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Abstract.  

Adomian decomposition method is presented as a method for the solution of the 

Burger’s equation, a popular PDE model in the fluid mechanics. The method is 

computationally simple in application. 

Burger’s equation is a nonlinear partial differential equation. Burger’s equation 

is the simplest equation combining both nonlinear propagation effects (uux) and 

diffusive effects (uxx). We interest to derive, find the solution and apply this 

equation in ground water. The Adomian decomposition method used to solve the 

Burger's equation. 

1. Introduction.  

Burgers (1948) first developed this equation primarily to throw light on 

turbulence described by the interaction of two opposite effects of convection and 

diffusion. The term uux will have a shocking up effect that will cause waves to 

break and the term νuxx is a diffusion term like the one occurring in the heat 

equation. Burgers’ equation is obtained as a result of combining nonlinear wave 

motion with linear diffusion and is the simplest model for analyzing combined 

effect of nonlinear advection and diffusion. This equation is balance between 

time evolution, nonlinearity, and diffusion. This is the simplest nonlinear model 

equation for diffusive waves in fluid dynamics.  

Burger’s equation is a fundamental partial differential equation in fluid 

mechanics. It is also a very important model encountered in several areas of 

applied mathematics such as heat conduction, acoustic waves, gas dynamics and 

traffic flow [17] , model of traffic, turbulence, shock waves and fluid flow[6]. 

Analytical solutions of the partial differential equations modeling physical 

phenomena exist only in few of the cases. Therefore the need for the 

construction of efficient numerical methods for the approximate solution of 

these models always exists. Many of the analytical solutions to the Burger’s 
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equation involve Fourier series. According to [3], the convergence of such 

Fourier-series based solutions is very slow. Several researchers have proposed 

various numerical methods for the solution of the Burger’s equation. [21] and 

[7] used the finite element method for the solution of the Burger’s equation. [20] 

and [4] used the finite difference method. [19] used the direct variational method 

while [9] used the projection method by B-spline. A decomposition method 

which provides convergent solutions to nonlinear stochastic operator equations 

was developed in [2]. Many authors Bateman H[5], Burger J.M[6], Cole, J.D[8], 

Mittal R.C and Singhal P[18], Dogan A[10], Aksan, E.N., A. and T. [10], 

Caldwell, J., P. Wanless and A.E. Cook [12] have discussed the numerical 

solution of Burger’s equation using Finite Difference Methods and Finite 

Element Methods.  

 

2. Mathematical Formulation 

As mentioned previously, the equation of Burger has appeared in many 

applications, including groundwater, so we will study in this section how to 

derive this equation in this area.  

In isotropic homogeneous medium the motion of water is given by Darcy’s law 

as  

𝑉 = −𝐾 ∇∅                                                           (1) 

where 𝑉 is volume flux of moisture content, 𝐾 is coefficients of aqueous 

conductivity and ∇∅ is gradient of the whole (total) moisture potential.  

Through unsaturated porous media, the equation that governed the motion of 

water flow is the continuity equation 

𝜕(𝜌𝑠𝜃)

𝜕𝑡
= −∇. 𝑀                                                          (2) 
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where 𝜌𝑠 is the bulk density of medium on dry weight basis, θ is the moisture 

content at any depth Z on a dry weight basis and M is a mass of flux of moisture 

at any time t ≥ 0.  

Using incompressibility of the water from the equation (1) and (2) 

𝜕(𝜌𝑠𝜃)

𝜕𝑡
= −∇. 𝑀 = −∇. (𝜌. 𝑉) = 𝛻. (𝜌. 𝐾. ∇𝜙)                       (3) 

where ρ is the flux density of the medium.  

Since, in the present problem, flow takes place only in the vertical direction, 

therefore (3)  

reduces to 

𝜌𝑠 
𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
(𝜌 𝐾 

𝜕𝜓

𝜕𝑧
) −

𝜕

𝜕𝑧
𝜌 𝐾 𝑔                                               (4) 

where ψ is the pressure (capillary) potential, g is the gravitation constant and φ = 

ψ−z g the positive direction of z−axis is the same as that of gravity.  

