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Abstract 

        Count data, including zero counts arise in a wide variety of application, hence models for counts 

have become widely popular in many fields. In the statistics field, one may define the count data as that 

type of observation which takes only the non-negative integers value. Sometimes researchers may 

Counts more zeros than the expected. Excess zero can be defined as Zero-Inflation. Data with abundant 

zeros are especially popular in health, marketing, finance, econometric, ecology, statistics quality 

control, geographical, and environmental fields when counting the occurrence of certain behavioral and 

natural events, such as frequency of alcohol use, take drugs, number of cigarettes smoked, the 

occurrence of earthquakes, rainfall, and etc.  Some models have been used to analyzing count data such 

as the zero-inflated Poisson (ZIP) model and the negative binomial model. In this paper, the models, 

Poisson, Negative Binomial, ZIP, and ZINB were been used to analyze rainfall data. 

 

Introduction 

             Count data reflects the number of 

occurrence of certain characteristic in a fixed 

period of time, that is, Count data are non-

negative integers {0,1,2,3,...}. Count data 

becomes popular in a wide areas of interesting 

sciences; such as finance, marketing, health 

care, weather, and others. Count data with 

excessive zeros are prevalent in a wide variety 

of disciplines, in many of these areas of 

sciences, Sometimes researchers may Counts 

more zeros than the expected. Excess zero can 

be defined as Zero-Inflation. Excess zero 

sometimes may be the reason of occurs Over-

dispersion (variance a lot larger than mean). 

Over-dispersion concept is commonly used in 

the analysis of discrete data. Therefore, linear 

regression is not applicable procedure to 

estimate the parameters of predictors due to the 

asymmetric distribution of the response 

variable. Under these limitations, Poisson 

regression and Negative binomial regression 

are used to model the Count data. 

          Lambert (1992) discussed this matter 

and suggested “zero-inflated Poisson” model 

with an application in manufacturing quality 

also suggested by Greene (1994). Models for 

Zero-Inflation have become of interesting so in 

this work I focus on the excess zero case.   

           In some commonly used discrete 

distributions the mean of the distribution 

related to the variance, the reason of exhibit 

Over-dispersion. That is, Over-dispersion 

appear in the data in which there is evidence 

that variance of the dependent variable is 

greater than the mean. 

           Data with abundant zeros are especially 

popular in health, marketing, finance, 
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econometric, ecology, statistics quality control, 

geographical, and environmental fields when 

counting the occurrence of certain behavioral 

and natural events, such as frequency of 

alcohol use, take drugs, number of cigarettes 

smoked, the occurrence of earthquakes, 

rainfall, and etc. 

Famoye and Consul (1992) proposed 

“generalized Poisson” distribution which can 

take consideration of “over-dispersion” of 

Poisson distribution. The extension of 

generalized Poisson distribution is “zero-

inflated generalized Poisson” (ZIGP) 

suggested by Famoye and Singh (2006). 

Some other models have been used to 

analyzing count data such as the “zero-inflated 

Poisson” (ZIP) model. In existence of “over-

dispersion” in the data “negative binomial” 

model can be preferred when Poisson mean 

has a gamma distribution. A normal stretch of 

“negative binomial” model to accommodate 

increase zeros in the data is “zero-inflated 

negative binomial” (ZINB) model discussed by 

Mwalili (2008). 

        The difference between negative binomial 

and Poisson models is that negative binomial 

models can be used when “over-dispersion” 

exists even in the nonzero part of the 

distribution
[15]

. In this paper, I focus on the 

models, Poisson, Negative Binomial, ZIP, and 

ZINB to analyze rainfall data. 

Poisson Regression Model (PRM)  

             Poisson regression model is a non-

linear (log-linear) regression models and it is 

convenient for the analysis of count or rate 

data. Poisson regression is similar to the 

multiple regression excepting that the response 

(y) variable is an observed count that follows 

the “Poisson distribution”. Therefore, the 

possible values of (y) are “non-negative 

integers”. Suppose we have a random sample  

y1,…,yn drawn from Poisson distribution, then 

the p.m.f of  yi , As follow    

𝑝(𝑦𝑖 , 𝜇𝑖) =
𝑒−𝜇𝑖𝜇𝑖

𝑦𝑖

𝑦𝑖!
   ; 𝑦𝑖 = 0,1,2, ….           (1) 

By assumptions of GLM, We have 

𝑌𝑖~𝑃(𝜇𝑖) ; 𝐸(𝑌𝑖) = 𝜇𝑖  , 𝑉𝑎𝑟(𝑌𝑖) = 𝜇𝑖  , and 

𝜇𝑖 = 𝑒
𝜂(𝑋𝑖1,…,𝑋𝑖𝑞) = 𝑒𝑋

′𝛽 

Where 𝑋′𝛽 = 𝛼 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑞𝑋𝑖𝑞   and  

𝑋𝑖1, … , 𝑋𝑖𝑞  are the independent variables.  

