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Abstract 

       Counts data models cope with the response variable counts, where the number of times that a 

certain event occurs in a fixed point is called count data, its observations consists of non-negative 

integers values {0,1,2,…}. Because of the nature of count data, the response variables are usually 

considered doing not follow normal distribution. Therefore, linear regression is not an appropriate 

method to analysis count data due to the skewed distribution. Hence, using linear regression model to 

analysis count data is likely to bias the results, under these limitations, Poisson regression model and 

“Negative binomial regression” are likely the appropriate models to analysis count data. Sometimes 

researchers may Counts more zeros than the expected. Count data with many Zeros leads to a concept 

called “Zero-inflation”. Data with abundant zeros are especially popular in health, marketing, finance, 

econometric, ecology, statistics quality control, geographical, and environmental fields when counting 

the occurrence of certain behavioral and natural events, such as frequency of alcohol use, take drugs, 

number of cigarettes smoked, the occurrence of earthquakes, rainfall, and etc. Some models have been 

used to analyzing count data such as the “zero- altered Poisson” (ZAP) model and the “negative 

binomial” model. In this paper, the models, Poisson, Negative Binomial, ZAP, and ZANB were been 

used to analyze rainfall data. 

Introduction 

Count data, including zero counts arise in a 

wide variety of application, hence models for 

counts have become widely popular in many 

fields. In the statistics field, one may define the 

count data as that type of observation which 

takes only the non-negative integers value, 

Sometimes researchers may Counts more zeros 

than the expected. Excess zero can be defined 

as Zero-Inflation. Excess zero sometimes may 

be the reason of occurs Over-dispersion 

(variance a lot larger than mean). Over-

dispersion concept is commonly used in the 

analysis of discrete data. Therefore, linear 

regression is not applicable procedure to 

estimate the parameters of predictors due to the 

asymmetric distribution of the response 

variable. Under these limitations, Poisson 

regression and Negative binomial regression 

are used to model the Count data. 

         Lambert (1992) discussed this matter and 

suggested “zero-inflated Poisson” model with 

an application in manufacturing quality also 

suggested by Greene (1994) and “the zero-

altered Poisson” model (Another common 

method to model the excess zeros in count data 

is to employ hurdle models (also called a zero-

altered model) which it developed by Cragg 

(1971)), that have been suggested to cope with 

an overabundance of zeros. Models for Zero-

Inflation have become of interesting so in this 

work I focus on the excess zero case.    
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     In some commonly used discrete 

distributions the mean of the distribution 

related to the variance, the reason of exhibit 

Over-dispersion. That is, Over-dispersion 

appear in the data in which there is evidence 

that variance of the dependent variable is 

greater than the mean. 

     Data with abundant zeros are especially 

popular in health, marketing, finance, 

econometric, ecology, statistics quality control, 

geographical, and environmental fields when 

counting the occurrence of certain behavioral 

and natural events, such as frequency of 

alcohol use, take drugs, number of cigarettes 

smoked, the occurrence of earthquakes, 

rainfall, and etc. 

Famoye and Consul (1992) proposed 

“generalized Poisson” distribution which can 

take consideration of “over-dispersion” of 

Poisson distribution. The extension of 

generalized Poisson distribution is “zero-

inflated generalized Poisson” (ZIGP) 

suggested by Famoye and Singh (2006). 

Some other models have been used to 

analyzing count data such as the “zero-altered 

Poisson” (ZAP) model. In existence of “over-

dispersion” in the data “negative binomial” 

model can be preferred when Poisson mean 

has a gamma distribution. A normal stretch of 

“negative binomial” model to accommodate 

increase zeros in the data is “zero-altered 

negative binomial” (ZANB) model discussed 

by Heilbron (1994). 

        The difference between negative binomial 

and Poisson models is that negative binomial 

models can be used when “over-dispersion” 

exists even in the nonzero part of the 

distribution. In this paper, I focus on the 

models, Poisson, Negative Binomial, ZAP, and 

ZANB to analyze rainfall data. 

 

Poisson Regression Model (PRM)  

         Poisson regression model is a non-linear 

(log-linear) regression models and it is 

convenient for the analysis of count or rate 

data. Poisson regression is similar to the 

multiple regression excepting that the response 

(y) variable is an observed count that follows 

the “Poisson distribution”. Therefore, the 

possible values of (y) are “non-negative 

integers”. Suppose we have a random sample  

y1,…,yn drawn from Poisson distribution, then 

the p.m.f of  yi , As follow    

𝑝(𝑦𝑖 , 𝜇𝑖) =
𝑒−𝜇𝑖𝜇𝑖

𝑦𝑖

𝑦𝑖!
   ; 𝑦𝑖 = 0,1,2, ….           (1) 

By assumptions of GLM, We have 

𝑌𝑖~𝑃(𝜇𝑖) ; 𝐸(𝑌𝑖) = 𝜇𝑖  , 𝑉𝑎𝑟(𝑌𝑖) = 𝜇𝑖  , and 

𝜇𝑖 = 𝑒
𝜂(𝑋𝑖1,…,𝑋𝑖𝑞) = 𝑒𝑋

′𝛽 

Where 𝑋′𝛽 = 𝛼 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑞𝑋𝑖𝑞   and  

𝑋𝑖1, … , 𝑋𝑖𝑞  are the independent variables.  