Considering ψ and φ to be connected by a single valued function, equation (4) 

may be written as [13], 

 
𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
(𝐷 

𝜕𝜃

𝜕𝑧
) − 

𝜌

𝜌𝑆
 𝑔 

𝜕 𝐾

𝜕𝑧
                  (5) 

Where  𝐷 =
𝜌

𝜌𝑆
 𝐾 

𝜕𝜓

𝜕𝑧
=  

𝜌

𝜌𝑆
   is called the diffusivity coefficients [1].  

Replacing 𝐷 by its average value 𝐷𝑎 over the whole range of the moisture 

content [16] and 𝐾 ∝  𝜃2 [15]. 

i.e. 𝐾 = 𝐾0 𝜃2, where 𝐾0 is constant. Hence equation (5) becomes  

𝜕𝜃

𝜕𝑡
+

𝜌

𝜌𝑆
 2𝑔𝐾0𝜃

𝜕𝜃

𝜕𝑧
= 𝐷𝑎

𝜕2𝜃

𝜕𝑧2
                                      (6) 

Substituting    
𝜌

𝜌𝑆
 2𝑔𝐾0 = 𝐾1, equation (6) becomes:  
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𝜕𝜃

𝜕𝑡
+ 𝐾1𝜃

𝜕𝜃

𝜕𝑧
= 𝐷𝑎

𝜕2𝜃

𝜕𝑧2
                                                  (7) 

For the sake of simplicity of the problem, the value of the constant 𝐾1 = 1 is 

considered.  

We choose new variable as, 

𝑍 =
𝑍

𝐿
      ,   𝑇 = 𝑡 

𝐷𝑎

𝐿2
  , 0 ≤ 𝑍 ≤ 1  , 0 ≤  𝑇 ≤ 1          (8)  

Hence the equation (7) can be written as 

𝜕𝜃

𝜕𝑇
+ 𝜃

𝜕𝜃

𝜕𝑍
=

𝜕2𝜃

𝜕𝑍2
            0 ≤ 𝑍 ≤ 1                                           (9) 

The equation (9) is the governing non-linear partial differential equation known 

as Burger’s 

equation for the moisture content distribution phenomenon. 

 

3. The Adomian decomposition method (ADM) 

George Adomian introduced the ADM method firstly in 1981. Then this method 

used to solve the differential equations . And up to now a large number of 

research papers have been published to show the feasibility of the 

decomposition method.  

There are many advantages to this method, most importantly is that it can be 

applied directly to all types of differential and integral  equations, linear or non-

linear, homogeneous or inhomogeneous, with constant or variable coefficients. 

Another important advantage is that, the method is capable of greatly reducing 

the size of computational work while still maintaining high accuracy of the 

numerical solution. This method decomposes a solution into an infinite series 
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which converges rapidly to the exact solution. The convergence of the ADM has 

been disscused by a number of authors . [1] gave proof of convergence of 

Adomian decomposition method when applied to differential equations. The 

non-linear problems are solved easily and elegantly without linearising the 

problem by using ADM. It also avoids linearisation, perturbation and 

discretization unlike other classical techniques. 

The differential equation will be represented as follows 

𝐿(𝑢) + 𝑅(𝑢) + 𝑁(𝑢) = 𝑔                                 (10) 

where g is a function of independing variables and u is the depinding variable, 

and L is a linear operator to be inverted, which usually is just the highest order 

differential operator, R is the linear remainder operator, and N is the nonlinear 

operator, which is assumed to be analytic.  