           Given the p.m.f in (1) and using the 

method of maximum likelihood and assuming 

independence of the observations, We can 

estimate regression parameters as follow   

𝐿 =∏
𝜇𝑦𝑖𝑒−𝜇𝑖

𝑦𝑖!

𝑛

𝑖

 

 

Taking the log of both sides, 

log(𝐿) = ∑ (log(𝜇𝑦𝑖𝑒−𝜇𝑖) − log(𝑦𝑖))
𝑛
𝑖   

 = ∑ (log(𝜇𝑦𝑖) + log (𝑒−𝜇𝑖) −𝑛
𝑖

log(𝑦𝑖!)) 

 = ∑ (𝑦𝑖 log(𝜇𝑖) − 𝜇𝑖 −
𝑛
𝑖 log(𝑦𝑖!)) 

 = ∑ (𝑦𝑖𝑋
′𝛽 − 𝑒𝑋

′𝛽 −𝑛
𝑖 log(𝑦𝑖!)) 

           

           By taking partial derivatives of the 

parameters and equalizing the likelihood 

equation to zero 

 

𝜕log (𝐿)

𝜕𝛽
=
𝜕

𝜕𝛽
∑(𝑦𝑖𝑋

′𝛽 −

𝑛

𝑖=1

𝑒𝑋
′𝛽 − log(𝑦𝑖!)) 

= ∑ (𝑦𝑖𝑋 −
𝑛
𝑖=1 𝑋𝑒𝑋

′𝛽) = 0      (2)                      

 

 Applying numerical methods such as “Newton 

Raphson” to solve equation (2). 

        

 “Poisson regression model” is suitable for 

modeling “count data” but in practice, Usually, 
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the variance of count data overrides its mean, 

resulting Over-dispersion. Count data 

underlying Over-dispersion and Poisson 

regression model leads to bias results, and 

under estimation of the parameters which 

effects on the standard errors and P-value. This 

Over-dispersion may be due to a random 

unobserved variation component in the 

function of X'. 

 

Negative Binomial Regression Model 

(NBRM)  

          Negative binomial regression is one of 

types of generalized linear models in which the 

“dependent variable”  Y is a count of the 

number of times an event occurs.  Negative 

binomial regression is similar to the multiple 

regression excepting that the response variable 

(y) is an observed count that follows the “ 

negative binomial distribution”. Therefore, the 

possible values of (y) are  “nonnegative 

integers”. 

 

           To address the problem of “over-

dispersion” in “a Poisson regression”, 

“Negative Binomial regression” model has 

been used, by allowing for the random 

variation component in Poisson conditional a 

mean (𝜇) through the parameter (𝛼). Negative 

binomial regression is a popularization of 

Poisson regression which relax the restrictive 

assumption that the variance is equal to the 

mean made by the Poisson model. Suppose 

that y1,…,yn are a random sample from the 

Negative binomial distribution, then the p.m.f 

of  y1 is expressed as 

   

  𝑝 (𝑦𝑖 ;
1

𝛼
, 𝜇𝑖) =

Γ(𝑦𝑖+
1

𝛼
)

Γ(
1

𝛼
)Γ(𝑦𝑖+1)

(
1

1+𝛼𝜇𝑖
)

1

𝛼
(
𝛼𝜇𝑖

1+𝛼𝜇𝑖
)
𝑦𝑖
  

 ; 𝑦 = 0,1,2, …     (3)         

 

By assumptions of GLM, We have  

 𝑌𝑖~𝑁𝐵 (𝜇𝑖 ,
1

𝛼
) ;   𝐸(𝑌𝑖) = 𝜇𝑖   ,    𝑉𝑎𝑟(𝑌𝑖) =

𝜇𝑖 + 𝛼𝜇𝑖
2    

 and   𝜇𝑖 = 𝑒𝜂(𝑋𝑖1,…,𝑋𝑖𝑞) = 𝑒𝑋
′𝛽 

 

Where 𝑋′𝛽 = 𝛼 + 𝛽1𝑋𝑖1 +⋯+ 𝛽𝑞𝑋𝑖𝑞   and  

𝑋𝑖1, … , 𝑋𝑖𝑞  are the independent variables.  