       Given the p.m.f in (1) and using the 

method of maximum likelihood and assuming 

independence of the observations, We can 

estimate regression parameters as follow   

𝐿 =∏
𝜇𝑦𝑖𝑒−𝜇𝑖

𝑦𝑖!

𝑛

𝑖

 

 

Taking the log of both sides, 

log(𝐿) = ∑ (log(𝜇𝑦𝑖𝑒−𝜇𝑖) − log(𝑦𝑖))
𝑛
𝑖   

 = ∑ (log(𝜇𝑦𝑖) + log (𝑒−𝜇𝑖) −𝑛
𝑖

log(𝑦𝑖!)) 

 = ∑ (𝑦𝑖 log(𝜇𝑖) − 𝜇𝑖 −
𝑛
𝑖 log(𝑦𝑖!)) 

 = ∑ (𝑦𝑖𝑋
′𝛽 − 𝑒𝑋

′𝛽 −𝑛
𝑖 log(𝑦𝑖!)) 
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   By taking partial derivatives of the 

parameters and equalizing the likelihood 

equation to zero 

 

𝜕log (𝐿)

𝜕𝛽
=
𝜕

𝜕𝛽
∑(𝑦𝑖𝑋

′𝛽 −

𝑛

𝑖=1

𝑒𝑋
′𝛽 − log(𝑦𝑖!)) 

= ∑ (𝑦𝑖𝑋 −
𝑛
𝑖=1 𝑋𝑒𝑋

′𝛽) =

0                (2)                      

 

 Applying numerical methods such as “Newton 

Raphson” to solve equation (2). 

        

 “Poisson regression model” is suitable for 

modeling “count data” but in practice, Usually, 

the variance of count data overrides its mean, 

resulting Over-dispersion. Count data 

underlying Over-dispersion and Poisson 

regression model leads to bias results, and 

under estimation of the parameters which 

effects on the standard errors and P-value. This 

Over-dispersion may be due to a random 

unobserved variation component in the 

function of X'. 

 

Negative Binomial Regression Model 

(NBRM)  

      Negative binomial regression is one of 

types of generalized linear models in which the 

“dependent variable”  Y is a count of the 

number of times an event occurs.  Negative 

binomial regression is similar to the multiple 

regression excepting that the response variable 

(y) is an observed count that follows the “ 

negative binomial distribution”. Therefore, the 

possible values of (y) are  “nonnegative 

integers”. 

 

      To address the problem of “over-

dispersion” in “a Poisson regression”, 

“Negative Binomial regression” model has 

been used, by allowing for the random 

variation component in Poisson conditional a 

mean (𝜇) through the parameter (𝛼). Negative 

binomial regression is a popularization of 

Poisson regression which relax the restrictive 

assumption that the variance is equal to the 

mean made by the Poisson model. Suppose 

that y1,…,yn are a random sample from the 

Negative binomial distribution, then the p.m.f 

of  y1 is expressed as 

   

  𝑝 (𝑦𝑖 ;
1

𝛼
, 𝜇𝑖) =

Γ(𝑦𝑖+
1

𝛼
)

Γ(
1

𝛼
)Γ(𝑦𝑖+1)

(
1

1+𝛼𝜇𝑖
)

1

𝛼
(
𝛼𝜇𝑖

1+𝛼𝜇𝑖
)
𝑦𝑖
   

; 𝑦 = 0,1,2, …      (3)         

 

By assumptions of GLM, We have  

 𝑌𝑖~𝑁𝐵 (𝜇𝑖 ,
1

𝛼
)  ;   𝐸(𝑌𝑖) = 𝜇𝑖    ,     

𝑉𝑎𝑟(𝑌𝑖) = 𝜇𝑖 + 𝛼𝜇𝑖
2    

 and     𝜇𝑖 = 𝑒𝜂(𝑋𝑖1,…,𝑋𝑖𝑞) = 𝑒𝑋
′𝛽 

 

Where 𝑋′𝛽 = 𝛼 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑞𝑋𝑖𝑞   and  

𝑋𝑖1, … , 𝑋𝑖𝑞  are the independent variables.  

