrm{h}}}^{*} \mathrm{~K}_{\alpha}=\mathrm{h}(\alpha) \mathrm{K}_{\alpha}$. Hance $\mathrm{T}_{\mathrm{h}}^{*} \mathrm{~K}_{\alpha}=\overline{\mathrm{h}(\alpha)} \mathrm{K}_{\alpha}$.
Calculotion give:

$$
\begin{aligned}
& C_{\psi}^{*} \mathbf{K}_{\alpha}(\mathbf{z})=K_{\psi(\alpha)}(\mathbf{z}) \\
& =\frac{1}{1-\overline{\psi(\alpha)} z}=\frac{1}{1-\frac{\overline{(-3 \alpha)} \overline{3}-3 \beta \bar{\alpha}}{3}} \\
& =\frac{1}{\frac{3-3 \beta \bar{\alpha}-3 \bar{\alpha} z}{3-3 \beta \bar{\alpha}}}=\frac{3-3 \beta \bar{\alpha}}{3-3 \bar{\alpha}(\beta+z)}=\frac{\overline{1-\bar{\beta} \alpha})}{1-\bar{\alpha}(\beta+z)} \\
& =(\overline{1-\bar{\beta} \alpha}) \cdot(1) \cdot \frac{1}{1-\bar{\alpha}(\beta+z)} \\
& =\overline{\mathrm{h}(\alpha)} \cdot \mathrm{g}(\mathrm{z}) \cdot \mathrm{K}_{\alpha}(\gamma(\mathrm{z}))=\overline{\mathrm{h}(\alpha)} \mathrm{g}(\mathrm{z})\left(\mathrm{K}_{\alpha} \circ \gamma\right)(\mathrm{z}) \\
& =\overline{\mathrm{h}(\alpha)} \cdot\left(\mathrm{T}_{\mathrm{g}} \mathrm{~K}_{\alpha} \circ \gamma\right)(\mathrm{z})=\overline{\mathrm{h}(\alpha)} \mathrm{T}_{\mathrm{g}} \mathrm{C}_{\gamma} \mathrm{K}_{\alpha}(\mathrm{z}) \\
& =\mathrm{T}_{\mathrm{g}} \overline{\mathrm{~h}(\alpha)} \mathrm{C}_{\gamma} \mathrm{K}_{\alpha}(\mathrm{z})=\mathrm{T}_{\mathrm{g}} \mathrm{C}_{\gamma} \overline{\mathrm{h}(\alpha) \mathrm{K}_{\alpha}(\mathrm{z})} \\
& =\mathrm{T}_{\mathrm{g}} \mathrm{C}_{\gamma} \mathrm{T}_{\mathrm{h}}^{*} \mathrm{~K}_{\alpha}(\mathrm{z}) \text {, therefare } \\
& \mathrm{C}_{\psi}^{*} \mathrm{~K}_{\alpha}(\mathrm{z})=\mathrm{T}_{\mathrm{g}} \mathrm{C}_{\gamma} \mathrm{T}_{\mathrm{h}}^{*} \mathrm{~K}_{\alpha}(\mathrm{z}) . \\
& \text { But }\left\{\mathbf{K}_{\alpha}\right\}_{\alpha \in U}=\mathbf{H}^{2} \text {, than } \mathbf{C}_{\psi}^{*}=\mathrm{T}_{\mathrm{g}} \mathbf{C}_{\gamma} \mathbf{T}_{\mathrm{h}}^{*}
\end{aligned}
$$

Lat T be an operator on a Hilbart space H, T as called normil operator if
$\mathrm{T} \mathrm{T}^{*}=\mathrm{T}^{*} \mathrm{~T}$, and T as called unitary operator if $\mathrm{T} \mathrm{T}^{*}=\mathrm{T}^{*} \mathrm{~T}=\mathrm{I}$, and T as called hyponormil operator if $\mathrm{T} \mathrm{T}^{*} \leq \mathrm{T}^{*} \mathrm{~T}$

Theorem (2.19) :

If $\phi: U \rightarrow U$ is holomarphic map on U, then C_{ϕ} as normil if end only if $\phi(z)=\alpha \mathrm{z}$ for some $\alpha,|\alpha| \leq 1$

Theorem (2.20) :

If $\phi: U \rightarrow U$ be holomarphic map on U, then C_{ϕ} as unitary if end only if $\phi(z)=\alpha \mathrm{z}$ for some $\alpha,|\alpha|=1$

Proof:

Suppose C_{ϕ} as unitary, hence by (2.18) $C_{\phi} C_{\phi}{ }^{*}=C_{\phi}{ }^{*} C_{\phi}=I$, hance
$\mathrm{C}_{\phi} \mathrm{C}_{\phi}{ }^{*}=\mathrm{C}_{\phi}{ }^{*} \mathrm{C}_{\phi}$, hence C_{ϕ} is normil operator, hance by $(2.19) \phi(\mathrm{z})=\alpha \mathrm{z}$ for some $\alpha,|\alpha| \leq 1$. It is enough to show that $|\alpha|=1$

$$
\begin{aligned}
& \mathrm{C}_{\phi}^{*} \mathrm{C}_{\phi} \mathrm{K}_{\mu}(\mathrm{z})=\mathrm{C}_{\phi}^{*} \mathrm{~K}_{\mu}(\phi(\mathrm{z}))=\mathrm{K}_{\phi(\mu)}(\phi(\mathrm{z})) . \\
&=\frac{1}{1-\overline{\phi(\mu)} \phi(\mathrm{z})}=\frac{1}{1-\bar{\alpha} \bar{\mu} \alpha \mathrm{z}}=\frac{1}{1-|\alpha|^{2} \bar{\mu} \mathrm{z}}
\end{aligned}
$$

On the other hand $C_{\phi}{ }^{*} C_{\phi} K_{\mu}(z)=K_{\mu}(z)$, hence $\frac{1}{1-|\alpha|^{2} \bar{\mu} z}=K_{\beta}(z)=\frac{1}{1-\bar{\mu} z}$.