 

            Given the p.m.f in (3) and using the 

method of maximum likelihood and assuming 

independence of the observations, We can 

estimate regression parameters as follow 

 

𝐿 =∏𝑝(𝑦𝑖
𝑖

; 𝜇𝑖) 

 

 

𝐿 =∏

[
 
 
 
 
 Γ (𝑦𝑖 +

1
𝛼
)

Γ (
1
𝛼
) Γ(𝑦𝑖 + 1)

(
1

1 + 𝛼𝜇𝑖
)

1
𝛼

(
𝛼𝜇𝑖

1 + 𝛼𝜇𝑖
)
𝑦𝑖

 
]
 
 
 
 
 

𝑛

𝑖

 

 

log(𝐿)

=∑

[
 
 
 
 
 𝑦𝑖𝑙𝑜𝑔 (

𝛼𝜇𝑖
1 + 𝛼𝜇𝑖

) −
1

𝛼
log(1 + 𝛼𝜇𝑖)

+𝑙𝑜𝑔Γ (𝑦𝑖 +
1

𝛼
)

−𝑙𝑜𝑔Γ(𝑦𝑖 + 1) − 𝑙𝑜𝑔Γ (
1

𝛼
) ]

 
 
 
 
 

𝑛

𝑖=1

 

 

log(𝐿)

=∑

[
 
 
 
 
 
 𝑦𝑖𝑙𝑜𝑔 (

𝛼𝑒𝑋
′𝛽

1 + 𝛼𝑒𝑋
′𝛽
) −

1

𝛼
log(1 + 𝛼𝑒𝑋

′𝛽)

+𝑙𝑜𝑔Γ (𝑦𝑖 +
1

𝛼
)

−𝑙𝑜𝑔Γ(𝑦𝑖 + 1) − 𝑙𝑜𝑔Γ (
1

𝛼
) ]

 
 
 
 
 
 

𝑛

𝑖=1

 

          By taking partial derivatives of the 

parameters and equalizing the likelihood 

equation to zero 
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𝜕 log(𝐿)

𝜕𝛽
=
𝜕

𝜕𝛽
 

[
 
 
 
 

∑

[
 
 
 
 𝑦𝑖𝑙𝑜𝑔 (

𝛼𝑒𝑋
′𝛽

1+𝛼𝑒𝑋
′𝛽
) −

1

𝛼
log(1 + 𝛼𝑒𝑋

′𝛽)

+𝑙𝑜𝑔Γ (𝑦𝑖 +
1

𝛼
) − 𝑙𝑜𝑔Γ(𝑦𝑖 + 1)

−𝑙𝑜𝑔Γ (
1

𝛼
) ]

 
 
 
 

𝑛
𝑖=1

]
 
 
 
 

=

0       (4)     

 

𝜕 log(𝐿)

𝜕𝛼
=
𝜕

𝜕𝛼
 

[
 
 
 
 

∑

[
 
 
 
 𝑦𝑖𝑙𝑜𝑔 (

𝛼𝑒𝑋
′𝛽

1+𝛼𝑒𝑋
′𝛽
) −

1

𝛼
log(1 + 𝛼𝑒𝑋

′𝛽)

+𝑙𝑜𝑔Γ (𝑦𝑖 +
1

𝛼
) − 𝑙𝑜𝑔Γ(𝑦𝑖 + 1) −

𝑙𝑜𝑔Γ (
1

𝛼
) ]

 
 
 
 

𝑛
𝑖=1

]
 
 
 
 

=

0    (5)      

 

Applying numerical methods such as “Newton 

Raphson” to solve equations (4) and (5). 

 

Zero-Inflated Models (ZI) 

           Excess zeros in certain population is 

lead to Zero-Inflation which is made up two 

types of data subgroups (data generation), the 

first subgroup is a set of only zeros count (true 

zeros and false zeros), and the second 

subgroup is a set of count variables (with true 

zeros) that distributed according to Poisson 

distribution (Lambert 1992, Van den Broek 

1995). 

 

Zero-Inflated Poisson Regression Model 

(ZIPR) 

          The “zero-inflated Poisson” regression is 

used for modelling count data that show over-

dispersion and zero counts (excess zeros). This 

model consider there are two types of data 

sources, the first source is zero type and the 

second is comes from data follows Poisson 

distribution. 

          According to Lambert (1992), the 

response variable Yi is independent with  

𝑌𝑖~0    with probability (𝜃𝑖)   and  𝑌𝑖~ Poisson  

𝜇𝑖  with probability (1 − 𝜃𝑖) 

Where 𝜃𝑖 is the probability that observation (i) 

is in the always zeros subgroup. 

Therefore, 

 

Pr(𝑌𝑖 = 0) = 𝜃𝑖 + (1 − 𝜃𝑖) × 

Pr(𝐶𝑜𝑢𝑛𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑡 (𝑖)𝑔𝑖𝑣𝑒𝑠 𝑎 𝑧𝑒𝑟𝑜)     (6)         

 

By assumption the iY follows a Poisson 

distribution with mean 𝜇𝑖 

𝑝(𝑦𝑖 ; 𝜇𝑖|𝑦𝑖 ≥ 0) =
𝑒−𝜇𝑖𝜇𝑖

𝑦𝑖

𝑦𝑖!
    