 

      Given the p.m.f in (3) and using the 

method of maximum likelihood and assuming 

independence of the observations, We can 

estimate regression parameters as follow 

 

𝐿 =∏𝑝(𝑦𝑖
𝑖

; 𝜇𝑖) 

 

𝐿 = 

∏[
Γ(𝑦𝑖 +

1
𝛼
)

Γ(
1
𝛼
)Γ(𝑦𝑖 + 1)

(
1

1 + 𝛼𝜇𝑖
)

1
𝛼
(

𝛼𝜇𝑖
1 + 𝛼𝜇𝑖

)
𝑦𝑖

 ]

𝑛

𝑖
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log(𝐿) = 

∑

[
 
 
 
 
 𝑦𝑖𝑙𝑜𝑔 (

𝛼𝜇𝑖
1 + 𝛼𝜇𝑖

) −
1

𝛼
log(1 + 𝛼𝜇𝑖)

+𝑙𝑜𝑔Γ (𝑦𝑖 +
1

𝛼
)

−𝑙𝑜𝑔Γ(𝑦𝑖 + 1) − 𝑙𝑜𝑔Γ (
1

𝛼
) ]

 
 
 
 
 

𝑛

𝑖=1

 

 

log(𝐿) = 

∑

[
 
 
 
 
 
 𝑦𝑖𝑙𝑜𝑔 (

𝛼𝑒𝑋
′𝛽

1 + 𝛼𝑒𝑋
′𝛽
) −

1

𝛼
log(1 + 𝛼𝑒𝑋

′𝛽)

+𝑙𝑜𝑔Γ (𝑦𝑖 +
1

𝛼
)

−𝑙𝑜𝑔Γ(𝑦𝑖 + 1) − 𝑙𝑜𝑔Γ (
1

𝛼
) ]

 
 
 
 
 
 

𝑛

𝑖=1

 

 

 

     By taking partial derivatives of the 

parameters and equalizing the likelihood 

equation to zero 

 

𝜕log (𝐿)

𝜕𝛽
=

𝜕

𝜕𝛽

[
 
 
 
 

∑

[
 
 
 
 𝑦𝑖𝑙𝑜𝑔 (

𝛼𝑒𝑋
′𝛽

1+𝛼𝑒𝑋
′𝛽
) −

1

𝛼
log(1 + 𝛼𝑒𝑋

′𝛽)

+𝑙𝑜𝑔Γ (𝑦𝑖 +
1

𝛼
)

−𝑙𝑜𝑔Γ(𝑦𝑖 + 1) − 𝑙𝑜𝑔Γ (
1

𝛼
) ]

 
 
 
 

𝑛
𝑖=1

]
 
 
 
 

=

0              (4)     

 

𝜕log (𝐿)

𝜕𝛼
=

𝜕

𝜕𝛼

[
 
 
 
 

∑

[
 
 
 
 𝑦𝑖𝑙𝑜𝑔 (

𝛼𝑒𝑋
′𝛽

1+𝛼𝑒𝑋
′𝛽
) −

1

𝛼
log(1 + 𝛼𝑒𝑋

′𝛽)

+𝑙𝑜𝑔Γ (𝑦𝑖 +
1

𝛼
)

−𝑙𝑜𝑔Γ(𝑦𝑖 + 1) − 𝑙𝑜𝑔Γ (
1

𝛼
) ]

 
 
 
 

𝑛
𝑖=1

]
 
 
 
 

=

0             (5)      

 

 Applying numerical methods such as “Newton 

Raphson” to solve equations (4) and (5). 

 

Zero-Altered Models (ZA) 

       Zero-altered models known as a two-part 

models, Where the first part is a binary 

outcome model governs with binomial 

probability, and the second part is a truncated 

count model. In zero-inflated models assumed 

that count data consist of two types of data 

subgroups, the first subgroup is a set of only 

zeros count (true zeros and false zeros), and 

the second subgroup is a set of count variables 

(with true zeros). While, zero-altered models 

do not discriminate between the types of zeros; 

they are simply zeros. 'The basic idea for the 

zero-altered models is that the outcomes are 

treated as absence and presence zeros data'. 

This means that the outcomes are divided into 

two groups, the first includes all zeros, the 

second includes non-zero counts. 

    Where, The binomial distribution is used to 

model the absence and presence, and a Poisson 

(or negative binomial) distribution for the 

counts. To measure a non-zero count should be 

modified the distribution and exclude the 

possibility of a zero observation, and this is 

called a zero-truncated distribution. 

