Bayesian adaptive Lasso Tobit regression
with a practical application

A thesis submitted for the degree of
MASTER OF STATSTICAL SCIENCE

By
Haider Kadhim Abbas Hilali

Supervised by

Dr. Rahim J. Al-Hamzawi

Statistics Department
College of Administration and Economics
University of Al-Qadisiyah
2019



© 2019 Haider Kadhim Abbas Hilali



Supervisor's recommendation

I certify that the thesis (Bayesian adaptive Lasso Tobit regression with a
practical application) has been under my supervision in the Department
of Statistics/College of Administration & Economics/University of
Al_Qadisiyah it is a part of the requirements for a master's degree in

statistics.
Signaturé%L

Supervisor: Dr. Prof. Rahim J. Al-Hamzawi

Date:

Recommendation of the Chairman of the Graduate Studies
Committee

Based on available recommendations, I would like to forward this thesis
for discussion .

Signatur
Name:

Chairman of the Higher Studies Committee
in department of statistics

Date:




Endorsement of the linguistics expert

This is to hereby that the thesis entitled (Bayesian adaptive
Lasso Tobit regression with a practical application) has been
reviewed in terms of stylistics and linguistics (grammar and spelling).
Therefore, after the modification of all recommended notes thesis has
become free of all linguistics errors and ready to be defended and
used as a scientific method to award the degree of master in statistical

science.

Signature : lairta_—
Name: Dr HBEDER 1. 1.

Date :



The decision if the defense committee

We are the head and members of the defense committee certify that we have been looked at the
thesis entitled (Bayesian adaptive Lasso Tobit regression with a practical application) and we have
debated the student (Haider Kadhim Abbas Hilali). As a result, the student has defended his thesis
and all its content. So that we have found the thesis is worthy to be accepted to award the degree of
Master in statistics sciences.

Ass. Prof. Dr. Ali Jawad K.

(The head of the commi

(Member)

Ass. Prof. Dr. Basim Shlaibah Msallam

(Member)

Prof. Dr. Rahim Jabbar Alhamzawi

(Member and supervisor) %\? /

Approval of the college committee

The council of the college of administration and economics at the University of Al-qadissiah have been approved on

the decision e committee.

Ass. Prof. Dr. Alj#4wad Kadhim

The Dean #f'the college of administration and economics / Al-qadissiah university



Bayesian adaptive Lasso Tobit regression with a practical application

ACKNOWLEGMENTS

First of all, | would like to express my deep thanks to my supervisor Dr. Rahim J.
Alhamzawi for his kind support and valuable notes throughout the thesis.

Hence, | must mention my gratitude to the staff of statistics department, especially
Dr. Ali Alkenani, Dr. Muhannad Al-Saadony and Dr. Hassan S. Uraibi for their
help and assistance throughout my study.

A special word of thanks dedicated to Dr. Taha Alshaybawe and Dr. Fadel
Alhusseini for their valuable notes and assistance.

| am so thankful to my dear parents, brother, sisters, wife and my beloved sons.
Finally, I am indebted to my close colleague Luay Al-hemmery, and specials
thanks are given to my boss Mr. Safaa Al-Janabi, the manager of Diwaniya

agriculture directorate for his encouragement and supports.




Bayesian adaptive Lasso Tobit regression with a practical application

DEDICATION

This thesis is dedicated to my beloved family and my dear wife and sons

for their continuous supports and always being with me




Bayesian adaptive Lasso Tobit regression with a practical application

ABSTRACT

The process of the variable selection refers to the category of problems where
one attempt to determine the best subset of the pertinent variables, which can be
used to obtain accurate adjustments to the results of a given response variable.
Often, when the number of variables is too large, it is difficult to identify important
and influential variables on the response variable. For this reason, the variable
selection (VS) characteristic was considered very important in the data analysis.
Regularization techniques is one fabulous way that has proven effectively for
dealing with high dimensional data.

In previous years, statisticians have made great efforts in developing procedures
of regularization to solve problems of VS. These procedures auto facilitate for VS
by setting specific coefficients to zero and shrinking the coefficients estimates, and
provide advantageous estimates even if the model contains a large number of
highly correlated variables. Although the regularizations approaches have
developed in recent years, these procedures can still be improved.

In this thesis, we have proposed new techniques for model selection in Tobit
regression. These techniques are Bayesian Lasso and Bayesian adaptive Lasso in
Tobit regression (BLTR, and BALTR). These techniques have many features that
give good estimation and VS. Specifically, we have introduced a new hierarchal
model for each technique. Then, new Gibbs sampler methods are introduced. We
also extended the new approaches by adding the ridge parameter inside the

variance-covariance matrix to avoid the singularity in case of multicollinearity or
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in case the number of predictors greater than the number of observations. A
comparison was made with other existing techniques by applying the simulation
examples and real data. It is worth mentioning, that the obtained results are

promising and encouraging, giving better results compared to the existing methods.
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CHAPTER ONE

1. Introduction:

Linear statistical models are widely used in biological, agricultural, physical
and social sciences, biology, as well as in economics and engineering. They are
useful in both planning stages of research and analysis of the resulting data. We are
aware of that regression analysis is one of the statistical procedures that illustrate
the relationships between explanatory variables and the dependent variable
(outcome). When the explanatory variables values are known, then the regression
analysis assistance us to predict the values of the outcome variable. Variable
selection is a difficult and important problem that is an important goal for many
types of statistical modelling. The difficulty of this problem is increased in actual
applications when a true model may not exist. Given a dataset, you can fit many
models.

In addition, in order to reach accurate results from the studied event, the
selected model must correspond the available data as best as possible, and the
proposed regression process for the data in question will lead to results that are
close to real. However, when the independent variables are too large, or the
number of observations is less than the number of variables, then it is very difficult
to distinguish the independent variables that are important and influential in
describing the Tobit regression model, which leads to the instability and overfitting
of the model, consequently the model lacks the validity of the prediction. To get
rid of these problems, statisticians resorted to the mechanism of selecting the
important and influential variables, while at the same time eliminating as much as

possible from the explanatory variables that are not important, this procedure is
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known variable selection (VS). Although all VS procedures have evolved in recent
years in linear regression, these procedures can still be improved.

In generals, the main objective of this thesis is to present several Bayesian
regularization approaches in the framework of Tobit regression. These approaches
are Bayesian Lasso and Bayesian adaptive Lasso in Tobit regression (BLTR, and
BALTR). These approaches have many features that give a good estimation and

get rid of all problems by variable selection.

2. Literature Review:

In many applications, the observations are partially constrained with the
dependent variable and not constrained in the other part. This data is called
censored data. The application of the conventional regression with this type of data
will lead to biased parameters on the one hand, and inconsistent on the other hand.
Therefore, it is necessary to determine a regression process that is proportional to
this data. Such a model was first proposed in a great exertion via Tobin (1958).
Tobin analyzed the dependent variables of the regression model that cannot be
negative. Consequently, the Tobit regression process is appropriate to this data, it
is elucidating the relationship among the non-negative dependent outcome variable
and the independent explanatory variables. The function of Tobit regression is a
mixed function, it deals with two-part data, each part of the outcome variable data
will take a given distribution. The dependent variable data that equal to zero will
take the cumulative distribution function of the normal distribution, and the data is
larger than zero will take probability density function.

Between 1958 "when Tobin's articles appeared" and 1970, the Tobit model was

used infrequently in econometric applications. At the same time, many Tobit
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models and several evaluation procedures have been suggested for these models.
Additionally, estimation procedures are now many and varied, but it is hard for
statisticians to follow all current models and estimation procedures. The Tobit
regression has been used in many studies, and the statisticians have applied this
regression in many packages of different statistical language programs, such as the
Tobit function in AER package (Kleiber et al., 2017), and MCMCtobit function in
MCMCpack package (Martin et al.,, 2018) . The general formula of Tobit

regression is

Vi = {yi‘ yi >0
: 0 otherwise < 0

where y; denote the outcome variable of interest for i = 1, ...,n. Here, y; denote a

latent response variable as follows
i =xiB+ &, (1.1)

where x; is the 1 x k vector denoting the ith row of the n x k matrix of predictors
X, and the vector of predictors B is
B = (Bo, v Br)

and ¢; is the error term, p(g;) = Normal(0,02), k is a number of independent
variables, and n is the number of observations.

However, previous attempts of applying Tobit regression in diverse applications,
VS are used in multiple fields. This performance opens the doors for applying this
technique in several topics that enable statisticians to analyze the data. Especially,
when the data has a wide array of variables. Therewith, occasionally the number of
explanatory variables is too large. It is then difficult to know which variables are
really important, which are the noise variables. Additionally, to the emergence of a
number of problems, when we use some independent variables that are not

important in describing the Tobit regression, and this leads to a regression model

3
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that will be unstable and weak in terms of prediction. The mechanism of VS is to
improve the model prediction, providing faster and lower cost models and a good
understanding of the data.

If a model is to be used for prediction, time and fatigue can be saved by measuring
only necessary predictors. Frequent predictions will add noise to the estimation of
other levels of interests and also leads to the loss of certain degrees of freedom.
The selection of predictors among the several potential ones to be included in a
model is one of the prime challenges in regression analysis. Therefore, VS
procedure is very important in Tobit regression for several reasons, such as:

e Reducing the number of explanatory variables will be so beneficial for many
purposes. Especially, economics and statistics.

e Besides performing VS process on a dataset, it is sometimes also useful to
looks at variable importance. A high score on variable importance means
that variable has a large effect on the responses and small adjustments in that
variable value can lead to a large deviation in the response. Variables that
score low on variable importance will mostly be removed during VS
process, additionally, variables that are not removed from the model will
also score high on importance.

e Creating a highly accurate precision model that gives good estimations and

high predictions.

Efroymson (1960) proposed an algorithm called stepwise selection technique,
considered one of the most widely known and widely used subsets selection. It is
defined as an automatic process for selecting models in cases where there are a big
number of possible explanatory variables. Then method is implemented mainly in

regression analysis. It is a procedure that permits implements in forwards selection
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(FS) and backward elimination (BE) in same time, dropping or adding variables at

the various steps. This procedure is created two approaches, that is FS and BE.