 

Subsequently 

The term  

Pr (𝐶𝑜𝑢𝑛𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑡 (𝑖)𝑔𝑖𝑣𝑒𝑠 𝑎 𝑧𝑒𝑟𝑜) 

is given by 

 

𝑝(𝑦𝑖=0; 𝜇𝑖|𝑦𝑖 ≥ 0) =
𝑒−𝜇𝑖𝜇0

0!
= 𝑒−𝜇𝑖    

 

Hence, Equation (6) can now be rewritten as 

 

Pr(𝑌𝑖 = 0) = 𝜃𝑖 + (1 − 𝜃𝑖)𝑒
−𝜇𝑖              (7) 

  

With probability that  Yi  is a non-zero count, 

we have 

 

Pr(𝑌𝑖 = 𝑦𝑖) =  

+(1 − 𝜃𝑖) × Pr(𝐶𝑜𝑢𝑛𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)               (8) 

 

Hence, Equation (8) can be rewritten as follow 

 

𝑃𝑟(𝑌𝑖 = 𝑦𝑖|𝑦𝑖 > 0) = 

(1 − 𝜃𝑖)
𝑒−𝜇𝑖𝜇𝑖

𝑦𝑖

𝑦𝑖!
        (9)  
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Furthermore, The probability density function 

for a ZIP model is given by 

 

𝑝(𝑌𝑖 = 𝑦𝑖) = {

𝜃𝑖 + (1 − 𝜃𝑖)𝑒
−𝜇𝑖    𝑖𝑓𝑦𝑖 = 0

(1 − 𝜃𝑖)
𝑒−𝜇𝑖𝜇

𝑖

𝑦𝑖

𝑦𝑖!
          𝑖𝑓𝑦𝑖 > 0  

                   

(10) 

 

             By GLM
[15]

,  𝜇𝑖 = 𝑒
𝑋′𝑖𝛽𝑖   , where X'i 

are knows independent variables, Lambert 

(1992) suggested the functional form for 

modelling the parameter  𝜃𝑖  as logistic 

function, which is given by 

 

𝐿𝑜𝑔 (
𝜃𝑖

1 − 𝜃𝑖
) = 𝑧′𝑖𝛾𝑖 

and  therefore, 

𝜃𝑖 =
𝑒𝑧′𝑖𝛾𝑖

1 + 𝑒𝑧′𝑖𝛾𝑖
> 0 

  

Where; Z : the covariates and 𝛾 : are regression 

coefficients. 

               

 The corresponding Log-Likelihood function is 

given as follow 

 

log(𝐿) = 

∑[

𝐼(𝑦𝑖 = 0) log(𝜃𝑖 + (1 − 𝜃𝑖)𝑒
−𝜇𝑖 ) +

𝐼(𝑦𝑖 > 0)(log(1 − 𝜃𝑖) − 𝜇𝑖 +

𝑦𝑖 log(𝜇𝑖) − log(𝑦𝑖!))

]

𝑛

𝑖

   (11) 

 

Subsequently 

𝐸(𝑦𝑖|𝑥𝑖) = 𝜇𝑖(1 − 𝜃𝑖) 

𝑉𝑎𝑟(𝑦𝑖|𝑥𝑖) = (1 − 𝜃𝑖)(𝜇𝑖 + 𝜃𝑖𝜇𝑖
2) 

 

 

Zero-Inflated Negative Binomial Regression 

Model (ZINB) 

         In the same way “zero-inflated Negative 

binomial” regression is used for modelling 

count data that show over-dispersion and zero 

counts (excess zeros). This model consider 

there are two types of data sources, the first 

source is zero type and the second is comes 

from data follows Negative binomial 

distribution. 

According to Lambert (1992), response 

variable iY  is independent with  

         𝑌𝑖~0  with probability (𝜃𝑖) and 

𝑌𝑖~𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙  (𝜇𝑖 ,
1

𝛼
) with 

probability (1 + 𝜃𝑖) 

 

Therefore, 

 

Pr(𝑌𝑖 = 0) = 𝜃𝑖 + (1 − 𝜃𝑖)  × 

Pr(𝐶𝑜𝑢𝑛𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑡 (𝑖)𝑔𝑖𝑣𝑒𝑠 𝑎 𝑧𝑒𝑟𝑜)   (12) 

 

     by assuming the Yi follows a Negative 

binomial distribution with mean 𝜇𝑖 

  