            

    Assume that the zeros are follow the 

probability mass function (p.m.f)  𝑓1(. ) with 

𝑃(𝑦 = 0) = 𝑓1(0) and 𝑃(𝑦 > 0) = 1 − 𝑓1(0), 

while the positive outcomes are formed by the 

probability mass function truncated at zero 

given by  

𝑓2(𝑦|𝑦 > 0) = 𝑓2(𝑦)/[1 − 𝑓2(0)]. 

Hence, the Hurdle (Altered) probability mass 

function as follow 

 

𝑃(𝑦) = 

{
 

 
𝑓1(0)                                         ; 𝑦 = 0

1 − 𝑓1(0)

1 − 𝑓2(0)
𝑓2(𝑦)                         ; 𝑦 > 0

            (6) 
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Zero-Altered  Poisson Model (ZAPM) 
 

         Suppose that the probability of measuring 

zero observation in the first part of Hurdle 

structure is modelled with a binomial 

distribution, Where  𝜃𝑖 is the probability that  

𝑦𝑖 = 0. 

        Suppose that  be the response variable for 

the positive counts' (truncated at zero) with 

Poisson probability mass function (1).  

              

       Furthermore, let the probability of 

observing 𝑦𝑖 = 0  in the first part of Hurdle 

model (zero count) as follow 

 

𝑃(𝑦𝑖 = 0) = 𝑓1(0) = 𝜃𝑖                   (7) 

 

         Where, the probability of observing  

( 𝑦𝑖 > 0 ) in the second part of Hurdle model 

(positive counts) as follow 

 

𝑃(𝑦𝑖 ; 𝜇𝑖|𝑦𝑖 > 0) = 𝑓2(𝑦) =
𝜇𝑦𝑖𝑒−𝜇𝑖

𝑦𝑖!
           (8) 

 

Therefore, substituting (1), (7), and (8) in 

Zero-Altered (6), we have     

 

𝑃(𝑌𝑖 = 𝑦𝑖) =

{

𝜃𝑖                                                 ; 𝑦𝑖 = 0

(1 − 𝜃𝑖)
𝜇𝑦𝑖𝑒−𝜇𝑖

(1−𝑒−𝜇𝑖)𝑦𝑖!
                 ; 𝑦𝑖 > 0

       (9)    

  

 

By GLM,  𝜇𝑖 = 𝑒
𝑋′𝑖𝛽𝑖   , where X'i are knows 

independent variables, Lambert (1992) 

suggested the functional form for modelling 

the parameter  𝜃𝑖  as logistic function, which is 

given by 

 

𝐿𝑜𝑔 (
𝜃𝑖

1 − 𝜃𝑖
) = 𝑧′𝑖𝛾𝑖 

 

and  therefore, 

𝜃𝑖 =
𝑒𝑧′𝑖𝛾𝑖

1 + 𝑒𝑧′𝑖𝛾𝑖
> 0 

  

Where; Z : the covariates and 𝛾 : are regression 

coefficients. 

     The corresponding Log-Likelihood function 

is given as follow 

 

log(𝐿) = 

∑

[
 
 
 

𝐼(𝑦𝑖 = 0) log(𝜃𝑖) +

𝐼(𝑦𝑖 > 0)(log(1 − 𝜃𝑖)

−𝜇𝑖 + 𝑦𝑖 log(𝜇𝑖)

−log (1 − 𝑒−𝜇𝑖) − log(𝑦𝑖!))]
 
 
 𝑛

𝑖

    (10) 

 

The mean and variance for ZAP are 

 

𝐸(𝑌𝑖) =
1 − 𝜃𝑖
1 − 𝑒−𝜇𝑖

𝜇𝑖 

𝑉𝑎𝑟(𝑌𝑖) = 

1 − 𝜃𝑖
1 − 𝑒−𝜇𝑖

(𝜇𝑖 + 𝜇𝑖
2) − (

1 − 𝜃𝑖
1 − 𝑒−𝜇𝑖

𝜇𝑖)
2 

 

 

Zero-Altered  Negative binomial Model 

(ZANBM)
 

           The same procedure can be easily 

generalized to "Zero-Altered Negative 

Binomial regression" model.            

     Suppose that the probability of measuring 

zero observation in the first part of Hurdle 

structure  is modelled with a binomial 

distribution', Where  𝜃𝑖 is the probability that  

𝑦𝑖 = 0.  