The FS can be evaluated also by a F test as follows

RSS;, — RSS;.;
W=mwd Sz, 1 Fin (1.2)
J
And the BE process can be calculated by a F test as follows
W=m%Fﬂ%ﬁ%<%m- (1.3)

where RSS is the residuals sum of squares, k is the number of estimated parameters
in the model, S? is the estimate error variance of the model, F;,, and F,,; are used
as stop criterions.

Even if k is less than n, looking at all possible models may not be the best thing to
do, then the FS and BE approaches are not warranted to give the best model.
Mallows (1974) proposed a procedure called a Mallows Cj,. This procedure named
for Colin L. Mallows is applied to evaluated predictors that have been estimated
via ordinary least square regression (OLS). It is implemented in the model selection
situation, where the number of explanatory variables is obtainable for predicting
the response variable. The aim is to get the better model that contains a subset of
these predictors. The small values of C; mean that the model is comparatively

accurate. The formula of Mallows procedure is

RSS(k)
Ck == 52 -

n+ 2k, (1.4)

where the RSS is the residuals sum of squares on a set of training data, n is the
samples size of data, k is a number of the covariates in the model, and the S2 is an

estimation of the variance related to every response in the model. It was detecting
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that the C, procedure does not give equivalent values to the previous procedure,
but the model with the smallest C,, from this meaning will also be the same form
with the smallest C, from the previous meaning. If the model is correct then C,,
will tend to be close to or smaller than k. Thus, a simple process of C, can be
utilized to submit the best model. However, the C, procedure suffers from two
major constraints, the first constraint is that C, approximation is only valid for
large sample size, and the second constraint is that C; cannot deal with complex
groups models as in the VS.

Akaike (1974) proposed the Akaike Information Criterion procedure a theoretical
approach to information for model selection. The AIC procedure is one of the most
common methods of variable selection. The value of an AIC procedure can be used
to compare different models. By calculating the value of AIC for all models, the
model with the lowest AIC is the best model, the formula of AIC procedure is

AIC = -2InL + 2k. (1.5)

Int terms of the residual sum of squares then AIC formula is
AIC =nIn(RSS/n) + 2k, (1.6)

where L bis the maximum likelihood function of the model (MLE), k is the number
of estimated parameters in the model, RSS is estimated residual of fitted model and
n is the sample size, with the note that the error is normal (i.i. d).

A small RSS results in a lower AIC value and therefore a better model. For best
subset selection the AIC offers a measure to compare models of different sizes
with each other. In this way, the best model can be found. Though the AIC process
suffers from two major constraints, the first constraint is that AIC relies on a weak
procedure when k is large, and the second constraint is that AIC is no clear penalty

takes in account the number of variables.

6
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Schwarz (1978) proposed the Bayesian information criterion procedure (BIC), this
procedure approximated the In of the marginal density of the data, which is the
density of the data unconditional on the parameters. Note that the likelihood is the
density of the data conditional on the parameters. Then formula of BIC procedure
IS
BIC=-2InL+kilnn. (1.7)

The residual sum of squares (RSS), the BIC formula is

BIC =nin(RSS/n)+ klilnn. (1.8)

Though then BIC and AIC arise from two dissimilar procedures, their explanations
are alike. Exactly, a BIC procedure, such as the AIC procedure, can be clarified as
a measure of model fit plus a penalty for the complexity. While n = 10 then
In (n) > 2 and so the penalty term in BIC is greater than the penalty term in AIC.
In addition, BIC penalizes complex models more than AIC. The BIC usually
penalizes free parameters more strongly than the AIC. However, it relies on the
size of n and virtual magnitude of n and k. The BIC can be applied to compare
models fitting only, then the numerical values of the response variable are identical
for all estimates being compared. These compared models need not be overlapped,
but that is some problems when using BIC procedure, the first problem is that BIC
procedure suffers from the approximation, it is only valid for n > k of parameters
in the models. Additionally, the second problem is that BIC cannot handle complex
groups of models as in the VS problem in high dimension data.

George and McCulloch (1993) suggested an alternative procedure for using an
information criterion for model selection, this procedure is stochastic search VS
(SSV'S), which is feasible specifically to the Bayesian MCMC framework, is SSVS

procedure. Starting with the full coefficients model and selecting the mixture prior

7




Bayesian adaptive Lasso Tobit regression with a practical application

distributions to removes inefficient coefficients in the regression and making them
equal to zero, next that sampling the parameters from the posteriors and estimating
the marginal inclusion probability (MIPs) for each coefficient using the amount of
SSVS samples containing each coefficient, at end estimating the posterior model
probabilities (PMPs) for each model applying the quantities of SSVS samples
consumed in each model. One of the disadvantages of an SSVS procedure takes a
longer time to estimate, and the model with the highest posterior model may only
be visited a handful of times.

Statistical researchers and data predictors are occasionally faced with more
difficulties such as a large number of independent variables or low ratio the
number of observations to the number of independent variables, or because of
appearing multicollinearity problems, there be many numbers of strategies for
statisticians auto utilizes in transacting with highs dimensional data, as well as VS
procedures, and data reduction performances. A third family of techniques that
have proven beneficial in the context of high dimensional data involves alternative
parameter estimation algorithms known as regularization or shrinkage techniques.
There be another set of the model estimation process, which can be used in such
circumstances. In a sense, these procedures regularize or adjust the imprecise and
volatile estimates of the regression coefficients.

Donoho and Johnstone (1994) have first introduced the notion of VS through
regularization, it was then developed by Tibshirani (1996). Although these
procedures are motivated by high dimensional data, they can also be effectively
applied to sparse low to moderate dimensional problems, facilitating applications
in a wide range of scientific problems. The general formula model, that illustrates

the concept of regularization procedures, can be written as follows
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—~

B = arg;nin v —XB)'(y — XB) + FA(B), (1.9)

where F,(.) is a function of the model coefficients in terms by a positive penalty
parameter.

This parameter has an effective influence in VS, where it controls the degree of
deflation applied to estimates. Regularization procedures recognize good values of
B such that the at most important coefficients accept advanced values, and the
minimum important are allocated coefficients at or near 0. Many of these
procedures have attracted much attention recently; see, for example, bridge
procedure Frank and Friedman (1993), Lasso procedure introduced in order to
interpretability of regression models such as LARS (Efron, 2004), LARS process
makes available a quick execution of the Lasso solution.

Zou and Hastie (2005) proposed the elastic net procedure to obtain enhanced
performance when there is multicollinearity event between variables. In 2006,
another regularization procedure introduced by Zou (2006), this procedure is
adaptive Lasso regression, authorizing different penalty parameters to different
regression coefficients, he proved that his proposed procedure had the
characteristics of Oracle mentioned in Fan and Li (2001) that Lasso does not have.
Park and Casella (2008) explicated that the parameters of the Lasso procedure can
be estimated by the Bayesian pattern. Similarly, from a Bayesian point of view,
"Bayesian Lasso regression (Hans, 2009)", "Bayesian adaptive Lasso; iterative
adaptive Lasso (Sun, Zou, and lIbrahim, 2009)", "Bayesian adaptive Lasso with
non-convex penalization (Griffin and Brown, 2010)", "The Bayesian elastic net (Li
and Lin, 2010)", "A Bayesian Lasso via reversible jump MCMC (Chen, Wang, and
McKeown, 2011)", "The new Bayesian Lasso (Mallick and Yi, 2014)", "Bayesian
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adaptive Lasso (Leng, Tran, and Nott, 2014)", and "Bayesian variable selection
and estimation for group Lasso (Xu and Ghosh, 2015)".
In this thesis, we proposed two Bayesian regularization procedures, Bayesian
Lasso and Bayesian adaptive Lasso in Tobit regression.

10
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CHAPTER TWO

2. BAYESIAN LASSO TOBIT REGRESSION

2.1 Introduction:

The Lasso (least absolute shrinkage and selection operator) model is widely
used as a regularization process for coefficient estimation in regression problems.
Specifically, Tibshirani (1996) introduced Lasso method in order to interpretability
of regression models, and get better prediction accuracy. The aim of the Lasso
regression is to obtain a subset of the estimations that reduces the prediction error
of the outcome variable, by imposing a constraint on model parameters that cause
shrank the unimportant explanatory variables and reduced to zero. Efron (2004)

presented an effective algorithm for calculating the Lasso estimates of f; via the

LARS algorithm. The Lasso regression formulated as follows

k
Buaso = argmin(y = XB)' (v = XB) +1 ) || .42 0 @Y
j=1

where A is a positive penalty parameter.

Tibshirani (1996) and Park and Casella (2008) explicated that the parameters of the
Lasso regression can be estimated by the Bayesian pattern. Then Lasso will be
taken as posterior mode underneath independent Laplace distribution prior for the
B;. On the other hand, Bayesian Lasso results are superbly like regular Lasso
results. Though, the Bayesian Lasso is very simple to execute, and auto generate
interval estimates for coefficients, containing the error variances. Following
Andrews and Mallows (1974), Park and Casella (2008) represented the prior

distribution of B as follows

11
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k

A AlB:
m(Blo*,A) = Hzm exp {‘ vlf—]l}

j=1

2

=T, [ exp (- 2 ) Eexp(- L t)) dt
]=10W p 20%t;) 2 pl—= 4)at;. (2.2)

Hans (2009) introduced a new aspect of other Bayesian remediation of Lasso
regression, by using a new Gibbs sampler for Bayesian Lasso regression. Mallick
and Yi (2014) proposed a new Bayesian Lasso by using scale mixture of uniform
instead of scale mixture of normal distribution that used in Park and Casella
(2008). The findings of Mallick and Yi (2014) in his research were very good and
proved their efficiency from the previous Bayesian processes used. The good
results notified in Mallick and Yi (2014) process encourage us to use the new
Bayesian procedure in Tobit regression.

Recently, a new representation of the Laplace density given by Mallick and Yi
(2014), this representation provided a different process of Lasso based model by
using the scale mixture of a uniform representation of the Laplace density. This

representation is written as follows:

A AlB;
w8l 0%,2) = [y 5= exp {~ 322}

| A e M du;. (2.3)

They pointed out that the posterior distribution (B|o?, 1) is similar to the main
procedure of Park and Casella (2008), this formulation has gorgeous properties. In

addition, Alhamzawi (2018) developed a new Gibbs sampler for Bayesian Lasso

12
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via mixture of truncated normal formulation with exponential mixture densities. In
this thesis, following Mallick and Yi (2014), we used a new hierarchical

representation of BLTR.