𝑝 (𝑦𝑖 ;
1

𝛼
, 𝜇𝑖|𝑦𝑖 ≥ 0) =

Γ(𝑦𝑖+
1

𝛼
)

Γ(
1

𝛼
)Γ(𝑦𝑖+1)

(
1

1+𝛼𝜇𝑖
)

1

𝛼
(
𝛼𝜇𝑖

1+𝛼𝜇𝑖
)
𝑦𝑖
       

 

Subsequently 

 

         The term  

Pr(𝐶𝑜𝑢𝑛𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑡 (𝑖)𝑔𝑖𝑣𝑒𝑠 𝑎 𝑧𝑒𝑟𝑜) is 

given by 

𝑝 (𝑦𝑖 = 0;
1

𝛼
, 𝜇𝑖|𝑦𝑖 ≥ 0) = (

1

1 + 𝛼𝜇𝑖
)

1
𝛼

 

 

Hence, Equation (12) can now be written as 

Pr(𝑌𝑖 = 0) = 𝜃𝑖 + (1 − 𝜃𝑖) (
1

1 + 𝛼𝜇𝑖
)

1
𝛼
       

(13) 

  

for the probability that  Yi is a non-zero count; 
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Pr(𝑌𝑖 = 𝑦𝑖) =

(1 − 𝜃𝑖) × Pr(𝐶𝑜𝑢𝑛𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)            (14)   

 

Hence, Equation (14) can be rewritten as 

follows 

 

𝑝(𝑌𝑖 = 𝑦𝑖|𝑦𝑖 > 0) = (1 − 𝜃𝑖)
Γ (𝑦𝑖 +

1
𝛼
)

Γ (
1
𝛼
) Γ(𝑦𝑖 + 1)

 

(
1

1 + 𝛼𝜇𝑖
)

1
𝛼
(

𝛼𝜇𝑖
1 + 𝛼𝜇𝑖

)
𝑦𝑖

             (15)   

 

Therefore, the probability density function for 

a ZINB model is given by 

 

𝑃(𝑌𝑖 = 𝑦𝑖) = 

{
 
 
 
 

 
 
 
 
𝜃𝑖 + (1 − 𝜃𝑖) (

1

1 + 𝛼𝜇𝑖
)

1
𝛼
                 𝑖𝑓𝑦𝑖 = 0

(1 − 𝜃𝑖)
Γ (𝑦𝑖 +

1
𝛼
)

Γ (
1
𝛼
) Γ(𝑦𝑖 + 1)

(
1

1 + 𝛼𝜇𝑖
)

1
𝛼

(
𝛼𝜇𝑖

1 + 𝛼𝜇𝑖
)
𝑦𝑖

             𝑖𝑓𝑦𝑖 > 0          (16)

 

 

 

By GLM
[15]

,  𝜇𝑖 = 𝑒
𝑋′𝑖𝛽𝑖   , where X'i are 

knows independent variables, Lambert (1992) 

suggested the functional form for modelling 

the parameter  𝜃𝑖  as logistic function, which is 

given by 

 

𝐿𝑜𝑔 (
𝜃𝑖

1 − 𝜃𝑖
) = 𝑧′𝑖𝛾𝑖 

 

and  therefore, 

 

𝜃𝑖 =
𝑒𝑧′𝑖𝛾𝑖

1 + 𝑒𝑧′𝑖𝛾𝑖
> 0 

 

Where; Z : the covariates and 𝛾 : are regression 

coefficients. 

 The corresponding Log-Likelihood function 

of (16) is given as follow 

 

log(𝐿) = 

∑

[
 
 
 
 
 
 
 
 
 
 
 
 

𝐼(𝑦𝑖 = 0)𝑙𝑜𝑔

(𝜃𝑖 + (1 − 𝜃𝑖) (
1

1 + 𝛼𝜇𝑖
)

1
𝛼
  ) +

𝐼(𝑦𝑖 > 0)(log ((1 − 𝜃𝑖) +

log(
Γ (𝑦𝑖 +

1
𝛼
)

Γ (
1
𝛼
) Γ(𝑦𝑖 + 1)

) −

(𝑦𝑖 +
1

𝛼
) log(1 + 𝛼𝜇𝑖) +

𝑦𝑖log (𝛼𝜇𝑖)) ]
 
 
 
 
 
 
 
 
 
 
 
 

𝑛

𝑖

       (17) 

 

 

Subsequently 

                       

𝐸(𝑌𝑖) = 𝜇𝑖(1 − 𝜃𝑖) 

𝑉𝑎𝑟(𝑌𝑖) = (1 − 𝜃𝑖)(𝜇𝑖 + 𝛼𝜇𝑖
2) + 𝜇𝑖

2(𝜃𝑖
2 + 𝜃𝑖) 

 

Model Selection 

        It is important that we have one or more a 

criterion to consider the best results and choose 

the appropriate model for data representation. 