       Suppose that  be the response variable for 

the positive counts' (truncated at zero) with 

Negative binomial probability mass function 

(3). 
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      Furthermore, let the probability of 

observing 𝑦𝑖 = 0 in the first part of Hurdle 

model (zero count) as follow 

 

𝑃(𝑦𝑖 = 0) = 𝑓1(0) = 𝜃𝑖                   (11) 

 

           Where, the probability of observing 

( 𝑦𝑖 > 0 ) in the second part of Hurdle model 

(positive counts) as follow  

 

𝑝(𝑦𝑖 ; 𝜇𝑖|𝑦𝑖 > 0) = 𝑓2(𝑦) =

Γ(𝑦𝑖+
1

𝛼
)

Γ(
1

𝛼
)Γ(𝑦𝑖+1)

(
1

1+𝛼𝜇𝑖
)

1

𝛼
(
𝛼𝜇𝑖

1+𝛼𝜇𝑖
)
𝑦𝑖

             (12)    

 

Therefore, substituting (3), (11), and (12) in 

Zero-Altered (6), we have 

 

𝑃(𝑌𝑖 = 𝑦𝑖) =

{
  
 

  
 
𝜃𝑖                                                              ; 𝑦𝑖 = 0

(1−𝜃𝑖)
Γ(𝑦𝑖+

1
𝛼)

Γ(
1
𝛼)Γ

(𝑦𝑖+1)
(

1

1+𝛼𝜇𝑖
)

1
𝛼
(
𝛼𝜇𝑖
1+𝛼𝜇𝑖

)
𝑦𝑖

(1−(
1

1+𝛼𝜇𝑖
)

1
𝛼
)

          ; 𝑦𝑖 > 0
                

(13) 

 

By GLM,  𝜇𝑖 = 𝑒
𝑋′𝑖𝛽𝑖   , where X'i are knows 

independent variables, Lambert (1992) 

suggested the functional form for modelling 

the parameter  𝜃𝑖  as logistic function, which is 

given by 

 

𝐿𝑜𝑔 (
𝜃𝑖

1 − 𝜃𝑖
) = 𝑧′𝑖𝛾𝑖 

and  therefore, 

𝜃𝑖 =
𝑒𝑧′𝑖𝛾𝑖

1 + 𝑒𝑧′𝑖𝛾𝑖
> 0 

     

Where; Z : the covariates and 𝛾 : are regression 

coefficients. 

 

 

 

 

The corresponding Log-Likelihood function is 

given as follow 

 

log(𝐿) =

∑

[
 
 
 
 
 
 
 

𝐼(𝑦𝑖 = 0) log(𝜃𝑖) +

𝐼(𝑦𝑖 > 0)𝑙𝑜𝑔

(

 
 
(1−𝜃𝑖)

Γ(𝑦𝑖+
1
𝛼)

Γ(
1
𝛼)Γ

(𝑦𝑖+1)
(

1

1+𝛼𝜇𝑖
)

1
𝛼
(
𝛼𝜇𝑖
1+𝛼𝜇𝑖

)
𝑦𝑖

(1−(
1

1+𝛼𝜇𝑖
)

1
𝛼
)

 

)

 
 

]
 
 
 
 
 
 
 

𝑛
𝑖   (14) 

 

The mean and variance for ZANB are 

 

𝐸(𝑌𝑖) =
1−𝜃𝑖

1−𝑃0
𝜇𝑖       where        𝑃0 = (

1

1+𝛼𝜇𝑖
)

1

𝛼
 

 

𝑉𝑎𝑟(𝑌𝑖) = 

1 − 𝜃𝑖
1 − 𝑃0

(𝜇𝑖
2 + 𝜇𝑖 + 𝛼𝜇𝑖

2) − (
1 − 𝜃𝑖
1 − 𝑃0

𝜇𝑖)
2

 

 

 

Model Selection 

          It is important that we have one or more 

a criterion to consider the best results and 

choose the appropriate model for data 

representation. There are several methods that 

provide a measure for selecting the appropriate 

model, The following four methods will be 

used: AIC is an evaluating model fit for a 

given data among different types of non-nested 

models , and its formula is given as 𝐴𝐼𝐶 =

−2𝑙𝑜𝑔𝐿 + 2𝑘  , BIC is another estimator for 

evaluating model fit for a given data among 

different types of non-nested models, and its 

formula is given as 𝐵𝐼𝐶 = −2𝑙𝑜𝑔𝐿 + 𝑘𝑙𝑜𝑔𝑛  , 

Likelihood ratio test (LR) is a statistical test 

used to compare two nested models, its 

formula is given as  𝐿𝑅 = −2log (𝐿1 𝐿2)⁄ , and 
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 Vuong test (V) is a statistical test used to 

compare non-nested models, It is defined as :  

𝑉 = (√𝑛(
1

𝑛
∑𝑚𝑖)/(√

1

𝑛
∑(𝑚𝑖 − �̅�)

2

𝑛

𝑖

)

𝑛

𝑖

 

Where 𝑚𝑖 = log(𝑃1(𝑌𝑖|𝑋𝑖)) − log(𝑃2(𝑌𝑖|𝑋𝑖)) . 