2.2 BLTR hierarchy model and prior distributions:

Mallick and Yi (2014) proposed Bayesian Lasso procedure as follows:

A T
—e |ﬁf|=J —— — w¥leWaw . 1>0 (2.4)
2 W>|ﬁj| 2w F(Z)

In this thesis, we adopted the above formula as follows:

Let Zj = /’lW] = dZJ = /’ldWJ then
A L-Ag)| — AR N
2 € = fzj>/1|b’j|22j r2 (/1) e’ Adz],
A
= j 5 € idzj...A =0 (2.5)
z;>A|B)|
The hierarchical model of BLTR is
yi = {yi* yi >0
o otherwise < 0

y*| X,B,0% ~ N(XB,5%1,,),

Bi|A ~ Unif L1
/|4 ~ Uniform (——,—) ,
A A (2.6)

zj ~ Exp(1),

13
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02 ~ InvGamma(a, b),
A ~ Gamma(h, d),
where z = (z4,++, z})

2.3 Full conditional posterior distributions of BLTR:

The conditional distribution of y* is follows:

Vi if yi> y"}

yilyuB ~ {N(Xﬁ,azln)l{yi* < y%), otherwise

where y°is a known censoring point.

Then the conditional posterior distribution of B as follows:
x(Bly", X, z,0?%) cn(y*| X, B,o?) n(B|z),

xexp {—%()’* - XB)'(y* _Xﬁ)} fea {|ﬁ1| < ZA_J}

k
< expl-s -2y xp+ pxxp)[ [1{181 <2,
j=1

X exp {—#(—ZB'X'X/}* + ﬂ'X’Xﬁ)} §=1I{_% <p < Z/l_]}’

k
Bly' . X,z ~Ni(Bors, (X'X)™" 0?) 1_[1{_% <pB; < ;_]} : (2.7)

j=1
The conditional posterior distribution of z as follows:
n(z| B, A1) xn(B|z Dr(2),

« [Tf_1e7% I{z; > A|B)]},

14
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k

z~1_[Exponential(1) I{Zj > /1|,Bj|}. (2.8)
j=1

The conditional posterior distribution of a2 as follows:
n(a?|y", X,B) x n(y*| X, B, a*)n(0?),
2 - 1 * X ! * X 2y—a-1 b
% (0%)72 exp (=55 ("~ XB) (V' — XB){ (6?) ™ texp{——
n 1
a?|y*,X, B ~ InvGamma (E + a,E(y* —XB)'(y" —XB) + b). (2.9)

The conditional posterior distribution of A as follows:

n(AlB) o« m(B|A) m(A),

k

o Jkph—1p—2d 1_[ {A < —}
|8

jr=1
o Ak gxpf_ Ad}l_[ {,1<|ﬂ—}
]

AlB ~ Gamma((k + h),d) 1_[ {,1 < —} (2.10)
j'=1

1Bl

where the B, is ordinary least squares estimators, and I(.) denotes an indicator

function.

2.4 BLTR computation:

In the beginning, we specify Gibbs samples for BLTR procedure by initiate with
the initial valuations for parameters B, z , A and o2, then we carry out the

algorithm as follows:
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Algorithm 1 (Sampling in BLTR model).

e Sampling y*: We generate y* latent variable from truncated normal

distribution with mean X and variance ¢?I,.

e Sampling z : We generate z; as follows z; = z;* + A|g;|, where z;* is an

exponential distribution.

e Sampling B: We generate B coefficients from truncated normal distribution

with (BoLs, (X' X)"1a?).

e Sampling a?: We generate o2 from inverse gamma distribution with shape

parameter §+ a and rate parameter

;" —XB) (v~ XB) +b.

e Sampling 4 : We generate A from truncated gamma distribution with shape

parameter k + h and rate parameter d.

2.5 BLTR with ridge parameter:

In practice, the above procedure performs very well. However, the above estimator
of BoLs is highly unsteady in the existence of multicollinearity. In addition, the
matrix X'X is singular if explanatory variables k is more than n. Gupta and

Ibrahim (2007) have developed a process to deal with these situations. Specifically,
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they added a ridge parameter within X’X matrix. Following Gupta and Ibrahim
(2007), we added the ridge parameter remedy actual challenges that may appear
via multicollinearity and overfitting problems.

Now, referring to the equation (2.7) and adding ridge parameter 9 to the equation,

we will get

1
exp {— 707 (=2y"'X(X'X +9L,)" V(X' X + 9B

k

+ B X +91)P)] [ [r{lsl < 1},

J=1

o exp { =575 (~2B8' (X'X + 91)B + B'X'X + 91)B T 1 {18)] <2},

i Z Z
Bly Xz~NBr XX +01)7 o) | [1{-L<p<F}. e
j=1

where the B is ridge estimators and I(.) denotes an indicator function.

2.6 BLTR with ridge parameter computation:
We require Gibbs samples for BLTR procedure with ridge parameter by initiate
with the initial valuations for parameters B, z, A and a2, then we carry out the

algorithm as follows:

Algorithm 2 (Sampling in BLTR model with ridge parameter).

e Sampling y*: We generate y* latent variable from truncated normal
distribution with mean X and variance ¢?I,.
e Sampling z : We generate the z; as follows z; = z;* + A|B;|, where z;*is an

exponential distribution.

17
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e Sampling B: We generate B coefficients from truncated normal with mean

Br and variance covariance (X'X + 91,) " 1o2.

e Sampling a?: We generate a2 from inverse gamma distribution with shape

parameter % + a and rate parameter

;" =~ XB)' (Y’ —XB) +D.

e Sampling 4 : We generate A from truncated gamma distribution with shape

parameter k + h and rate parameter d.

18
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CHAPTER THREE

3. BAYESIAN ADAPTIVE LASSO TOBIT REGRESSION

3.1 Introduction:

A lot of work has been devoted to the development of diverse Bayesian
organizational procedures for making a variable selection in linear models. One of
these approaches is adaptive Lasso, as a regularization method, evades overfitting
penalizing large coefficients. Also, it has the same advantage that Lasso, it can
shrink some of the coefficients to exactly zero, giving subsequently a selection of
attributes by the regularization. Zou (2006) proposed the adaptive Lasso, who
upgraded the Lasso way proposed by Tibshirani (1996), the adaptive Lasso
procedure permitting different penalty parameters to different regression
coefficients. Zou (2006) proved that his proposed procedure had the characteristics
of Oracle mentioned in Fan and Li (2001) that Lasso does not have. Specifically,
Zou (2006) indicates that his proposed procedure adopts the correct form of non-
zero coefficients with the probability that he tends to one. Park and Casella (2008)
suggested the Lasso procedure based on a Bayesian point of sight. Likewise,
Mallick and Yi (2014) suggested a new procedure known to be as new Bayesian
Lasso regression for VS and coefficient estimation in linear regression. In general,
the last procedure observed results display that the Mallick and Yi (2014)
procedure applied well compares with other Bayesian and non-Bayesian regression
procedures.

The good results reported in Mallick procedure motivate us to suggest a new
Bayesian regression procedure. Subsequently, we suggested a Bayesian
hierarchical for adaptive Lasso Tobit regression (BALTR), and proposed a new
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Gibbs sampler (GS) for BALTR, that is sets up on a theoretical derivation of the
Laplace density.

It is well known, that the Lasso procedure gives biased estimates of considerable
coefficients, so it might be below the required best level in terms of estimation
risks. Zou (2006) evidenced that the Lasso selects the incorrect model with non-
fade the probability, despite the sample size and how A is chosen. The event
requires that coefficients not in the model aren't representable by coefficients in the
real models. But this event is simply suffering because of the collinearity cases
between the coefficients. On the opposite hand, that the Lasso process does not
have Oracle properties. So, Zou (2006) suggested the adaptive Lasso technique
which gives a consistent model for VS. Therefore, we consider BALTR approach
in this thesis, the adaptive Lasso enjoys the Oracle properties by utilizing the
adaptably weighted Lasso penalty parameter, and leads to a near minimax good
estimators. Additionally, the adaptive Lasso technique needs to initials estimates of
the regression coefficients, when a sample sizes is less than of the covariates
number, which is mostly not available in the high dimensional data. The estimator

of adaptive Lasso is given by

k
ﬁAlasso = arg;nin(y - Xﬁ)’(y - Xﬁ) + ZA]LB]l A]' =0, (3-1)
j=1

where varied penalty parameters are utilized for the regression coefficients.
Confidently, for the not important explanatory variables, we must place larger
penalty A; on their matching coefficients.

We propose a BALTR procedure in this thesis for coefficients estimations and VS.

We suggest a news practices of the adaptive Lasso form by using the scale
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mixtures of a uniform representation of the Laplace distribution. Following
Mallick & Yi (2014), the Laplace representation in equation (2.4) can adaptive as

A 1 A2
T o=4ilBil = f — L sz‘l e_/lfwf dw; ... ;=0
’ w2 T2

In this thesis, we modify the above formula as follows:
Let Zj = A]W] = dZ] = Ade] then
L o= 2ilBl = X o128
2 2
_ Ay % ﬁ)“ oy 1
- ij>|/1j,Bj| 2z; T2 (/1]' e /1]' de’
Ao
=j —e %dz; .1, =20 (3.2)
zj>|2;B)]
In practices, this formula produces more tractable and efficient Gibbs Samples than

the previous formula.

3.2 BALTR hierarchy model and Prior Distributions:
By using equation (1.1) and equation (3.2), the Bayesian hierarchical model can be

formulated as follows:

Yi= 0 otherwise < 0’

y*|X,[},02 ~ Nn(XﬂrO-ZIn)'
K
A Unifi L2
B 1_[ niform % 1)
j=1

k
zZ~ 1_[ Exponential(1),
j=1

{Yi* y; >0

(3.3)
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02 ~ InvGamma(a, b),
Aj ~ Gamma(c, d),

where z = (zy,++,z,) and A = (A4, -+, Ay).

