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ABSTRACT 

 

     The process of the variable selection refers to the category of problems where 

one attempt to determine the best subset of the pertinent variables, which can be 

used to obtain accurate adjustments to the results of a given response variable. 

Often, when the number of variables is too large, it is difficult to identify important 

and influential variables on the response variable. For this reason, the variable 

selection (VS) characteristic was considered very important in the data analysis. 

Regularization techniques is one fabulous way that has proven effectively for 

dealing with high dimensional data.  

     In previous years, statisticians have made great efforts in developing procedures 

of regularization to solve problems of VS. These procedures auto facilitate for VS 

by setting specific coefficients to zero and shrinking the coefficients estimates, and 

provide advantageous estimates even if the model contains a large number of 

highly correlated variables. Although the regularizations approaches have 

developed in recent years, these procedures can still be improved.  

     In this thesis, we have proposed new techniques for model selection in Tobit 

regression. These techniques are Bayesian Lasso and Bayesian adaptive Lasso in 

Tobit regression (BLTR, and BALTR). These techniques have many features that 

give good estimation and VS. Specifically, we have introduced a new hierarchal 

model for each technique. Then, new Gibbs sampler methods are introduced. We 

also extended the new approaches by adding the ridge parameter inside the 

variance-covariance matrix to avoid the singularity in case of multicollinearity or 
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in case the number of predictors greater than the number of observations. A 

comparison was made with other existing techniques by applying the simulation 

examples and real data. It is worth mentioning, that the obtained results are 

promising and encouraging, giving better results compared to the existing methods. 
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CHAPTER ONE 
 

1. Introduction: 

     Linear statistical models are widely used in biological, agricultural, physical 

and social sciences, biology, as well as in economics and engineering. They are 

useful in both planning stages of research and analysis of the resulting data. We are 

aware of that regression analysis is one of the statistical procedures that illustrate 

the relationships between explanatory variables and the dependent variable 

(outcome). When the explanatory variables values are known, then the regression 

analysis assistance us to predict the values of the outcome variable. Variable 

selection is a difficult and important problem that is an important goal for many 

types of statistical modelling. The difficulty of this problem is increased in actual 

applications when a true model may not exist. Given a dataset, you can fit many 

models. 

     In addition, in order to reach accurate results from the studied event, the 

selected model must correspond the available data as best as possible, and the 

proposed regression process for the data in question will lead to results that are 

close to real. However, when the independent variables are too large, or the 

number of observations is less than the number of variables, then it is very difficult 

to distinguish the independent variables that are important and influential in 

describing the Tobit regression model, which leads to the instability and overfitting 

of the model, consequently the model lacks the validity of the prediction. To get 

rid of these problems, statisticians resorted to the mechanism of selecting the 

important and influential variables, while at the same time eliminating as much as 

possible from the explanatory variables that are not important, this procedure is 
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known variable selection (VS). Although all VS procedures have evolved in recent 

years in linear regression, these procedures can still be improved.  

In generals, the main objective of this thesis is to present several Bayesian 

regularization approaches in the framework of Tobit regression. These approaches 

are Bayesian Lasso and Bayesian adaptive Lasso in Tobit regression (BLTR, and 

BALTR). These approaches have many features that give a good estimation and 

get rid of all problems by variable selection. 

 

2. Literature Review: 

     In many applications, the observations are partially constrained with the 

dependent variable and not constrained in the other part. This data is called 

censored data. The application of the conventional regression with this type of data 

will lead to biased parameters on the one hand, and inconsistent on the other hand. 

Therefore, it is necessary to determine a regression process that is proportional to 

this data. Such a model was first proposed in a great exertion via Tobin (1958). 

Tobin analyzed the dependent variables of the regression model that cannot be 

negative. Consequently, the Tobit regression process is appropriate to this data, it 

is elucidating the relationship among the non-negative dependent outcome variable 

and the independent explanatory variables. The function of Tobit regression is a 

mixed function, it deals with two-part data, each part of the outcome variable data 

will take a given distribution. The dependent variable data that equal to zero will 

take the cumulative distribution function of the normal distribution, and the data is 

larger than zero will take probability density function. 

Between 1958 "when Tobin's articles appeared" and 1970, the Tobit model was 

used infrequently in econometric applications. At the same time, many Tobit 
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models and several evaluation procedures have been suggested for these models. 

Additionally, estimation procedures are now many and varied, but it is hard for 

statisticians to follow all current models and estimation procedures. The Tobit 

regression has been used in many studies, and the statisticians have applied this 

regression in many packages of different statistical language programs, such as the 

Tobit function in AER package (Kleiber et al., 2017), and MCMCtobit function in 

MCMCpack package "(Martin et al., 2018)". The general formula of Tobit 

regression is 

𝑦𝑖 = {
𝑦𝑖 
∗                              𝑦𝑖 

∗ > 0

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ≤ 0
 

where 𝑦𝑖 denote the outcome variable of interest for 𝑖 = 1,… , 𝑛. Here, 𝑦𝑖
∗ denote a 

latent response variable as follows 

𝑦𝑖 
∗ = 𝑥𝑖

′𝜷+  𝜀𝑖  , (1.1) 

where 𝑥𝑖
′ is the 1 × 𝑘 vector denoting the 𝑖th row of the 𝑛 × 𝑘 matrix of predictors 

𝑿, and the vector of predictors  𝜷 is 

𝜷 = (𝛽0, 𝛽1, ⋯ , 𝛽𝑘)′ , 

and 𝜀𝑖 is the error term,  𝑝(𝜀𝑖) = 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎
2),   𝑘 is a number of independent 

variables, and 𝑛 is the number of observations. 