If  V>1.96 , then the first model is preferred. If  

V<-1.96, then the second one is preferred. If  

 | V | <1.96, none of the models are preferred. 

 

 Data Analysis 

       Data were collected from database of the 

Meteorology and Seismology Organization in 

Iraq for Diwaniya weather station. The  

weather station are located in central Iraq, 

specifically in the city of Diwaniya (about 116 

kilometers south of Baghdad). 

The count response variable of interest to be 

modeled "Rainfall hours" measured at 

Diwaniya weather station. The predictor 

variables consists of six climate variables 

derived from Iraqi Meteorological 

Organization and Seismology database, which 

include measurements of rainfall, sea pressure, 

station pressure, wind speed, temperature, and 

humidity, as shown in Table (1). Data contain 

observations of (731) for two years (2016 and 

2017).  

 

Table 1. Summary statistics of explanatory variables and response used in our count data regression 

models in Diwaniya weather station. 

variables 
Minimum 

value 

First 

quarter 
Median Mean 

Third 

quarter 

Maximum 

value 

Wind speed ( m/s) 0 1.5 2 2.098 2.5 7.7 

Temperature (°C) 4.2 17 27.3 25.9 35.4 42.6 

Station pressure  

(1bar/1000) 
0.9933 1.0033 1.0095 1.0095 1.0157 1.0274 

Sea pressure 

(1bar/1000) 
0.9959 1.0057 1.0120 1.0120 1.0185 1.0301 

Humidity (%) 16.5 29.55 38 43.74 55.9 95.4 

Rainfall (hours) 0 0 0 0.4186 0 17 

 

The distribution of the number of non-rainfall hours in Diwaniya weather stations for the two years is 

shown in figure 1  
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Poisson Regression 

The model fit statistics and estimated 

coefficients of Poisson regression model are 

given in Table 2 and Table 3. 

 

 

Table 2. Fit statistics of Poisson regression 

model, 2016-2017 Rainfall count data 

criterions Diwaniya weather 

station 

-2Log Likelihood 1098.952 

AIC 1110.952 

BIC 1138.518 

 

Table 3. Estimated coefficients  of Poisson regression model, 2016-2017 Rainfall count data in 

Diwaniya weather station 

Parameter  

 

Estimate 

 

Standard Error 

 

z Value 

 

Pr > |z| 

 

Intercept 55.395032 18.716753 2.96 0.00308 

Wind speed 0.492547 0.046956 10.49 <2e-16 

Temperature 0.003711 0.020349 0.182 0.85528 

Station pressure -18.668579 137.082777 -0.136 0.89168 

Sea pressure -42.194381 140.465486 -0.3 0.76388 

Humidity 0.075247 0.005224 14.404 <2e-16 

 

 

Since the variance of count data usually 

exceeds the conditional mean, the equality of 

variance and mean should always be checked 

after the development of a Poisson regression. 

We conducted a test of over-dispersion and 

The results of this test are shown below 

likelihood ratio test of   𝐻°: Poisson, as 

restricted NB model, Critical value of test 

statistic at the alpha= 0.00 level: 2.7055, For 

Diwaniya weather station, Chi-Square test 

statistic= 337.7449, p-value = <2.2e-16. The 

significance of 
2X -statistics implies the 

existence of over-dispersion. Therefore, in the 

next section, we develop Negative Binomial 

model to handle the issue of over-dispersion. 

 

 

Negative Binomial Regression 

In order to address the issue of over-dispersion,  

we used The model fit statistics and estimated 

coefficients of Negative Binomial regression 

model are given in Table 4 and Table 5. 

 

Table 4. Fit statistics of Negative Binomial 

regression model, 2016-2017 Rainfall count 

data 

criterions Diwaniya weather 

station 

-2Log Likelihood 761.2069 

AIC 775.2069 

BIC 807.3677 
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Table 5. Estimated coefficients of Negative Binomial regression model, 2016-2017 Rainfall count data 

in Diwaniya weather station 

Parameter  

 
Estimate 

 

Standard Error 

 

z Value 

 

Pr > |z| 

 

Intercept 94.75651 47.39353 1.999 0.0456 

Wind speed 0.70176 0.13645 5.143 2.71e-07 

Temperature -0.07932 0.04606 -1.722 0.0851 

Station pressure 424.33591 544.11577 0.78 0.4355 

Sea pressure -520.93171 549.80107 -0.947 0.3434 

Humidity 0.06081 0.01285 4.734 2.20e-06 

Alpha 0.1592 0.0311   

 

 

Lambert (1992) and Mullahy (1986) indicated 

that Negative Binomial regression might not be 

an appropriate model for count data with 

excess zeros because it increases the 

probabilities of both zero and non-zero counts. 