3.3 Full Conditional Posterior Distributions of BALTR:
Firstly, we can express the joint posterior distribution of all BALTR procedure
parameters as follows

The distribution of y* is follows:

Vi if yi> y"}

yilyuB ~ {N(XB,UZIn)I{YEk < y°}, otherwise

The conditional posterior distribution of g is follows:
T['-(ﬂ' Z' )" 0-2 |y*'X) X Tl'-(y*lxl ﬁ’ 0-2) n(ﬁlﬁ‘)’

xexp{~ 750" — 1) — X)) a1 {18)] < 2}
X exp {—% (—2y*'XB + ﬁ'X'Xﬂ)} ?=1 I {lﬁjl < ,Zl_j}’
x exp {—%(—Zy*'X(X'X)_l(X'X)ﬁ + 3’X’Xﬂ)} ?:11{|ﬁj| < %}'

x exp {— — (—2B'X'XB + p’x’xp)} k1 {—j—j <Bi< j—j}

i Z Z
By X, 2,2 ~Ni(Bovs, (X'X)""0?) 1_[1 {—;’, < < ;{} . (34
j=1 J J

The conditional posterior distribution of z as follows:
n(z|B, 1) x n(Blz,A) n(z)
x 1(z) I{zj > |/1jﬂj|},
o< [Tjo1 e7% H{z; > |8},
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k
zZ~ 1_[ Exponential (1) I{Zj > |/1j,8j|} : (3.5)
j=1
The conditional posterior distribution of a2 as follows:
n(a?ly", X,B) «xn(y'|X,B, 0*) n(c?),
< (037 expl- ("~ XBY (" ~ XB)] (03 exp{- )
20° a’

n 1
S+az (0 —XBY (Y ~XB)+b).  (36)

The conditional posterior distribution of A as follows:

w(4]B;) o« m(B;|2;) m(%),

]

e /’lj(C+1)—1 exp{—d/lj}l{ﬂ] < i}’
181

a?|y*. X, B ~InvGamma (

Z.
Aj|,8j~Gamma(c +1,d)I {Aj < |,8_]} , (3.7)
J

where the B, is ordinary least squares estimators and I(.) denotes an indicator

function.

3.4 BALTR computation:
We specify Gibbs samples for BALTR procedure by initiate with the initial
valuations for parameters 8, z , A and o2, then we carry out the algorithm as

follows:
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Algorithm 3 (Sampling in BALTR model).

Sampling y*: We generate y* latent variable from truncated normal

distribution with mean X and variance o?21,,.

e Sampling z: We generate the z; as follows z; = z;* + |1;;|, where z;*is an

exponential distribution.

e Sampling B: We generate B coefficients from truncated normal distribution

with mean B, and variance covariance (X'X) 1o2.

e Sampling 6%: We generate the o2 from the inverse gamma distribution

with shape parameter % + a and rate parameter

1
SO =XB)(y' —XB)+b.

e Sampling A: We generate the A; from truncated gamma distribution with

shape parameter ¢ + 1 and rate parameter d.

3.5 BALTR with ridge parameter:

For the same reasons mentioned in Chapter 2, exactly in section 2.5, we adding a
ridge parameter to remedy actual challenges that may appear with multicollinearity
and overfitting problems. Then, referring to the equation (3.4) and add ridge

parameter 9 to the equation as follows:

24




Bayesian adaptive Lasso Tobit regression with a practical application

1
exp {— 502 (=2y"'X(X'X +91,) V(X' X + 9B

k

+B(X'X + ﬁlk)ﬁ)}nl {|ﬁj| < /ZT’}
: j

j=1
o exp {555 (<28 XX+ 9108 + B XX+ 910B} ey 18] <2,

%

4

}, (3.8)

k
Z.
Bl ', X, 2,4 ~Ny(Br, (X'X +91,) " 02) 1_[1{—;; <p; <
j=1

where the B is ridge estimators and I(.) denotes an indicator function.

3.6 BALTR with ridge parameter computation:
We specify Gibbs samples for BALTR procedure with ridge parameter by initiate
with the initial valuations for parameters 8 , z, A and o2, then we carry out the

algorithm as follows

Algorithm 4 (Sampling in BALTR model with ridge parameter).

e Sampling y*: We generate the latent variable y* from truncated normal

distribution with mean X and variance o21,,.

e Sampling z: We generate z as follows z; = z;* + |4;3;|, where z;* is an

exponential distribution.

e Sampling B : We generate B coefficients from truncated normal distribution

with mean B and variance covariance (X'X + 91,) " 1o2.
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e Sampling a?: We generate the g% from the inverse gamma distribution

with shape parameter % + a and rate parameter
;7 —XB) (V' ~XB) +b.

e Sampling A.: We generate the A; from truncated gamma distribution with

shape parameter ¢ + 1 and rate parameter d.
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CHAPTER FOUR

4. SIMULATION STUDY ANALYSIS

4.1 Introduction:

In this part of this Chapter, we test our proposed procedures and measure its
performance compared to previous techniques for estimating parameters and VS in
Tobit regression. This test is carried out by applying simulation examples to our
procedures BALTR and BLTR, Tobit regression (Tr) by implementing the AER
package (Kleiber et al., 2017), Bayesian Tobit regression method (Btr) by
implementing the MCMCpack package (Martin et al., 2018), and the Bayesian
Tobit Quantile regression method (Btqgr) by using the Brq package (Alhamzawi,
2018). All these packages will be implemented in R language. For comparison, we
draw 10,000 iterations of the Gibbs sampling, the first 1000 were ruled out as burn
In. The procedures are evaluated based on the median of mean absolutes deviations
MMAD). The formula of MMAD as follows

MMAD = median(mean ( |XB — Xpt™ |), (4.1)

where the parameter B is a vector of estimated coefficients and the parameter
B is a vector of true coefficients values in the simulation examples. In this
chapter, we set a=b=c=d=0.05, 9¥=0.01 and Tau=0.5. For each simulation study,

we run 200 simulations.

4.2 Independents and identically distributed (i.i.d) random errors:
Here, a clarification of what we will do in this simulation, that we will create
independent variables from the multivariate normal distribution with parameters

mean 0, and three values of the variance ¢2.
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In this simulations example, we create 7 independent variables with 100

observations, the pair wise correlation between each independent variable

equalizes to 0.5/"/1, and we set the true regression coefficients as follows:

ptrte = (1,0,1,0,1,0,1,0)".

We simulated y;" as follows:

Vi =14 x5 + x4 +Xg; + &

where ; ~ Normal (0, 62), and o2 € {1,4,9}.

We list the results of regression coefficients estimates as tables below

ﬂtrue
Bo=1
B1=0
B, =1
B3 =0
Bi=1
Bs=0
Be=1
B;=0

BALTR
0.98827
0.00038
1.01733
-0.00748
1.00599
-0.00089
1.00329
-0.00801

BLTR
0.98864
0.00045
1.01547
-0.00737
1.00435
-0.00054
1.00104
-0.00840

Tr
0.99785
0.00002
1.01471
-0.00842
1.00140
-0.00036
0.99984
-0.00916

Btr
0.96099
0.00145
1.03469
-0.00566
1.02812
-0.00301
1.02516
-0.00666

Btgr
0.97584
0.00296
1.02866
-0.00396
1.03061
0.00045
1.02201
-0.01113

Table 1: The coefficients estimates of Simulation example 1, when &; ~ N(0,1)

ﬂtrue
Bo=1
B1=0
B, =1
B3 =0
4 =1
Bs=0
Be =1
B;=0

BALTR
0.96165
-0.03419
1.03859
-0.01906
0.99276
-0.00555
0.96883
-0.00152

BLTR
0.96346
-0.03484
1.03449
-0.01769
0.98515
-0.00538
0.96457
-0.00026

Tr
0.98341
-0.03525
1.03971
-0.01797
1.00533
-0.00443
0.97656
0.00109

Btr
0.90094
-0.03771
1.07396
-0.02327
1.04831
0.00100
1.00677
-0.00239

Btgr
0.92477
-0.04608
1.08750
-0.04456
1.07056
-0.01794
1.00723
-0.01064

Table 2: The coefficients estimates of Simulation example 1, when &; ~ N(0,4)
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pirue BALTR BLTR Tr Btr Btqr
Bo =1 0.93230 0.93821 0.98741 0.85266 0.92306
B1=0 -0.00241 -0.00409 -0.00274 0.00304 0.00642
B2=1 0.90639 0.89763 0.96096 1.00688 0.97875
B3=0 0.06056 0.06073 0.06894 0.06871 0.08918
Bs=1 0.92676 0.91765 0.95287 1.00207 0.97170
Bs=0 -0.00396 -0.00296 -0.00268 -0.00263 0.01202
Bs=1 0.93320 0.92347 0.97901 1.02463 1.01493
7=0 0.02254 0.01934 0.01915 0.01989 0.00235

Table 3: The coefficients estimates of Simulation example 1, when &; ~ N(0,9)

Procedure o MMAD SD

BALTR 0.253714 0.066260
BLTR 0.254578 0.068390
Tr 1 0.255161 0.069849
BTr 0.264513 0.075860
BTar 0.282732 0.077842
BALTR 0.486562 0.142146
BLTR 0.487090 0.142711
Tr 4 0.492903 0.149641
BTr 0.508624 0.168405
BTqr 0.559407 0.166772
BALTR 0.688334 0.197845
BLTR 0.699088 0.196353
Tr 9 0.711708 0.209395
BTr 0.735739 0.231249
BTar 0.789161 0.230088

Table 4: The MMADs and SDs results of Simulation example 1
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4.2.2 Simulation example 2:
This simulation example is same as example above except we create 8 independent
variables, and we set the true regression coefficients as follows:
pire = (1,2,1,0,0,2,0,0,0)".
We simulated y;" as follows:
yi =14 2x; + x5 + 2x5; + &
where g; ~ Normal (0, ¢2), and o2 € {1, 4,9}.