There are several methods that provide a 

measure for selecting the appropriate model, 

The following four methods will be used: AIC 

is an evaluating model fit for a given data 

among different types of non-nested models , 

and its formula is given as 𝐴𝐼𝐶 = −2𝑙𝑜𝑔𝐿 +

2𝑘  , BIC is another estimator for evaluating 

model fit for a given data among different 

types of non-nested models, and its formula is 

given as 𝐵𝐼𝐶 = −2𝑙𝑜𝑔𝐿 + 𝑘𝑙𝑜𝑔𝑛  , 

Likelihood ratio test (LR) is a statistical test 

used to compare two nested models, its 

formula is given as  𝐿𝑅 = −2log (𝐿1 𝐿2)⁄ , and  

Vuong test (V) is a statistical test used to 

compare non-nested models
[19]

, It is defined as 

:  
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𝑉 = (√𝑛(
1

𝑛
∑𝑚𝑖)/(√

1

𝑛
∑(𝑚𝑖 − �̅�)

2

𝑛

𝑖

)

𝑛

𝑖

 

Where 𝑚𝑖 = log(𝑃1(𝑌𝑖|𝑋𝑖)) − log(𝑃2(𝑌𝑖|𝑋𝑖)) . 

If  V>1.96 , then the first model is preferred. If  

V<-1.96, then the second one is preferred. If  | 

V | <1.96, none of the models are preferred. 

Data Analysis 

Data were collected from database of the 

Meteorology and Seismology Organization in 

Iraq for Hilla weather station. The  weather 

station are located in central Iraq, specifically 

in the city of Hilla (about 116 kilometers south 

of Baghdad). 

The count response variable of interest to be 

modeled "Rainfall hours" measured at Hilla 

weather station. The predictor variables 

consists of six climate variables derived from 

Iraqi Meteorological Organization and 

Seismology database, which include 

measurements of rainfall, sea pressure, station 

pressure, wind speed, temperature, and 

humidity, as shown in Table (1). Data contain 

observations of (731) for two years (2016 and 

2017). 

 

Table 1. Summary statistics of explanatory variables and response variable used in our count data 

regression models in Hilla weather station. 

variables Minimum 

value 

First 

quarter 
Median Mean 

Third 

quarter 

Maximum 

value 

Wind speed ( m/s) 0 0.6 1.4 1.619 2.3 9.3 

Temperature (°C) 3 15.8 25 23.97 32.85 40.5 

Station pressure 

(1bar/1000) 
0.9908 1.0007 1.0068 1.0074 1.0131 1.3804 

Sea pressure 

(1bar/1000) 
0.9947 1.0046 1.0108 1.0109 1.0171 1.0287 

Humidity (%) 17 31.8 40.6 44.54 56 94 

Rainfall (hours) 0 0 0 0.6553 0 20 

The distribution of the number of non-rainfall hours in Hilla weather stations for the two years is 

shown in figure 1  
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Poisson Regression 

          The model fit statistics and estimated 

coefficients of Poisson regression model are 

given in Table 2 and Table 3. 

 

 

Table 2. Fit statistics of Poisson regression 

model, 2016-2017 Rainfall count data 

criterions Hilla weather station 

-2Log Likelihood 1466.649 

AIC 1478.649 

BIC 11506.216 

 

Table 3. Estimated coefficients of Poisson regression model, 2016-2017 Rainfall count data in Hilla 

weather station 

Parameter Estimate Standard Error z Value Pr > |z| 

Intercept 43.305973 14.941807 2.898 0.00375 

Wind speed 
0.2477 0.0253 9.79 <2e-16 

Temperature 0.031051 0.017090 1.817 0.06922 

Station pressure -4.573125 20.646534 -0.221 0.82471 

Sea pressure -45.002287 25.235835 -1.783 0.07454 

Humidity 
0.096406 0.004648 20.742 <2e-16 

 

Since the variance of count data usually 

exceeds the conditional mean, the equality of 

variance and mean should always be checked 

after the development of a Poisson regression. 

We conducted a test of over-dispersion and 

The results of this test are shown below 

likelihood ratio test of   𝐻°: Poisson, as 

restricted NB model, Critical value of test 

statistic at the alpha= 0.00 level: 2.7055, For 

Hilla weather station, Chi-Square test statistic= 

579.6014  ,p-value = <2.2e-16. The 

significance of 
2X -statistics implies the 

existence of over-dispersion. Therefore, in the 

next section, we develop Negative Binomial 

model to handle the issue of over-dispersion. 

 

Negative Binomial Regression 

In order to address the issue of over-dispersion,  

we used The model fit statistics and estimated 

coefficients of Negative Binomial regression 

model are given in Table 4 and Table 5. 