Rewrite (10) to be: 

𝐿(𝑢) = 𝑔 − 𝑅(𝑢) − 𝑁(𝑢)                                 (11) 

Generally, if we choose 
𝑑𝑝

𝑥𝑝
(. ) for pth-order differential equations and thus its 

inverse 𝐿−1 follows as the p-fold definite integration operator from 0 to x. We 

have 𝐿−1𝐿 (𝑢) = 𝑢 − 𝜑, where 𝜑 incorporates the initial values. 

Applying the inverse linear operator 𝐿−1 to both sides of (11): 

𝐿−1𝐿(𝑢) = 𝐿−1𝑔 − 𝐿−1[𝑅(𝑢) + 𝑁(𝑢) ]                                (12) 

And this gives: 

𝑢 = 𝛾 − 𝐿−1[𝑅(𝑢) + 𝑁(𝑢)]                                         (13) 

Where  𝛾 = 𝜑 + 𝐿−1𝑔. 

The ADM decomposes the solution of (10) into an infinite series: 

𝑢 = ∑ 𝑢𝑛

∞

𝑛=0

                                     (14) 
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And  the nonlinear term Nu  can be decomposed into an infinite series as: 

𝑁𝑢 = ∑ 𝐴𝑛

∞

𝑛=0

                                     (15) 

where the An, depending on 𝑢0, 𝑢1, … , 𝑢𝑛 are called the Adomian polynomials, 

and are obtained for the nonlinearity Nu=f(u) by the definitional formula [11] 

𝐴𝑛 =
1

𝑛!

𝜕𝑛

𝜕𝜆𝑛
 [𝑓 (∑ 𝑢𝑘  𝜆𝑘

∞

𝑘=0

)]

𝜆=0

    , 𝑛 = 0,1,2, …                 (16) 

where 𝜆  is a grouping parameter of convenience. 

Upon substitution (14) and (15) into (13), we have 

∑ 𝑢𝑛

∞

𝑛=0

= 𝛾 − 𝐿−1 [𝑅 (∑ 𝑢𝑛

∞

𝑛=0

) + ∑ 𝐴𝑛

∞

𝑛=0

]                    (17)  

The recursive relationship is found to be: 

𝑢0 = 𝛾                                                          

𝑢𝑛+1 = −𝐿−1[𝑅(𝑢𝑛) + 𝐴𝑛], 𝑛 ≥ 0
}                                     (18) 

The n-term approximation of the solution is 

Ψ𝑛 = ∑ 𝑢𝑘

𝑛−1

𝑘=0

                                                (19) 

 

3.1 Application of ADM to Differential Equations 

Now we will apply the ADM method to some examples to illustrate it. 

Example 3.1 Consider the equation 

𝑢𝑡 + 
3

2
u𝑥 − 𝑢 = 0              (20) 

With initial condition;  
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                       𝑢(𝑥, 0) = 2𝑥                           (21) 

And the exact solution is;  

𝑢(𝑥, 𝑡) = (2𝑥 − 3𝑡) 𝑒𝑡 

From (20) and (21) we have:  

          L=
∂

∂t
 ; R(𝑢) =

3

2
u𝑥 − 𝑢 ,  𝑁(𝑢) = 0    ;  𝑔( x,t) = 0  ;    𝑓 = 2𝑥 

by (18) we get: 

𝑢𝑜 = 𝑓 = 2𝑥 

𝑢1 = −𝐿−1(R (𝑢0)) = − ∫(3 − 2𝑥

𝑡

0

)𝑑𝑡 = −3𝑡 + 2𝑥𝑡 

𝑢2 = −𝐿−1(R (𝑢1)) = − ∫(6 𝑡 −

𝑡

0

2𝑥𝑡) d =  −3𝑡2 + 𝑥𝑡2 

𝑢3 = −𝐿−1(R (𝑢2)) = − ∫ (   
3

2
  𝑡2    +3𝑡2 − 𝑥𝑡2)