We list the results of regression coefficients estimates as tables below

plrue BALTR BLTR Tr Btr Btqr
Bo=1 0.97159 0.97221 0.98196 0.94891 0.93512
B1=2 2.00872 2.00722 2.00367 2.03296 2.00367
B:=1 1.00763 1.00670 1.00807 1.01861 1.00807
B3z =0 0.03387 0.03542 0.03594 0.03729 0.05146
Bi=0 -0.02673 -0.02681 -0.02934 -0.02641 -0.02389
Bs =2 2.03684 2.03427 2.03763 2.04875 2.05431
Be=0 -0.01184 -0.01180 -0.01395 -0.00831 -0.01093

7=0 0.01131 0.01112 0.01176 0.01293 0.01731
Bg =0 0.02385 0.02455 0.02422 0.02653 0.03331
Table 5: The coefficients estimates of Simulation example 2, when &; ~ N(0,1)

pirue BALTR BLTR Tr Btr Btgr

Bo=1 0.97095 0.97731 1.00273 0.89674 0.90440
B1=2 1.99212 1.98133 1.98334 2.04186 2.02277
B,=1 0.99698 0.99874 1.00515 1.03967 1.03717

3=0 0.01277 0.01409 0.01603 0.00550 -0.01092
Bi=0 0.00038 -0.00033 -0.00220 0.00672 -0.01011
Bs=2 2.01144 1.99696 2.00244 2.06962 2.08351
Be=0 -0.01746 -0.01740 -0.01891 -0.02984 -0.03428
B;=0 0.00332 0.00659 0.00527 0.00489 0.02098
Bg=0 -0.01538 -0.01637 -0.01637 -0.01705 -0.03639

Table 6: The coefficients estimates of Simulation example 2, when &; ~ N(0,4)
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ptrue BALTR BLTR Tr Btr Btqr

Bo=1 0.88552 0.91542 0.94838 0.73714 0.79963
B1=2 2.09478 2.06696 2.09071 2.19900 2.16909
B2=1 0.95556 0.95517 1.00633 1.07622 1.09604
B3=0 -0.01773 -0.02413 -0.01887 -0.00588 -0.01590
Bs=0 0.06045 0.06462 0.06589 0.06675 0.07159
Bs =2 2.02103 1.98286 2.02437 2.14770 2.15143
Be =0 -0.04312 -0.04821 -0.04970 -0.05432 -0.04958
B7=0 0.01631 0.01681 0.02267 0.03698 0.01310
Bs =0 -0.02775 -0.02589 -0.02533 -0.02832 -0.03070

Table 7: The coefficients estimates of Simulation example 2, when &; ~ N(0,9)

Procedure o MMAD SD

BALTR 0.2867665 0.0784412
BLTR 0.2878924 0.0794854
Tr 1 0.2886266 0.0804479
BTr 0.3030122 0.0875418
BTar 0.3292688 0.0884608
BALTR 0.5291207 0.1342116
BLTR 0.5317522 0.1358630
Tr 4 0.5358101 0.1419345
BTr 0.5736709 0.1478548
BTqr 0.6248725 0.1717885
BALTR 0.8161338 0.2344180
BLTR 0.8247406 0.2504589
Tr 9 0.8639433 0.2594731
BTr 0.9450992 0.3328603
BTqr 0.9945814 0.3460455

Table 8: The MMADs and SDs results of Simulation example 2
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4.2.3 Simulation example 3:
In this simulation example, we create 7 independent variables with 200
observations, the pair wise correlation between each independent variable
equalizes to 0.5/"/1, and we set the true regression coefficients as follows:

ptre = (1,6,0,0,0,0,0,0)".
We simulated y;" as follows:

yi =14+ 6xq; +¢

where ; ~ Normal (0, 62), and o2 € {1,4,9}.

We list the results of regression coefficients estimates as tables below

pirue BALTR BLTR Tr Btr Btgr
Bo=1 0.97368 0.97753 0.98879 0.94602 0.94129
B1=6 6.01734 6.00915 6.00311 6.04569 6.06105
B2=0 0.01687 0.02028 0.02032 0.01908 0.00891
B3=0 -0.02981 -0.03250 -0.03228 -0.03437 -0.03492
Bi=0 0.01732 0.01819 0.01768 0.01843 0.01383
Bs=0 -0.00262 -0.00358 -0.00503 0.00219 0.00320
Be=0 -0.00378 -0.00401 -0.00218 -0.00925 -0.00812
B;=0 -0.00518 -0.00384 -0.00430 -0.00595 -0.01012
Table 9: The coefficients estimates of Simulation example 3, when &; ~ N(0,1)
pirue BALTR BLTR Tr Btr Btgr
Bo=1 0.94907 0.96559 1.00646 0.88484 0.89730
B1=6 6.02860 5.99982 5.97664 6.10380 6.09037
B2=0 -0.02884 -0.03165 -0.03466 -0.02816 -0.01705
B3z =0 0.02693 0.02488 0.02954 0.01865 0.01067

4=0 -0.02435 -0.02439 -0.02528 -0.03082 -0.00979
Bs=0 -0.00439 -0.00282 -0.00963 0.01587 0.01298
Be=0 0.03007 0.03157 0.04076 0.02071 -0.00122
B;=0 -0.00213 0.00071 0.00041 0.00368 0.02046

Table 10: The coefficients estimates of Simulation example 3, when &; ~ N(0,4)
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pirue BALTR BLTR Tr Btr Btqr

Bo=1 0.85252 0.90898 0.97288 0.78279 0.78323
B1=6 6.12307 6.04103 6.01833 6.21566 6.25580
B2=0 -0.00169 -0.01736 -0.02162 0.00461 0.02084
B3=0 -0.00479 -0.00091 0.00215 -0.02989 -0.04074
Bs=0 0.01931 0.02467 0.02528 0.03211 0.03718
Bs=0 -0.03964 -0.03964 -0.03971 -0.06806 -0.08469
Bs =0 -0.01256 -0.00415 -0.00234 -0.01975 -0.01429
B7=0 -0.00448 -0.006959 -0.01159 0.00913 0.01829

Table 11: The coefficients estimates of Simulation example 3, when ¢; ~ N(0,9)

Procedure o MMAD SD

BALTR 0.3106147 0.1013127
BLTR 0.3115898 0.1060711
Tr 1 0.3121467 0.1046592
BTr 0.3161041 0.1115924
BTqr 0.3446810 0.1168242
BALTR 0.5711975 0.1695946
BLTR 0.5864465 0.1737943
Tr 4 0.5941101 0.1866304
BTr 0.6330689 0.1966508
BTqr 0.6741430 0.2176665
BALTR 0.8190953 0.2743333
BLTR 0.8360951 0.2539165
Tr 9 0.8664098 0.2966426
BTr 0.8928808 0.3108317
BTar 0.9693136 0.3371386

Table 12: The MMADs and SDs results of Simulation example 3
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4.2.4 Simulation example 4:
In this simulation example, we create 8 independent variables with 100
observations, the pair wise correlation between each independent variable
equalizes to 0,9, and we set the true regression coefficients as follows:

ptre = (1,4,0,0,0,0,0,0,0)".
We simulated y;" as follows:

yi =14 4xy; + ¢

where &; ~ Normal (0, 62), and o2 € {1,4,9}.

We list the results of regression coefficients estimates as tables below

ptrue BALTR BLTR Tr Btr Btgr
Bo=1 0.98066 0.98114 0.99732 0.94336 0.94509
B1=4 4.01580 4.01280 4.00121 4.05204 4.05518
B,=0 -0.02369 -0.02443 -0.02401 -0.02597 -0.02490
B3;=0 0.00661 0.00656 0.00627 0.00755 -0.00942
Bs=0 -0.01306 -0.01326 -0.01122 -0.01811 -0.01485
Bs=0 -0.01593 -0.01743 -0.01530 -0.02417 -0.02233
Be =0 -0.01972 -0.02033 -0.01952 -0.02484 -0.02248
7=0 0.00007 -0.00030 -0.00002 -0.00108 -0.00336
Bg =0 0.00155 0.00184 0.00259 0.00056 0.00530
Table 13: The coefficients estimates of Simulation example 4, when ¢; ~ N(0,1)
pirue BALTR BLTR Tr Btr Btgr
Bo=1 0.93806 0.94796 0.98354 0.85672 0.87234
Bi1=4 4.00038 3.97771 3.95982 4.09213 4.09190
B,=0 -0.05298 -0.05676 -0.05471 -0.06522 -0.05747
B3z =0 0.01241 0.01078 0.01139 0.01108 0.01751
Bis=0 0.01391 0.01499 0.01537 0.01834 0.01579
Bs =0 -0.00205 -0.00121 -0.00191 -0.00161 -0.00616
Be =0 0.00512 0.00353 0.00019 0.01596 0.02037
B;=0 -0.00527 -0.00625 -0.00654 -0.00443 0.00298
g=0 0.02382 0.02719 0.02781 0.02752 0.01539

Table 14: The coefficients estimates of Simulation example 4, when &; ~ N(0,4)
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pirue BALTR BLTR Tr Btr Btgr
Bo=1 0.85857 0.87405 0.93708 0.76538 0.79680
Bi1=4 4.06267 4.03328 4.02374 4.15795 4.14522
B2=0 0.01158 0.01511 0.01580 0.02550 0.02188
Bz =0  -0.04653 -0.04888 -0.05147 -0.05095 -0.05048
Bs=0  -0.00739 -0.00989 -0.01354 0.00265 0.01444
Bs=0  -0.02513 -0.02520 -0.02375 -0.03634 -0.03140
Be =0 0.02400 0.01936 0.01766 0.01341 0.01714
B7=0 0.01162 0.01649 0.01981 0.01195 0.00986
Bg =0 0.01130 0.00759 0.00732 0.01839 0.01591
Table 15: The coefficients estimates of Simulation example 4, when &; ~ N(0,9)
Procedure o2 MMAD SD

BALTR 0.3175153 0.0878509

BLTR 0.3188315 0.0883490

Tr 1 0.3241813 0.0892745

BTr 0.3317360 0.0943799

BTqr 0.3483748 0.0999571

BALTR 0.5533796 0.1576824

BLTR 0.5586609 0.1638874

Tr 4 0.5673092 0.1745200

BTr 0.5902533 0.1929422

BTqr 0.6342843 0.2009979

BALTR 0.7782545 0.2106083

BLTR 0.7823382 0.2187003

Tr 9 0.8064242 0.2196771

BTr 0.8462888 0.2480293

BTar 0.8727480 0.2616631

Table 16: The MMADSs and SDs results of Simulation example 4
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In this example, we set the same number of observations and same true regression

coefficients in the example above. But, the pair wise correlation between x; and

x;is high correlation and it is equal to 0,75.