Table 4. Fit statistics of Negative Binomial 

regression model, 2016-2017 Rainfall count 

data 

criterions Hilla weather station 

-2Log Likelihood 892.7366 

AIC 906.7386 

BIC 938.8995 
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Table 5. Estimated coefficients of Negative Binomial regression model, 2016-2017 Rainfall count data 

in Hilla weather station 

Parameter Estimate Standard Error z Value Pr > |z| 

Intercept 72.08011 46.31368 1.556 0.12 

Wind speed 
0.43955 0.09276 4.738 2.15e-06 

Temperature 
-0.05902 0.04534 -1.302 0.193 

Station pressure 
-5.48177 47.6056 -0.115 0.908 

Sea pressure 
-70.94321 65.8155 -1.078 0.281 

Humidity 
0.0921 0.01372 6.715 1.88e-11 

Alpha 0.15 0..0248   

 

Lambert (1992) and Mullahy (1986) indicated 

that Negative Binomial regression might not be 

an appropriate model for count data with 

excess zeros because it increases the 

probabilities of both zero and non-zero counts. 

Since the initial data analysis of our data 

implied excess zeros (more than 87.8% of the 

responses in Hilla weather station , have non- 

Rainfall days (rainfall hours are zeros)), we 

develop Zero-inflated regression to handle 

excessive number of zeros.  

 

Zero-Inflated Regression Models 

To fixable the excess zeros problem in non-

Rainfall days (rainfall hours are zeros), We 

used Zero-inflated  regression models. 

Zero-Inflated Poisson Regression (ZIPR) 

Model   

     We used the same explanatory variables in 

both parts of the ZIPR model. The model fit 

statistics and estimated coefficients of ZIPR 

model are given in Table 6 and Table 7. 

Table 6. Fit statistics of  Zero-Inflated Poisson 

Regression (ZIPR) model, 2016-2017 Rainfall 

count data 

criterions Hilla weather station 

-2Log Likelihood 841 

AIC 865.0707 

BIC 880.5665 
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Table 7 Estimated coefficients of Zero-Inflated Poisson Regression (ZIPR)model, 2016-2017 Rainfall 

count data in Hilla weather station 

Parameter 

 

Estimate 

 

Standard Error 

 

z Value 

 

Pr > |z| 

 

Poisson _ Intercept -1.784e+00 3.533e+01 -0.05 0.96 

Poisson _ Wind speed -2.866e-02 2.556e-02 -1.122 0.262 

Poisson _ Temperature 4.288e-02 6.296e-02 0.681 0.496 

Poisson _ Station pressure 1.481e+02 5.419e+03 0.027 0.978 

Poisson _ Sea pressure -1.469e+02 5.428e+03 -0.027 0.978 

Poisson _ Humidity 3.300e-02 4.345e-03 7.595 3.09e-14 

Logit _ Intercept -150.15360 54.76032 -2.742 0.00611 

Logit _ Wind speed -0.65697 0.10337 -6.356 2.07e-10 

Logit _ Temperature 0.07375 0.05397 1.366 0.1718 

Logit _ Station pressure 3.67363 78.0384 0.047 0.96245 

Logit _ Sea pressure 151.68983 85.93739 1.765 0.07754 

Logit _ Humidity -0.10703 0.01641 -6.521 6.96e-11 

 

Zero-Inflated Negative Binomial Regression 

(ZINBR) Model   

      We used the same explanatory variables in 

both parts of the ZINBR model. The model fit 

statistics and estimated coefficients of ZINBR 

model are given in Table 8 and Table 9. 

Table 8. Fit statistics of  Zero-Inflated 

Negative Binomial Regression (ZINBR) 

model, 2016-2017 Rainfall count data 

criterions Hilla weather station 

-2Log Likelihood 774.8 

AIC 800.7555 

BIC 814.3665 

 

 

Table 9. Estimated coefficients of Zero-Inflated Negative Binomial Regression (ZINBR) model, 2016-

2017 Rainfall count data in Hilla weather station 

Parameter 

 

Estimate 

 

Standard Error 

 

z Value 

 

Pr > |z| 

 

NB _ Intercept 4.450441 28.89126 0.154 0.877577 

NB _ Wind speed -0.01452 0.047221 -0.307 0.758472 

NB _ Temperature 0.025615 0.023359 1.097 0.272823 

NB _ Station pressure 18.075792 27.86469 -0.627 0.520412 

NB _ Sea pressure -23.29534 28.50922 0.775 0.418057 

NB _ Humidity 0.032441 0.007135 4.547 5.44e-06 

Logit _ Intercept -144.89025 51.27398 -2826 0.00472 

Logit _ Wind speed -0.66723 0.10557 -6.320 2.61e-10 

Logit _ Temperature 0.07038 0.04973 1.415 0.15701 

Logit _ Station pressure -0.12663 31.50265 -0.004 0.99679 

Logit _ Sea pressure 150.17569 59.40599 2.528 0.01147 

Logit _ Humidity -0.10567 0.01591 -6.643 3.07e-11 

Log (Alpha) 0.937272 0.280696 3.339 0.000841 
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Model Comparison  