𝑡

0

𝑑𝑡 =  
−3

2
𝑡3 +  𝑥

𝑡3

3
  

 And so on 

𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 +  𝑢2 +𝑢3 + ⋯

= 2𝑥 − 3𝑡 + 2𝑥𝑡−3𝑡2 + 𝑥𝑡2 −   
3

2
  𝑡2 + 𝑥

𝑡3

3
+ ⋯ 

             = (2𝑥 − 3𝑡) + ( 2𝑥 − 3𝑡)𝑡 + ( 2𝑥 − 3𝑡)
𝑡2

2
+ ⋯  

             = (2𝑥 − 3𝑡) ( 1 + 𝑡 + 
𝑡2

2
+ 

𝑡3

3!
 + ⋯ ) = (2𝑥 − 3𝑡) 𝑒𝑡 

     𝑢(𝑥, 𝑡) = (2𝑥 − 3𝑡) 𝑒𝑡 
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Example 3.2 Consider the equation 

𝑢𝑡 −
1

4
𝑢𝑥 = 0                                         (22) 

With initial condition;  

𝑢(𝑥, 0) = 2𝑒4𝑥                                        (23)    

And the exact solution is;  

𝑢(𝑥, 𝑡) = 2𝑒4𝑥+𝑡 

From (22) and (23) we have:  

      L=
∂

∂t
 ; R(𝑢) = −

1

4
𝑢𝑥   ;   N(𝑢) = 0  ; 𝑔(𝑥, 𝑡) = 0  ;    𝑓 = 2𝑒4𝑥 

by (18) we get: 

𝑢𝑜 = 𝑓 = 2𝑒4𝑥 

𝑢1 = −𝐿−1(R (𝑢0)) = ∫
1

4

𝑡

0

8 𝑒4𝑥dt = 2𝑡𝑒4𝑥 

𝑢2 = −𝐿−1(R (𝑢1)) = ∫ 2
𝑡

0

𝑡 𝑒4𝑥𝑑𝑡 = 2
𝑡2

2
𝑒4𝑥 

𝑢3 = −R (𝑢2) = − ∫ 2𝑡𝑒4𝑥

𝑡

0

𝑑𝑡 = 2
𝑡3

3!
𝑒4𝑥 

And so on. 

𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 +  𝑢2 +𝑢3 + ⋯ = 2𝑒4𝑥 ( 1 + 𝑡 + 
𝑡2

2
+ 

𝑡3

3!
 + ⋯ )

= 2𝑒4𝑥+𝑡 
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                  𝑢(𝑥, 𝑡) = 2 𝑒4𝑥+𝑡 

 

Example 3.3 Consider the equation 

𝑢𝑡 − u𝑢𝑥 = 0                (24) 

With initial condition;  

 𝑢(𝑥, 0) =
𝑥

10
                       (25)     

And the exact solution is; 

 𝑢(𝑥, 𝑡) = − 
𝑥

𝑡−10
 

From (24) and (25) we have:  

    L=
∂

∂t
 ; R(u) = 0  ;    N (u) = −u𝑢𝑥       ;    𝑔( x,t) = 0  ;    𝑓 =

𝑥

10
 

by (18) we get: 

𝑢0 =  
𝑥

10
 

𝐴0 = −𝑢0𝑢0𝑥 = −
𝑋

10
 .

1

10
 =  −

𝑥

100
 

𝑢1 = − 𝐿−1𝐴0 = − ∫ 𝐴0𝑑𝑡 
𝑡

0

= − ∫ (−
𝑥

100
) 𝑑𝑡

𝑡

0

=
𝑥

100
𝑡 

𝐴1 = − (𝑢0𝑢1𝑋 + 𝑢1𝑢0𝑋) = − 
𝑥

100
 .