Thus $|\alpha|^{2} \bar{\mu}=\bar{\mu}$, then $|\alpha|=1$.
Conversely, Suppose $\phi(z)=\alpha \mathrm{z}$ for some $\alpha,|\alpha|=1$. For $\beta \in \mathrm{U}$, for every $\mathrm{z} \in \mathrm{U}$

$$
\begin{aligned}
& \mathrm{C}_{\phi}^{*} \mathrm{C}_{\phi} \mathrm{K}_{\mu}(\mathrm{z})=\mathrm{C}_{\phi}^{*} \mathrm{~K}_{\mu}(\phi(\mathrm{z}))=\mathrm{K}_{\phi(\mu)}(\phi(\mathrm{z})) \\
& =\frac{1}{1-\overline{\phi(\mu)} \phi(\mathrm{z})}=\frac{1}{1-\bar{\alpha} \bar{\mu} \alpha \mathrm{z}}=\frac{1}{1-|\alpha|^{2} \bar{\mu} \mathrm{z}} \\
& =\frac{1}{1-\bar{\mu} \mathrm{z}}=\mathrm{K}_{\mu}(\mathrm{z})
\end{aligned}
$$

Moreaver, for every $z \in U$

$$
\begin{aligned}
& \mathrm{C}_{\phi} \mathrm{C}_{\phi}^{*} \mathrm{~K}_{\mu}(\mathrm{z})=\mathrm{C}_{\phi} \mathrm{K}_{\phi(\mu)}(\mathrm{z})=\mathrm{K}_{\phi(\mu)}(\phi(\mathrm{z})) \\
&=\frac{1}{1-\bar{\phi}(\mu) \phi(\mathrm{z})}=\frac{1}{1-\bar{\alpha} \bar{\mu} \alpha \mathrm{z}}=\frac{1}{1-|\alpha|^{2} \bar{\mu} \mathrm{z}} \\
&=\frac{1}{1-\bar{\mu} \mathrm{z}}=\mathrm{K}_{\mu}(\mathrm{z})
\end{aligned}
$$

Hance $\mathrm{C}_{\phi} \mathrm{C}_{\phi}{ }^{*}=\mathrm{C}_{\phi}{ }^{*} \mathrm{C}_{\phi}=\mathrm{I}$ on the family $\left\{\mathrm{K}_{\alpha}\right\}_{\alpha \in \mathrm{U}}$. But by (2.11) $\left\{\mathrm{K}_{\alpha}\right\}_{\alpha \in \mathrm{U}}$ forms a dense subset of H^{2}, hance $\mathrm{C}_{\phi} \mathrm{C}_{\phi}{ }^{*}=\mathrm{C}_{\phi}{ }^{*} \mathrm{C}_{\phi}=\mathrm{I}$ on H^{2}. Therefare C_{ϕ} is unitary composetion operator in H^{2}.

Proposition(2.21) :

If $\beta=0$, then \mathbf{C}_{ψ} is an unitary composetion operator .

Proof:

Since $\psi(z)=\frac{-3 z}{3-3 \bar{\beta} z}$, since $\beta=0, \psi(z)=\frac{-3 z}{3-3 \bar{\beta} z}=z=\alpha z, \alpha=1,|\alpha|=1$ hance by
(2.20) C_{ψ} is unitary composetion operator .

Remark(2.22) :

From Definition (2.18), we note every unitary composetion operator as a normil composetion operator .

Definition (2.23):

Let T be an operater on a Hilbert space H is subnormil if there exists a normil operater S on a Hilbert space K such that H is a subspace of K, the subspace H is invariant under the operater S and the restriction of S to H coincides with T (M is called an invariant subspace under T if $\mathrm{TM} \subseteq \mathrm{M}$). It is well-known that every subnormal operator is normaloid and every normal operater is subnormel operater.

Proposition(2.24) :

If $\beta=0$, then C_{ψ} as a Subnormil composetion operator .

Proof:

Since $\beta=0$, then C_{ψ} as an unitary composition operator by (2.21) and by (2.23) C_{ψ} as a Subnormil composetion operator .
[1] Ahlfors, L.V. ,"Complex Analysis", Sec , Ed., McGraw-Hill Kogakusha Ltd , (1966).
[2] Appell, M.J., Bourdon , P.S. \& Thrall, J.J. ," Norms of Composition Operators on the Hardy Space", Experimented Math ., pp.111-117, (1996).
[3] Berberian, S.K., " Introduction to Hilbert Space" ,Sec. Ed .,Chelesa Publishing Com., New York , N.Y., (1976).
[4] Bourdon, P.S.\& Shapiro, J.H.,"Cyclic Phenomena for Composition Operators", Math. Soc., (596),125, (1999)
[5]Cowen ,C.C."Linear Fraction Composition Operator on H^{2} " Integral Equations Operator Theory,11, pp. 151-160, (1988).