We list the results of regression coefficients estimates as tables below

ﬂtrue
Bo=1
B1=4
B2=0
Bs=0
Bi=0
Bs=0
Be =0
B7=0
Bs =10

BALTR

0.96334
3.99911
0.02810
-0.05722
0.03286
0.02766
-0.03771
0.00514
0.01061

BLTR

0.97432
3.97485
0.02907
-0.05931
0.03630
0.02966
-0.04115
0.00745
0.01078

Tr

0.98914
3.96787
0.02915
-0.05809
0.03240
0.03094
-0.03994
0.00778
0.01007

Btr

0.93030
4.03959
0.03780
-0.07588
0.05007
0.02647
-0.04496
0.01035
0.01590

Btgr
0.93054
4.04445
0.05102
-0.09464
0.05885
0.02646
-0.05025
0.02153
0.01057

Table 17: The coefficients estimates of Simulation example 5, when ¢; ~ N(0,1)

pirue
Bo=1
Bi1=14
B2=0
B3 =0
Bs=0
Bs =0
Bs =10
B7=0
Bs =0

BALTR
0.90221
4.09041
-0.02764
-0.03041
0.08249
-0.02687
0.01350
-0.03645
0.04680

BLTR
0.92680
4.05841
-0.03752
-0.02766
0.07324
-0.03145
0.00990
-0.03800
0.04654

Tr
0.98491
4.03304
-0.03607
-0.03004
0.06840
-0.02989
0.00329
-0.03699
0.04803

Btr
0.85950
4.14416
-0.04203
-0.03646
0.10042
-0.04422
0.01418
-0.05141
0.05217

Btgr
0.87261
4.14184
-0.05109
-0.04094
0.13265
-0.06207
0.02799
-0.06235
0.06563

Table 18: The coefficients estimates of Simulation example 5, when &; ~ N(0,4)
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pirue BALTR BLTR Tr Btr Btqr
Bo=1 0.73119 0.78657 0.94885 0.75659 0.80464
B1=4 4.12586 4.03465 3.99195 4.14338 4.15168
B, =0 0.02199 0.02505 0.04213 0.04481 0.00129
B3 =0 -0.02119 -0.04096 -0.07182 -0.04829 -0.00941
Bis=0 0.02292 0.04250 0.06801 0.04011 0.02100
Bs =0 0.05144 0.04283 0.02239 0.04867 0.07637
Be =0 -0.04245 -0.05081 -0.03979 -0.05118 -0.06790
B;=0 0.01408 0.00877 -0.00874 0.00103 0.03011
Bg =0 0.73119 0.78657 0.94885 0.75659 0.80464
Table 19: The coefficients estimates of Simulation example 5, when &; ~ N(0,9)
Procedure o? MMAD SD

BALTR 0.3143854 0.1002000

BLTR 0.3157433 0.1004268

Tr 1 0.3249725 0.1007086

BTr 0.3270238 0.1140092

BTar 0.3693706 0.1202663

BALTR 0.5635968 0.1528850

BLTR 0.5690248 0.1624616

Tr 4 0.5784414 0.1919185

BTr 0.5923137 0.1807643

BTar 0.6501139 0.1794833

BALTR 0.7290041 0.2281853

BLTR 0.7558415 0.2599720

Tr 9 0.8092581 0.2846500

BTr 0.8406544 0.2806326

BTar 0.8931200 0.2883510

Table 20: The MMADs and SDs results of Simulation example 5
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4.2.6 Simulation example 6:

In this simulation example, we create 7 independent variables with 200
observations, the pair wise correlation between each independent variable equalize
to 0.5 =71, and we set the true regression coefficients as follows:

g€ = (0,0.7,...,0.7)".
7

We simulated y;" as follows:
yi = 0.7x1; + 0.7x,; + 0.7x3; + 0.7x4; + 0.7x5; + 0.7x6; + 0.7x; + ¢;
where ; ~ Normal (0, 62), and o2 € {1,4,9}.

We list the results of regression coefficients estimates as tables below

prrue BALTR BLTR Tr Btr Btqr

Bo=0 -0.00121 -0.00423 -0.00533 -0.08591 -0.06556
B1=0.7 0.70947 0.71037 0.71166 0.73317 0.73406
B, =0.7 0.69885 0.69889 0.69910 0.70385 0.69077
B3 =0.7 0.70073 0.70289 0.70702 0.72777 0.73125
Bs=0.7 0.67094 0.67292 0.67990 0.69661 0.69749
Bs=0.7 0.68911 0.68964 0.69058 0.69096 0.68514
Be=0.7 0.69695 0.69789 0.69921 0.72360 0.71674
;=07 0.69993 0.70086 0.70014 0.72937 0.72692

Table 21: The coefficients estimates of Simulation example 6, when &; ~ N(0,1)

prrue BALTR BLTR Tr Btr Btqr

Po=0 0.01359 -0.00959 -0.02789 -0.20080 -0.15736
B1=0.7 0.67988 0.68716 0.70428 0.72475 0.71989
B2 =07 0.68443 0.69440 0.71776 0.74273 0.73490
P3 =07 0.68594 0.70291 0.73325 0.78796 0.79404
By =0.7 0.70081 0.67994 0.70662 0.72362 0.73400
Ps=0.7 0.69904 0.68332 0.71282 0.76138 0.73504
Pe=0.7 0.68678 0.69480 0.70902 0.73962 0.76310
;=07 069172 0.67046 0.68789 0.71432 0.69523

Table 22: The coefficients estimates of Simulation example 6, when &; ~ N(0,4)
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pirue BALTR BLTR Tr Btr Btqr

Bo=0 -0.05573 -0.03550 -0.07786 -0.35636 -0.28588
B1=07 067484 0.66341 0.70466 0.76623 0.77236
B, =07 0.66696 0.64567 0.74590 0.81375 0.83822
B3 =07 0.69203 0.68537 0.69142 0.72902 0.69549
By =0.7  0.70936 0.61233 0.69836 0.75535 0.76538
Bs =07 0.63479 0.61751 0.69721 0.75672 0.76575
Be=0.7 0.74763 0.73993 0.77888 0.83389 0.84087
B7=0.7  0.68780 0.66230 0.65789 0.69270 0.66976

Table 23: The coefficients estimates of Simulation example 6, when &; ~ N(0,9)

Procedure o MMAD SD

BALTR 0.276327 0.104663
BLTR 0.277788 0.105090
Tr 1 0.280375 0.106778
BTr 0.286062 0.127102
BTqr 0.305961 0.126867
BALTR 0.545705 0.137516
BLTR 0.545787 0.141699
Tr 4 0.549043 0.154127
BTr 0.612324 0.198907
BTar 0.626475 0.200574
BALTR 0.785711 0.230850
BLTR 0.805738 0.253614
Tr 9 0.814186 0.285252
BTr 0.906358 0.377037
BTqr 0.946205 0.386729

Table 24: The MMADs and SDs results of Simulation example 6
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4.2.7 Simulation example 7:
This example considers a difficult case model. We create 4 independent variables

with 100 observations, and the pair wise correlation between each independent
variable is low correlation, it is equalized to -0.25, and we set the true regression
coefficients as follows:
e = (0,6.8,6.8,6.8,0)".
And we simulated y; as follows:
yi = 6.8xy; + 6.8xy; + 6.8x3; + ¢
where g; ~ Normal (0, ¢2), and o2 € {1, 4,9}.
We list the results of regression coefficients estimates as tables below
plrue BALTR BLTR Tr Btr Btqr

Bo=0 -0.03204 -0.02874 -0.02564 -0.04972 -0.04884
B1=6.8 6381289 6.80855 6.80866 6.82615 6.82673
B2=68 82236 6.81757 6.81833 6.83434 6.82800
Bs =68 680231 6.79864 6.79951 6.81096 6.79943

Bs=10 -0.00738 -0.00849 -0.00822 -0.00876 -0.01579
Table 25: The coefficients estimates of Simulation example 7, when ¢; ~ N(0,1)

ptrue BALTR BLTR Tr Btr Btqr

Bo=0 -0.01848 -0.01769 -0.00053 -0.07119 -0.05421
B1=68 530706 6.80504 6.79841 6.83788 6.83524
B»=68 78025 6.77714 6.77373 6.80896 6.79998
B3 =6.8 6381374 6.81031 6.80598 6.84394 6.84213

Bs+=0 001473  -0.01726  -0.01741  -0.01320  -0.01883
Table 26: The coefficients estimates of Simulation example 7, when &; ~ N(0,4)

e
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p¢  BALTR  BLTR Tr Btr Btgr

Po=0 005187  -0.05787  -0.00290  -0.20772  -0.22551
P1=68 682050  6.82827  6.80091  6.94322  6.95459
P.=68 588090  6.88623  6.86843  6.99837  7.01069
Ps=68 682117 681366 679564  6.93702  6.98893

Bs=0 003453 003309 003350  0.04149  0.04776

Table 27: The coefficients estimates of Simulation example 7, when &; ~ N(0,9)

Procedure o? MMAD SD

BALTR 0.2715830 0.1158086
BLTR 0.2739781 0.1161730
Tr 1 0.2748512 0.1167151
BTr 0.2755876 0.1208232
BTar 0.2970783 0.1276834
BALTR 0.4730141 0.2025605
BLTR 0.4736110 0.2042301
Tr 4 0.4852631 0.2043655
BTr 0.4895753 0.2118048
BTar 0.5720289 0.2340398
BALTR 0.7991411 0.3320651
BLTR 0.8110890 0.3479748
Tr 9 0.8323682 0.3412223
BTr 0.8268126 0.4119798
BTar 0.9511592 0.4644230

Table 28: The MMADSs and SDs results of Simulation example 7
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4.2.8 Simulation example 8:
This simulation example is same in the example above except the pair wise
correlation between each independent variable is very low correlation, it is
equalized to 0.95, and we set the true regression coefficients as follows:
pt™e = (0,5.5,5.5,5.5,0)".

We simulated y;" as follows:

y; = 5.5x1; + 5.5x,; + 5.5x3; + ¢;
where &; ~ Normal (0, 62), and o2 € {1,4,9}.