𝑡

100
−  

𝑥

100
+  

1

10
=  − 

𝑥𝑡

500
    

𝑢2 = − 𝐿−1𝐴1 = − ∫ (− 
𝑋𝑡

500
)

𝑡

0

𝑑𝑡 =
𝑥𝑡2

1000
 

𝐴2 = −(𝑢0𝑢2𝑋 + 𝑢1𝑢1𝑋 +  𝑢2𝑢0𝑋) = − (3
𝑥𝑡2

10000
)  

𝑢3 = − 𝐿−1𝐴2 = − ∫  (−3
𝑥𝑡2

10000
)

𝑡

0

𝑑𝑡 =
𝑥𝑡3

10000
 

𝐴3 = −(𝑢0𝑢3𝑋 + 𝑢1𝑢2𝑋 +  𝑢2𝑢2𝑋   +   𝑢3𝑢0𝑋 ) =
𝑥𝑡3

25000
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𝑢4 = − 𝐿−1𝐴3 = − ∫ 𝐴3

𝑡

0

𝑑𝑡 =
𝑥𝑡4

100000
 

And so on. 

𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 +𝑢3 + ⋯ =
𝑥

10
  + 

𝑥

100
𝑡 +  

𝑥𝑡2

1000
 + 

𝑥𝑡3

10000
+ ⋯ 

                           =  
𝑥

10
[1 +

𝑡

10
+ (

𝑡

10
)

2

+ (
𝑡

10
)

3

+ ⋯ ] =
𝑥

10
 .

1
𝑡

10
− 1

=  − 
𝑥

𝑡 − 10
       

 𝑢(𝑥, 𝑡) = − 
𝑥

𝑡 − 10
 

 

Example 3.4  Consider the system 

dy

d𝑥 
− 𝑦 = 0                    (26)  

With initial condition;  

y(0) =1                 (27) 

And the exact solution is; 

 y(x) = ex 

From (24) and (25) we have:  

𝐿 =
d

d𝑥 
 ; R(y)=- y ,  N(y)=0,  g=0,   𝑓 = 1  

by (18) we get: 

𝑦0 = 𝑓 = 1 

𝑦1 = −𝐿−1(𝑅(𝑦0)) = ∫ 𝑑𝑥

𝑥

0

= 𝑥 

𝑦2 = −𝐿−1(𝑅(𝑦1)) = ∫ 𝑥 𝑑𝑥

𝑥

0

=
𝑥2

2
 



11 

 

𝑦3 = −𝐿−1(𝑅(𝑦2)) = ∫
𝑥2

2
 𝑑𝑥

𝑥

0

=
𝑥3

6
 

𝑦4 = −𝐿−1(𝑅(𝑦3)) = ∫
𝑥3

6
 𝑑𝑥

𝑥

0

=
𝑥4

24
 

And so on. 

𝑦(𝑥) = 𝑦0 + 𝑦1 + 𝑦2 +  𝑦3 + ⋯ = 1  +  𝑥 + 
𝑥2

2!
 + 

𝑥3

3!
+

𝑥4

4!
+ ⋯ = 𝑒𝑥 

∴  𝑦(𝑥) = 𝑒𝑥 

Considering the first five components, the solution can be approximated as 

𝑦(𝑥) ≈ 𝑦0 + 𝑦1 + 𝑦2 +  𝑦3 +  𝑦4 = 1  +  𝑥 + 
𝑥2

2!
 +  

𝑥3

3!
+

𝑥4

4!
 

For application purposes only few terms of the series will be computed . Table 1 

compares the ADM result with exact solution.      

  

 

 

 

 

 

 

 

 

Table 1 Exact versus Adomian 

 

 

x Exact Adomian 

0 1 1 

0:1 1:1052 1:1052 

0:2 1:2214 1:2214 

0:3 1:3499 1:3498 

0:4 1:4918 1:4917 

0:5 1:6487 1:6484 

0:6 1:8221 1:8214 

0:7 2:0138 2:0122 

0:8 2:2255 2:2224 

0:9 2:4596 2:4538 

1 2.7183 2.7083 
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4. Using ADM to Solve Burger's Equation 

we will use the symbol t instead of T and z instead of Z, then (9) becomes: 