Since the initial data analysis of our data 

implied excess zeros (more than 89.5% of the 

responses in Diwaniya weather station , have 

non- Rainfall days (rainfall hours are zeros)), 

we develop Zero-inflated regression to handle 

excessive number of zeros.  

 

Zero-Altered Regression Models (ZARM)  

To fixable the excess zeros problem in non-

Rainfall days (rainfall hours are zeros), We 

used Zero-Altered regression models. 

 

 

Zero- Altered Poisson Regression (ZAPR) 

Model   

       We used the same "explanatory variables" 

in both parts of the ZAPR 'model. The model 

fit statistics and estimated coefficients of 

ZAPR model are given in Table 6 and Table 7. 

 

Table 6. Fit statistics of  Zero- Altered Poisson 

Regression (ZAPR) model, 2016-2017 Rainfall 

count data 

criterions Diwaniya weather 

station 

-2Log Likelihood 656 

AIC 680.0924 

BIC 695.5665 
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Table 7. Estimated coefficients of Zero- Altered Poisson Regression (ZIPR) model, 2016-2017 Rainfall 

count data in Diwaniya weather station 

Parameter Estimate Standard Error z Value Pr > |z| 

Poisson _ Intercept -44.686641 22.170210 -2.016 0.04384 

Poisson _ Wind speed 0.037957 0.052565 0.722 0.47023 

Poisson _ Temperature 0.059552 0.022478 2.649 0.00807 

Poisson _ Station pressure -17.80448 172.049507 -0.103 0.91758 

Poisson _ Sea pressure 60.294751 176.933391 0.341 0.73327 

Poisson _ Humidity 0.025634 0.005281 4.854 1.21e-06 

Logit _ Intercept  221.94421 52.48495 4.229 2.35e-05 

Logit _ Wind speed 0.99552 0.15605 6.380 1.78e-10 

Logit _ Temperature -0.14313 0.04938 -2.898 0.00375 

Logit _ Station pressure 608.01873 625.13393 0.973 0.33074 

Logit _ Sea pressure -830.79921 634.53527 -1.309 0.19043 

Logit _ Humidity 0.08042 0.0141 5.703 1.18e-08 

 

Zero- Altered Negative Binomial Regression 

(ZANBR) Model  

       We used the same explanatory variables in 

both parts of the ZANBR 'model. The model 

fitting statistics and parameters estimation of 

ZANBR model are given in Table 8 and Table 

9. 

Table 8. Fit statistics of  Zero- Altered 

Negative Binomial Regression (ZANBR) 

model, 2016-2017 Rainfall count data 

criterions Diwaniya weather 

station 

-2Log Likelihood 633.4 

AIC 659.4968 

BIC 672.9665 

 

Table 9. Estimated coefficients of Zero- Altered Negative Binomial Regression (ZANBR) model, 

2016-2017 Rainfall count data in Diwaniya weather station 

Parameter  

 

Estimate 

 

Standard Error 

 

z Value 

 

Pr > |z| 

 

NB _ Intercept -47.442209 31.52839 -1.505 0.13239 

NB _ Wind speed 0.043539 0.074526 0.584 0.55908 

NB _ Temperature 0.064675 0.031909 2.027 0.04267 

NB _ Station pressure 6.625742 286.919839 0.023 0.98158 

NB _ Sea pressure 38.253228 293.890203 0.13 0.89644 

NB _ Humidity 0.028987 0.007821 3.706 0.00021 

Logit _ Intercept  221.94421 52.48495 4.229 2.35e-05 

Logit _ Wind speed 0.99552 0.15605 6.38 1.78e-10 

Logit _ Temperature -0.14313 0.04938 -2.898 0.00375 

Logit _ Station pressure 608.01873 625.13393 0.973 0.33074 

Logit _ Sea pressure -830.79921 634.53527 -1.309 0.19043 

Logit _ Humidity 0.08042 0.0141 5.703 1.18e-08 

Log (Alpha)  1.291631 0.412397 3.132 0.00174 

 

 

 

 



11 
 

Model Comparison  

    We used  Vuong test to compare non-nested 

models and Likelihood ratio test to compare 

nested models, The results of all the  Vuong 

tests are summarized in Table 10 and the 

results of all Likelihood ratio tests are 

summarized in Table 11. Furthermore, the 

results of all information criterions (fit 

statistics) for all models were summarized in 

Table 12. 