We list the results of regression coefficients estimates as tables below

prrue BALTR BLTR Tr Btr Btqr
Bo=0  0.00060 0.00606 0.01219  -0.02171  -0.02990
B1=55 549903 5.49370 5.49235 5.51362 5.51767
B2=55 549752 5.49176 5.49292 5.50951 5.50678
B3 =55 551334 5.50702 5.50574 5.53024 5.53255
B+=0 000655  -0.00587  -0.00761  -0.00458  -0.00813

Table 29: The coefficients estimates of Simulation example 8, when &; ~ N(0,1)

p*c  BALTR  BLTR Tr Btr Btqr
Po=0 002741  -0.02886  -0.05559  -0.09647  -0.09765
B1=55 553919 553667 552496 559940  5.60046
B>=55 552721 552524 550943 558874 559006
P3=55 554451 554064 553180  5.60197 562056
Bs=0 000502 000462 000431  0.01049  0.00578

Table 30: The coefficients estimates of Simulation example 8, when &; ~ N(0,4)
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p¢  BALTR  BLTR Tr Btr Btgr

Po=0 012842  -0.14020  -0.18551  -0.28450  -0.25737
P1=55 553337 553558 550877  5.64924 564082
B2=55 550742 550453 548611 562610  5.64194
P3=55 557582 557051 556494  5.67917 567718

Bs=0 003505 -0.04467  -0.04179  -0.03981  -0.01707

Table 31: The coefficients estimates of Simulation example 8, when &; ~ N(0,9)

Procedure o MMAD SD

BALTR 0.2693833 0.1276641
BLTR 0.2701359 0.1276692
Tr 1 0.2737591 0.1278145
BTr 0.2809201 0.1340808
BTqr 0.3205587 0.1549083
BALTR 0.4916656 0.2144122
BLTR 0.4948648 0.2147106
Tr 4 0.4962678 0.2168003
BTr 0.5145276 0.2295402
BTqr 0.5344612 0.2361655
BALTR 0.6875267 0.3454354
BLTR 0.7362656 0.3522602
Tr 9 0.7448768 0.3553119
BTr 0.7762767 0.4178073
BTqr 0.7977359 0.4015878

Table 32: The MMADs and SDs results of Simulation example 8
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4.2.9 Simulation example 9:
In this simulation example, we create 7 independent variables with 200
observations, and without intercept. The pair wise correlation between each
independent variable equalize to 0.8!"JI,  and we set the true regression
coefficients as follows:

ptre = (1,0,0,1,0,0,1)".
We simulated y;" as follows:

Vi =x1 + x4 +x7 + g
where &; ~ Normal (0, 62), and o2 € {1,4,9}.

We list the results of regression coefficients estimates as tables below

pirue BALTR BLTR Tr Btr Btqr

B1=1 0.99602 0.99472 0.99891 0.99938 1.00005
B2=0 0.02253 0.02361 0.02502 0.02872 0.02909
B3 =0 -0.01936 -0.02096 -0.02302 -0.01557 -0.01819
Bi=1 0.98914 0.98748 0.98879 0.99998 1.01144
Bs=0 0.00151 0.00218 0.00401 0.00070 -0.00791
Bs =10 0.00593 0.00778 0.00648 0.01289 0.01664
B7=1  1.02899 1.02624 1.02538 1.05374 1.07164

Table 33: The coefficients estimates of Simulation example 9, when &; ~ N(0,1)

pirue BALTR BLTR Tr Btr Btqr

B1=1 1.00121 0.99423 1.00942 1.05071 1.06561
B2=0 -0.01434 -0.02126 -0.01914 -0.03293 -0.03984
B3=0 -0.00154 -0.00022 -0.00004 -0.01048 -0.01597
Bi=1 1.04370 1.03332 1.05055 1.10838 1.11395
Bs =10 -0.02595 -0.02849 -0.02941 -0.03784 -0.02168
Be =0 0.02130 0.02220 0.01712 0.04521 0.00745
B7=1 0.98648 0.98243 0.99409 1.00535 1.03446

Table 34: The coefficients estimates of Simulation example 9, when &; ~ N(0,4)

e
44




ﬂtrue
Bi1=1
B2=0
B3=0
Bi=1
Bs =10
Bs =10
B7;=1
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BALTR

0.87722
0.02059
0.03436
0.99151
-0.02858
-0.00635
1.00904

BLTR

0.87473
0.02356
0.03484
0.97907
-0.03023
-0.01027
0.99530

Tr

0.93722
0.01815
0.04302
1.03864
-0.03350
-0.01450
1.05497

Btr

0.93620
0.02717
0.02835
1.08294
-0.00132
-0.03378
1.09108

Btgr
0.96776
0.04077
0.02563
1.06385
-0.01357
-0.05047
1.10440

Table 35: The coefficients estimates of Simulation example 9, when &; ~ N(0,9)

Procedure o MMAD SD

BALTR 0.2637977 0.0629574
BLTR 0.2645657 0.0630926
Tr 1 0.2661152 0.0641458
BTr 0.2690778 0.0672531
BTaqr 0.3022255 0.0756868
BALTR 0.4451257 0.1621673
BLTR 0.4584184 0.1585630
Tr 4 0.4645096 0.1603979
BTr 0.4939741 0.1682316
BTaqr 0.5428853 0.1769871
BALTR 0.6663666 0.1890329
BLTR 0.6716854 0.1890237
Tr 9 0.7004311 0.1977441
BTr 0.7115157 0.2022168
BTar 0.7552406 0.2121890

Table 36: The MMADSs and SDs results of Simulation example 9
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4.2.10 Simulation example 10:

This simulation example is same as example 9 except we set the true regression

coefficients as follows:

ﬁtrue — (2, 0

We simulated y;" as follows:

We list the results of regression coefficients estimates as tables below

pirue
B1=2
B2=0
B3 =0
Bs=0
Bs =0
Bs =0
B7;=0

BALTR

2.02453
0.01362
0.00231
-0.01615
0.01777
0.00883
-0.00492

, o, 0
N———
6

Vi =2x3;+ &
where &; ~ Normal (0, 62), and o2 € {1,4,9}.

BLTR

2.02054
0.01412
0.00285
-0.01740
0.01868
0.00852
-0.00466

Tr

2.02216
0.01344
0.00208
-0.01611
0.01845
0.00901
-0.00480

).

Btr

2.03512
0.01859
0.00654
-0.02272
0.02269
0.00715
-0.00474
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Btgr
2.03164
0.01118
0.00891
-0.01397
0.01890
0.00495
-0.00445

Table 37: The coefficients estimates of Simulation example 10, when &; ~ N(0,1)

ﬁtrue
B1=2
B2=0
B3=0
Bs=10
Bs=0
Bs =0

7=0

BALTR

2.03589
-0.02655
0.01203
0.00093
-0.00516
0.00599
-0.03617

BLTR

2.01806
-0.02897
0.01314
0.00088
-0.00285
0.00667
-0.03757

Tr

2.02225
-0.01920
0.00604
0.00063
0.00208
0.00192
-0.04135

Btr

2.09623
-0.06953
0.03564
-0.00408
-0.02818
0.03046
-0.04638

Btqr
2.09136
-0.07637
0.03165
-0.00881
-0.01613
0.02646
-0.04298

Table 38: The coefficients estimates of Simulation example 10, when &; ~ N(0,4)
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B7=0
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BALTR

2.03086
-0.00503
0.04881
0.01883
-0.01938
-0.00672
0.00185

BLTR

1.98035
-0.00731
0.04794
0.01793
-0.02196
-0.00744
-0.00638

Tr

2.03613
-0.01374
0.06198
0.01211
-0.02338
-0.00609
-0.00801

Btr

2.12114
-0.00790
0.05704
0.06594
-0.04635
-0.01412
-0.00229

Btgr
2.11584
-0.01854
0.06209
0.05424
-0.03894
-0.00675
-0.00272

Table 39: The coefficients estimates of Simulation example 10, when &; ~ N(0,9)

Procedure o MMAD SD

BALTR 0.2425656 0.0606486
BLTR 0.2432271 0.0698898
Tr 1 0.2444597 0.0700119
BTr 0.2493422 0.0699531
BTqr 0.2732725 0.0735678
BALTR 0.4527618 0.1528419
BLTR 0.4556374 0.1539392
Tr 4 0.4613127 0.1539059
BTr 0.4755329 0.1625885
BTqr 0.5232845 0.1674268
BALTR 0.6200592 0.2003216
BLTR 0.6468788 0.2013237
Tr 9 0.7054764 0.2016802
BTr 0.7411863 0.2152123
BTqr 0.7909137 0.2284264

Table 40: The MMADs and SDs results of Simulation example 10
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4.3 Non-i.i.d (Heterogeneous)random errors:
4.3.1 Simulation example 11:
In this simulation example, we created 100 observations, and 8 independent
variables, 5 of these variables are represented as standard normal noise variables,
and we set the true regression coefficients as follows:
pre = (1,2,1,2,0,0,0,0,0)
We simulated y; as follows:
yi =x' B+ (1+x3;)¢
where &; ~ Normal(0,1),
x1; ~ Normal (0, 1), x3; ~ Uniforms(0, 1),
Xy; = Xq1; + X3; + z;, z; ~ Normal (0, 1)

We list the results of regression coefficients estimates as tables below

gv¢  BALTR  BLTR Tr Btr Btqr

Po=1 096936 096770 098601 096044 097442
Bi=2 201515 201446 200962 202357  2.02289
Bz=1 099955 100096 099772  1.00197  0.99635
Bs=2 200402 198195 201909 202554  2.03448
Bs=0 000316 -0.00300  -0.00252  -0.00489  0.00180
Bs=0 001780  -0.01785  -0.01846  -0.01910  -0.02701
BPe=0 000675 000713 000685  0.00907  0.01659
B7=0 001106  -0.01131  -0.01095  -0.01031  -0.00753
Ps=0 000066 000075 000121  -0.00144  0.00883

Table 41: The coefficients estimates of Simulation example 11
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Procedure MMAD SD
BALTR 0.2488675 0.0673076
BLTR 0.2489086 0.0676727
Tr 0.2498349 0.0679520
BTr 0.2498877 0.0689287
BTar 0.2718577 0.0777695

Table 42: The MMADs and SDs results of Simulation example 11

4.3.2 Simulation example 12:
This simulation example is same as example 11, except the number of independent
variables is 7, and without intercept, 4 variables are represented as standards
normal noise variables. we set the true regression coefficients as follows:

ptrte = (1,1,0,0,0,1,1)’

We list the results of regression coefficients estimates as tables below

g¢  BALTR  BLTR Tr Btr Btqr

Pi=1 097645 097437 098484 099867  1.02606
B2=1 098797 098689 098858  1.00582  1.00308
Bs=0 007754 007911 009580  -0.00931  -0.05584
Bs=0 002608 -0.02539  -0.02589  -0.02436  -0.03266
Bs=0 001822 00208 002213 002496  0.01569
Be=1 098689 098565 098829 099837  1.02980
Bz=1 101277 101076 101569 102484  1.03444
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Procedure MMAD SD
BALTR 0.3876545 0.1058635
BLTR 0.3880013 0.1059328
Tr 0.3898011 0.1064951
BTr 0.3975563 0.1119146
BTar 0.4086063 0.1165248

Table 44: The MMADs and SDs results of Simulation example 12

From all tables of the previous examples, it can be observed that the proposed
methods (BLTR and BALTR) generally perform better than the other methods (T,
Btr, and Btqr) used in the comparisons. The MMADs results of BALTR approach
were relatively less than these results of the other procedures and gives the best
MMADs and SD most of the times. This indicates the quality of the performance

of the BALTR procedure in terms of coefficient estimation and VS.