𝜕𝜃

𝜕𝑡
+ 𝜃

𝜕𝜃

𝜕𝑧
−

𝜕2𝜃

𝜕𝑧2
= 0            0 ≤ 𝑧 ≤ 1                                           (28) 

With initial condition;  

𝜃(𝑧, 0) =
1+0.2𝑒0.4𝑧

1+𝑒0.4𝑧
                       (29)  

From (28) and (29) we have:  

    L=
∂

∂t
 ; R(𝜃) = − 𝜃𝑧𝑧  ;  N(𝜃) = 𝜃𝜃𝑧       ;    𝑔(𝑧, 𝑡) = 0  

 ;    𝑓 =
1+0.2 𝑒0.4𝑧

1+𝑒0.4𝑧
        

by (18) and using matlab software we get:  

𝜃0 = 𝑓 =
1+0.2 𝑒0.4𝑧

1+𝑒0.4𝑧
   

𝐴0 = 𝜃𝜃𝑧 =  −
8

125

𝑒0.4𝑧(5 + 𝑒0.4𝑧)

(1 + 𝑒0.4𝑧)3
 

𝜃1 = −𝐿−1[𝑅(𝜃0) + 𝐴0] = − ∫ [𝑅(𝜃0) + 𝐴0]𝑑𝑡 
𝑡

0

=
24

125

𝑡 𝑒0.4𝑧

(1 + 𝑒0.4𝑧)2
 

𝐴1 = −(𝜃0𝜃1𝑧 + 𝜃1𝜃0𝑧) = −
48

3125

𝑡 𝑒0.4𝑧(−5 + 8 𝑒0.4𝑧 + 𝑒0.8 𝑧) 

(1 + 𝑒0.4𝑧)4
 

𝜃2 = −𝐿−1[𝑅(𝜃1) + 𝐴1] = − ∫ [𝑅(𝜃1) + 𝐴1]𝑑𝑡 
𝑡

0

=
72

3125

𝑡2 𝑒0.4𝑧 (−1 + 𝑒0.4𝑧)

(1 + 𝑒0.4𝑧)3
 

𝐴2 = −(𝜃0𝜃2𝑧 + 𝜃1𝜃1𝑧 + 𝜃2𝜃0𝑧)  

= −
144

78125

𝑡2𝑒0.4𝑧(5 − 31 𝑒0.4𝑧 + 13 𝑒0.8 𝑧 + 𝑒1.2 𝑧)

(1 + 𝑒0.4𝑧)5
 

𝜃3 = −𝐿−1[𝑅(𝜃2) + 𝐴2] = − ∫ [𝑅(𝜃2) + 𝐴2]𝑑𝑡 
𝑡

0

=
144

78125

𝑡3 𝑒0.4𝑧 (1 − 4 𝑒0.4𝑧 + 𝑒0.8𝑧)

(1 + 𝑒0.4𝑧)4
 

𝐴3 = −(𝜃0𝜃3𝑧 + 𝜃1𝜃2𝑧 + 𝜃2𝜃1𝑧 + 𝜃3𝜃0𝑧)  

= −
288

1953125

𝑡3𝑒0.4𝑧(−5 + 82 𝑒0.4𝑧 − 132 𝑒0.8 𝑧 + 22 𝑒1.2 𝑧 + 𝑒1.6 𝑧)

(1 + 𝑒0.4𝑧)6
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𝜃4 = −𝐿−1[𝑅(𝜃3) + 𝐴3] = − ∫ [𝑅(𝜃3) + 𝐴3]𝑑𝑡 
𝑡

0

=
216

1953125

𝑡4 𝑒0.4𝑧 (−1 + 11 𝑒0.4𝑧 − 11 𝑒0.8𝑧 + 𝑒1.2 𝑧)

(1 + 𝑒0.4𝑧)5
 

𝐴4 = −(𝜃0𝜃4𝑧 + 𝜃1𝜃3𝑧 + 𝜃2𝜃2𝑧 + 𝜃3𝜃1𝑧 + 𝜃4𝜃0𝑧)  