 

Table 10. Model comparison by Vuong test for 

non-nested models for Diwaniya weather 

station  

Model Vuong Statistic Best model 

ZAP vs NB 3.821809 ZAP 

ZANB vs ZAP 1.514966 NONE 

ZANB vs P 7.495628 ZANB 

 

Note: “If V > 1.96, the first model is preferred. 

If V < -1.96, then the second one is preferred. 

If |V |<1.96, none of the models are preferred 

”. 

Table 11. Model comparison by likelihood 

ratio test for nested models for Diwaniya 

weather station 

Model Likelihood Ratio 

Test ( p-value) 

Best 

model 

P vs NB 0.7 NB 

P vs ZAP 1.03 ZAP 

NB vs 

ZANB 
0.37 ZANB 

 

Note:  

oH : the simpler model is preferred.  

1H  : the more complex model is preferred.  

If p-value < 0.05, we reject oH , 1H  is 

preferred.  

 

Table 12. Fit statistics of  all models, 2016-

2017 Rainfall count data Diwaniya weather 

station 

models 

criterions 

-2Log 

Likelihood 
AIC 

BIC 

Poisson 

regression 
1098.952 1110.952 

1138.518 

NB 

regression 
761.2069 775.2069 

807.3677 

ZAPR 656 680.0924 695.5665 

ZANBR 633.4* 659.4968* 672.9665* 

 

*The best model. 

 

Application results 

      After estimating the regression parameters 

for all models using real counting data. The 

test criteria values for all models were obtained 

for the purpose of comparing these models and 

selecting the best ones to represent our data. 

The results in Table 12 indicated that Zero-

Altered Negative Binomial (ZANBR) 

regression model was the best count data 

model for our data,  Although it is hard to 

distinguish Negative Binomial, and Zero-

Altered Poisson (ZAPR) regression models, 

they are better than Poisson regression model. 
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 اختيار افضل نموذج لملائمة بيانات العد لهطول الامطار باستخدام بعض النماذج الصفرية مع تطبيق عملي 

 . احمد نعيم فليحأ.م. دلؤي حبيب هاشم، 

 قسم الاحصاء، كلية الادارة والاقتصاد، جامعة القادسية

 

 نبذة مختصرة

 ثابتت  نقطت  فت  معتي  حتد  فيهتا يحتد  التت  المترات عتدد علت  يطُلت  حيت  ، الاستتااب  متغير أعداد مع العد بيانات نماذج تتعامل      

ا {.…،0،1،2} ستالة  غيتر صحيح  قيم م  مشاهداته وتتكون ، العدد بيانات  تعُتةتر الاستتااب  متغيترات فتنن ، العتد بيانتات لطةيعت  نظترا

 مت  ، وبالتتال  .المنحرف  التوزيع بسةب العد لتحليل بيانات مناسة  طريق  الخط  الانحدار يعد لا ، لذلك .الطةيع   التوزيع تتةع لا عادةا 

 يكتون أن المترجح م  ، القيود هذه ظل ف  ، النتائج ف  التحيز إل  بيانات العد لتحليل  الخط  الانحدار نموذج استخدام يؤدي أن المرجح

 بحستا  أحياناتا الةتاحوون يقتوم قتد .العتد  لتحليتل بيانتات المناستب النمتوذج هتو الستالب الحتدي  ثنائ  الانحدار و بوايسون الانحدار نموذج

 الأصتفار ذات الةيانتات . "الصتفري التضتخم" يستم  مفهتوم إلت  يتؤدي الأصفار م  العديد مع بيانات العد  إن .المتوقع  م  أكور أصفار

 جتتتودة ومراقةتت  والإيكولوجيتتا القياستتت  والاقتصتتاد والتمويتتل والتستتتوي  الصتتح  ماتتالات فتتت  خاصتت  تظهتتر بصتتتورة واستتع   التتوفيرة

 وتنتاو  الكحتو  تعتاط  تكترار موتل ، والطةيعيت  الستلوكي  الأحتدا  بعض حسا  وكذلك عند والةيئي  الاغرافي  والماالات الإحصاءات

 موتل العتد بيانتات لتحليتل النمتاذج بعتض استتخدم  وقتد .وغيرهتا  الأمطتار وهطتو  الزلاز  وقوع و المدخن  الساائر م  وعدد الأدوي 

 بوايستون ونمتوذج نمتوذج  استتخدام تتم ، الورقت  هذه ف ". السالب الحدي  ذو" ونموذجZero-Altered  Poisson)  )(ZAP ) نموذج

 Zero-Altered  Negative binomial)ونمتوذج )  ، ZAP ونمتوذج   Zero-Altered  Poissonالستالب ونمتوذج  الحتدي  ثنائ  

ZANB الأمطار هطو  بيانات لتحليل. 

 

 

 