We used  Vuong test to compare non-nested 

models and Likelihood ratio test to compare 

nested models, The results of all the  Vuong 

tests are summarized in Table 10 and the 

results of all Likelihood ratio tests are 

summarized in Table 11. Furthermore, the 

results of all information criterions (fit 

statistics) for all models were summarized in 

Table 12. 

 

Table 10. Model comparison by Vuong test for 

non-nested models for Hilla weather station  

Model Vuong Statistic 
Preferred 

model 

ZIP vs P 6.969103 ZIP 

ZIP vs NB 1.4564090 NONE 

ZIP vs ZINB -2.579764 ZINB 

ZINB vs P 7.092766 ZINB 

ZINB vs NB 5.943327 ZINB 

 

  Note: “If V > 1.96, the first model is 

preferred. If V < -1.96, then the second one is 

preferred. If |V |<1.96, none of the models are 

preferred ”. 

Table 11. Model comparison by likelihood 

ratio test for nested models for Hilla weather 

station 

Model Likelihood Ratio Test  

( p-value) 

Preferred 

model 

P vs NB 0.99 NB 

 

Note:  

oH : the simpler model is preferred.  

1H  : the more complex model is preferred.  

If p-value < 0.05, we reject oH , 1H  is 

preferred.  

 

 

 

Table 12. Fit statistics of  all models, 2016-

2017 Rainfall count data Hilla weather station 

models 

criterions 

-2Log 

Likelihood 
AIC BIC 

Poisson 

regression 
1466.649 1478.649 11506.216 

NB 

regression 
892.7366 906.7386 938.8995 

ZIPR 841 865.0707 880.5665 

ZINBR 774.8* 800.7555* 814.3665* 

 

*The best model. 

 

Application results 

      After estimating the regression parameters 

for all models using real counting data. The 

test criteria values for all models were obtained 

for the purpose of comparing these models and 

selecting the best ones to represent our data. 

The results in Table 12 indicated that Zero-

Inflated Negative Binomial (ZINB) regression 

model was the best count data model for our 

data,  Although it is hard to distinguish 

Negative Binomial, and Zero-Inflated Poisson 

(ZIP) regression models, they are better than 

Poisson regression model. 
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 عملي الأمطار باستخدام بعض النماذج الصفرية مع تطبيقلتساقط عد النمذجة بيانات 

 . احمد نعيم فليحأ.م. دلؤي حبيب هاشم، 

 جامعة القادسية قسم الاحصاء، كلية الادارة والاقتصاد،

 

 نبذة مختصرة

العد، بما في ذلك التعدادات الصفرية تنشأ في مجموعة متنوعة واسعة من التطبيقاات، وبالتاالي بحابنم نمااذع العاد  اا عة  بيانات        

على نطاق واسع في العديد من المجالات. وفي مجال الإحصا يات ، يمكن تعريف بيانات العد بأنها ذلك النوع من المشاهدة الاي  لا يأذاي 

ة غير السلبية. في بعض الأحيان قد يقوم الباحثون بنساب بحافا  بثثار مان المتوقاع. ويمكان تعرياف الصافر سوى قيمة الأعداد الصنين

الزا د )زيادة الاحفا ( على بنا  تخا ص حافر . البياناات ذات الأحافا  الاوفيرة ) الكثيارة( تنياى بشاعبية ذاحاة فاي مجاالات الصانة 

واحصاااات مراقباة الجاودة والمجاالات الجيرافياة والبيئياة عناد حسااب حادو  بعاض  والتسويق والتمويل والاقتصاد القياسي وعلص البيئة

الأحدا  السلوثية والطبيعية ، مثل تكرا  تعاطي الكنول وتناول الأدوية وعادد الساجا ر المدذناة وحادو  الازلازل و هطاول الأمطاا  ، 

للتخا ص الصافر  والنماوذع ئناا ي النادين السااله. فاي هاي  إلخ. وقد است دمم بعض النماذع لتنليل بياناات العاد مثال نماوذع بوايساون 

الو قة ، تص است دام نماذع  بوايسون و ئنا ي الندين السااله و بوايساون للتخا ص الصافر  ، و ئناا ي النادين السااله للتخا ص الصافر  

 لتنليل بيانات هطول الأمطا .

 