50



Bayesian adaptive Lasso Tobit regression with a practical application

CHAPTER FIVE

5. PRACTICAL APPLICATION

5.1 Introduction:

In this part of application chapter, and after we have demonstrated the merit of
our proposed methods in the simulation study, we applied our proposed methods to
the real data and then analyze the results statistically. The identification and
detection of the causes about increasing the rate wheat production are one of the
priorities of agricultural economist researchers. So, the determination of the real
factors to increase wheat crop production among several factors that will help us to
predict the rate of increase wheat production in the future. Hence the importance of
our new proposed methods, which attempt to identify some variables and to show
how strong their impact on the rate of increase in wheat production. We make our
methods BALTR and BLTR within the three processes in wheat production data
for comparison in terms of accurate prediction and variable selection. The data
used in this chapter is taken from the National program for the development of
wheat cultivation in Irag; Qadisiyah governorate board (2017). The wheat
production data includes 11 variables within 584 observations, these variables are
sorting as follows in table 45. The response variable in this dataset represents the
relative increase in wheat yield per dunum, note that each dunum is equal to

2500 m?. R code is available upon request.
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5.2 The Independent variables:

Urea fertilizer (U): The urea fertilizer is a simple fertilizer that supplies the
major essential element nitrogen, and the crops need it in larger quantities
than any other nutrient.

Date of sowing (Ds): The date of cultivation of wheat seeds in the field.
Quantity of sowing seeds (Qs): The quantity of wheat seeds in the field, and
this amount is measured in kilograms per dunum.

Laser field leveling technique (LT): This method is a smoothing procedure
and leveling the farm ground. This method offers the potential for water
savings.

Compound fertilizer (NPK): NPK fertilizer is a complex fertilizer containing
principally of the three fundamentals nutrients necessary for healthy plants
growth (Nitrogen, Phosphorus and Potassium).

Seed sowing machine technique (SMT): A sowing seed machine is a device
that sows the seeds for crops in the soil, then cover the seeds to a nominated
typical rate depth.

Planting successive (SC): Successive planting is a way to extend corps
harvest by staggering planting of crops, or planting varieties with staggered
maturing dates. In this real dataset, the other corps which planting before
sowing wheat seeds is Mung bean corp.

Herbicide for weed (H): This process contains chemical applications. top
control the growth of weeds types.

High Potassium fertilizer (K): High Potassium is essential for crops health

and there must be an adequate supply in the soils to maintain goods growth.
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e Micro-Elements fertilizer (ME): Mineral elements that are needed by crops

in only trace amounts are known as micro-elements. This fertilizer which

helps the growth of crops, such as iron, magnesium, potassium, and

manganese.
symbol Variables description Rank Rank description
Y The outcome variable Percentage increase of wheat product
U Urea fertilizer Numeral Quantity in kilogram
1 Ideal
Ds Date of sowing 2 Early
3 Late
Qs Quantity of sowing Numeral Quantity in kilogram
LT Laser field leveling L Unused
2 Used
NPK Compound fertilizer Numeral Quantity in kilogram
SMT Sowing seeds machine L Unused
2 Used
Sc Planting successive 1 Planting
(Mung bean crop) 2 Not planting
H Herbicide for weeds Numeral Quantity in milliliter
K High Potassium Numeral Quantity in kilogram
ME Micro-Elements Numeral Quantity int gram

Table 45: The top 11 worthy variables

5.3 Real data results:

BALTR BLTR Tr Btr Btqr
Bo -0.0433838 | -0.0431762 -0.084922 -0.081976 -1.2196515
LCI -0.3578263 -0.3604089 -0.8722770 -0.898573 -1.8071276
UcCil 0.2323458 0.2673627 0.7024328 0.719634 -0.4907951
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U 0.0211009 0.0213583 0.020928 0.020974 0.0243195
L.CI 0.0199047 0.0200037 0.0137744 0.013798 0.0176873
Uu.Cl 0.0228502 0.0236142 0.0280822 0.028236 0.0307460

Ds | -0.6671660 | -0.6763215 | -0.663651 | -0.665663 | -0.6545110
LCI -0.7316255 -0.7574811 -0.7864428 -0.790510 -0.8024576
ucCil -0.6207167 -0.6239916 -0.5408589 -0.546217 -0.5029025

Qs | -0.0218912 | -0.0220591 | -0.021788 | -0.021790 | -0.0057674
LC I -0.0242680 -0.0247427 -0.0347353 -0.034747 -0.0177361
ucl -0.0199373 -0.0200504 -0.0088414 -0.008437 0.0032729

LT 1.3392113 1.2890701 1.357168 1.357630 1.4284952
LCI 1.0704020 0.9941205 0.6807916 0.657868 0.4566205
Ucil 1.6029090 1.5630652 2.0335436 2.035161 2.3610716
NPK 0.0049840 0.0050224 0.004908 0.004920 -0.0052290
LC I 0.0033343 0.0033702 -0.0075619 -0.007545 -0.0164622
ucil 0.0069746 0.0071492 0.0173782 0.017452 0.0068326
SMT | -0.0936879 | -0.1100872 -0.142634 -0.145098 0.2445190
LCI -0.3627955 -0.3842552 -0.8377516 -0.839958 -0.6438307
ucCl 0.1158550 0.1310164 0.5524826 0.558794 1.2208572

SC 0.9282265 0.9198140 0.932829 0.930684 1.0000151
LCI 0.8565598 0.8406293 0.6111322 0.600929 0.6683828
UcCil 0.9953362 0.9880197 1.2545265 1.258660 1.3113546

H 0.0043298 0.0043892 0.004315 0.004323 0.0051035
L.CI 0.0038758 0.0039010 0.0027357 0.002712 0.0037272
ucil 0.0048939 0.0050331 0.0058946 0.005972 0.0064843

K 0.0327570 0.0328492 0.032676 0.032692 0.0246412
LCI 0.0321197 0.0321597 0.0254615 0.025595 0.0139049
U.Cil 0.0335991 0.0338707 0.0398907 0.039990 0.0360497
ME 0.0062279 0.0062152 0.006228 0.006250 0.0075853
LCI 0.0060113 0.0059725 0.0045106 0.004517 0.0046838
ucCil 0.0063928 0.0063932 0.0079452 0.007948 0.0101096

Table 46 - Coefficients estimation and Credible intervals Cls (25%, 95%)

54




Bayesian adaptive Lasso Tobit regression with a practical application

In table 46, the results showed the coefficients estimation and credible intervals
(low credible interval L.Cl and upper credible interval U.Cl). The credible interval
results of the proposed techniques BLTR and BALTR are narrower than Tr, BTr,
BTqr methods, and our proposed methods are including all the estimations of other
methods. At the same time, the results described above have shown that the

proposed method BALTR is the best technique of all other techniques used.
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Figure 1- Histograms of BLTR coefficients estimation
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Figure 3- Autocorrelations of BLTR coefficients estimation
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Figure 6- Autocorrelations of BALTR coefficients estimation

The BLTR and BALTR coefficients estimation are based on posteriors samples of
10,000 recurrences.

In figures 1 and 4, which illustrates the histograms of BLTR and BALTR
covariates, these histograms displayed that the conditional posteriors of the two
methods are stationary for its underlying truncated normal distribution. In figures 2
and 5, showed the trace plots of BLTR and BALTR covariates, these plots show a
reasonably good approximation, and the noise has significantly deviated and the
chain has reached stability and the center remains relatively constant. This means
that the chain is fully mixed and convergent. At last, from figures 3 and 6, the plots
showed the autocorrelations of BLTR and BALTR coefficients, the 10 covariates
in these data are highly correlated, and these MCMCs chains in BLTR process

were practically well.
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CHAPTER SIX

6. CONCLUSION $ RECOMMENDATION

6.1 Conclusion:

This thesis has presented new techniques for model selection of Tobit
regression from Bayesian framework, where we suggested BLTR, and BALTR
procedures to estimates the coefficients with VVS. The proposed procedures depend
on the scale mixture uniform as prior distribution. We developed a new Bayesian
hierarchical model for BLTR and BALTR procedures. Furthermore, we have
provided the Gibbs samples for these procedures. The extension of our procedures
has been included in our thesis, where the ridge parameter is added within the
variance covariance matrix to prevent the singularity in case of multicollinearity
and overfitting problems. We demonstrated the advantages of the new procedures
in both simulations and analysis of real data in chapter four. The results showed
that our procedures performed well in terms of VS and parameter estimation. In
particular, the BALTR technique is absolutely the best of all the procedures
mentioned above. Through the conclusions of this thesis, statisticians are assisted
by the presence of BALTR technique in statistics, using this new technique to

ensure accurate and useful results for the correct prediction.

6.2 Recommendations for future research:

The BLTR and BALTR procedures in this thesis will provide statistical researchers
with promising hope, to introduce and extend new procedures for coefficients
estimation and VS in the Tobit regression. There are many other probable

extensions, such as, using the Bayesian group Lasso in Tobit regression, Bayesian
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elastic net in Tobit regression, Bayesian Bridge and group Bridge in Tobit

regression.
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