= −
432

48828125

𝑡4𝑒0.4𝑧(5 − 189 𝑒0.4𝑧 + 724 𝑒0.8 𝑧 − 484 𝑒1.2 𝑧 + 39 𝑒1.6 𝑧 + 𝑒2 𝑧)

(1 + 𝑒0.4𝑧)7
 

𝜃5 = −𝐿−1[𝑅(𝜃4) + 𝐴4] = − ∫ [𝑅(𝜃4) + 𝐴4]𝑑𝑡 
𝑡

0

=
1296

244140625

𝑡5 𝑒0.4𝑧 (1 − 26 𝑒0.4𝑧 + 66 𝑒0.8𝑧 − 26 𝑒1.2 𝑧 +  𝑒1.6 𝑧)

(1 + 𝑒0.4𝑧)6
 

𝐴5 = −(𝜃0𝜃5𝑧 + 𝜃1𝜃4𝑧 + 𝜃2𝜃3𝑧 + 𝜃3𝜃2𝑧 + 𝜃4𝜃1𝑧 + 𝜃5𝜃0𝑧)  

=
2592

6103515625

𝑡5𝑒0.4𝑧(5 − 408 𝑒0.4𝑧 + 3117 𝑒0.8 𝑧 − 4832 𝑒1.2 𝑧 + 1647 𝑒1.6 𝑧 − 72 𝑒2 𝑧 − 𝑒2.4𝑧)

(1 + 𝑒0.4𝑧)8
 

𝜃6 = −𝐿−1[𝑅(𝜃5) + 𝐴5] = − ∫ [𝑅(𝜃5) + 𝐴5]𝑑𝑡 
𝑡

0

=
1296

6103515625

𝑡6 𝑒0.4𝑧 (−1 + 57 𝑒0.4𝑧 − 302 𝑒0.8𝑧 + 302 𝑒1.2 𝑧 − 57 𝑒1.6 𝑧 + 𝑒2 𝑧)

(1 + 𝑒0.4𝑧)7
 

By [14] the exact solution for the system (28) and (29) is: 

𝜃(𝑧, 𝑡) =
1 + 0.2 𝑒(0.4𝑧−2.4𝑡)

1 + 𝑒(0.4𝑧−2.4𝑡)
         (30) 

If we approximate the exact solution by the obtained reslts i.e. 

𝜃(𝑧, 𝑡) ≈ 𝜃0 + 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 + 𝜃5 + 𝜃6         (31) 

We can use Table 2 to compare the ADM result (31) with theexact solution (30). 

z 
t=0.1 t=0.2 t=0.3 

Exact Approximate Exact Approximate Exact Approximate 

0 0.60479977 0.60479977 0.609598157 0.609598157 0.614393782 0.614393782 

0.1 0.596800068 0.596800068 0.601599991 0.601599991 0.606399454 0.606399454 

0.2 0.588802926 0.588802926 0.593600546 0.593600546 0.598400009 0.598400009 

0.3 0.580814732 0.580814732 0.585606218 0.585606218 0.590401843 0.590401843 

0.4 0.572841847 0.572841847 0.577623386 0.577623386 0.582411349 0.582411349 

0.5 0.564890582 0.564890582 0.569658395 0.569658395 0.574434895 0.574434895 

0.6 0.556967182 0.556967182 0.561717532 0.561717532 0.566478805 0.566478805 

0.7 0.5490778 0.5490778 0.553807005 0.553807005 0.558549336 0.558549336 

0.8 0.541228485 0.541228485 0.545932931 0.545932931 0.550652663 0.550652663 

0.9 0.533425161 0.533425161 0.538101309 0.538101309 0.542794856 0.542794856 

1 0.525673608 0.525673608 0.530318008 0.530318008 0.534981867 0.534981867 

Table 2. Exact versus ADM 
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