However, previous attempts of applying Tobit regression in diverse applications, 

VS are used in multiple fields. This performance opens the doors for applying this 

technique in several topics that enable statisticians to analyze the data. Especially, 

when the data has a wide array of variables. Therewith, occasionally the number of 

explanatory variables is too large. It is then difficult to know which variables are 

really important, which are the noise variables. Additionally, to the emergence of a 

number of problems, when we use some independent variables that are not 

important in describing the Tobit regression, and this leads to a regression model 
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that will be unstable and weak in terms of prediction. The mechanism of VS is to 

improve the model prediction, providing faster and lower cost models and a good 

understanding of the data. 

If a model is to be used for prediction, time and fatigue can be saved by measuring 

only necessary predictors.  Frequent predictions will add noise to the estimation of 

other levels of interests and also leads to the loss of certain degrees of freedom. 

The selection of predictors among the several potential ones to be included in a 

model is one of the prime challenges in regression analysis. Therefore, VS 

procedure is very important in Tobit regression for several reasons, such as: 

• Reducing the number of explanatory variables will be so beneficial for many 

purposes. Especially, economics and statistics.  

• Besides performing VS process on a dataset, it is sometimes also useful to 

looks at variable importance. A high score on variable importance means 

that variable has a large effect on the responses and small adjustments in that 

variable value can lead to a large deviation in the response. Variables that 

score low on variable importance will mostly be removed during VS 

process, additionally, variables that are not removed from the model will 

also score high on importance. 

• Creating a highly accurate precision model that gives good estimations and 

high predictions. 

Efroymson (1960) proposed an algorithm called stepwise selection technique, 

considered one of the most widely known and widely used subsets selection. It is 

defined as an automatic process for selecting models in cases where there are a big 

number of possible explanatory variables. Then method is implemented mainly in 

regression analysis. It is a procedure that permits implements in forwards selection 
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(𝐹𝑆) and backward elimination (𝐵𝐸) in same time, dropping or adding variables at 

the various steps. This procedure is created two approaches, that is 𝐹𝑆 and 𝐵𝐸.  

The 𝐹𝑆 can be evaluated also by a 𝐹 test as follows 

𝐹𝑗
+ = 𝑚𝑎𝑥𝑗 [

𝑅𝑆𝑆𝑘 − 𝑅𝑆𝑆𝑘+𝑗

𝑆𝑘+𝑗
2 ] > 𝐹𝑖𝑛 . (1.2) 

And the 𝐵𝐸 process can be calculated by a 𝐹 test as follows 

𝐹𝑗
− = 𝑚𝑖𝑛𝑗 [

𝑅𝑆𝑆𝑘−𝑗−𝑅𝑆𝑆𝑘

𝑆𝑘
2 ] < 𝐹𝑜𝑢𝑡  .  (1.3) 

where 𝑅𝑆𝑆 is the residuals sum of squares, 𝑘 is the number of estimated parameters 

in the model, 𝑆2 is the estimate error variance of the model, 𝐹𝑖𝑛 and 𝐹𝑜𝑢𝑡   are used 

as stop criterions. 

Even if 𝑘 is less than 𝑛, looking at all possible models may not be the best thing to 

do, then the 𝐹𝑆 and 𝐵𝐸 approaches are not warranted to give the best model.  

Mallows (1974) proposed a procedure called a Mallows 𝐶𝑘. This procedure named 

for Colin L. Mallows is applied to evaluated predictors that have been estimated 

via ordinary least square regression (𝑂𝐿𝑆). It is implemented in the model selection 

situation, where the number of explanatory variables is obtainable for predicting 

the response variable. The aim is to get the better model that contains a subset of 

these predictors. The small values of 𝐶𝑘 mean that the model is comparatively 

accurate. The formula of Mallows procedure is 

𝐶𝑘 =
𝑅𝑆𝑆(𝑘)

𝑆2
− 𝑛 + 2𝑘 , (1.4) 

where the 𝑅𝑆𝑆 is the residuals sum of squares on a set of training data, 𝑛 is the 

samples size of data, 𝑘 is a number of the covariates in the model, and the 𝑆2 is an 

estimation of the variance related to every response in the model. It was detecting 
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that the 𝐶𝑘 procedure does not give equivalent values to the previous procedure, 

but the model with the smallest 𝐶𝑘 from this meaning will also be the same form 

with the smallest 𝐶𝑘 from the previous meaning. If the model is correct then  𝐶𝑘 

will tend to be close to or smaller than 𝑘. Thus, a simple process of  𝐶𝑘 can be 

utilized to submit the best model. However, the 𝐶𝑘 procedure suffers from two 

major constraints, the first constraint is that 𝐶𝑘 approximation is only valid for 

large sample size, and the second constraint is that  𝐶𝑘 cannot deal with complex 

groups models as in the VS. 

Akaike (1974) proposed the Akaike Information Criterion procedure a theoretical 

approach to information for model selection. The 𝐴𝐼𝐶 procedure is one of the most 

common methods of variable selection. The value of an 𝐴𝐼𝐶 procedure can be used 

to compare different models. By calculating the value of 𝐴𝐼𝐶 for all models, the 

model with the lowest 𝐴𝐼𝐶 is the best model, the formula of 𝐴𝐼𝐶 procedure is  

𝐴𝐼𝐶 = −2 𝑙𝑛 𝐿 + 2𝑘 . (1.5) 

Int terms of the residual sum of squares then 𝐴𝐼𝐶 formula is 

𝐴𝐼𝐶 = 𝑛 𝑙𝑛(𝑅𝑆𝑆 𝑛⁄ ) + 2𝑘 ,  (1.6) 

where 𝐿 bis the maximum likelihood function of the model (MLE), 𝑘 is the number 

of estimated parameters in the model, RSS is estimated residual of fitted model and 

𝑛 is the sample size, with the note that the error is normal (𝑖. 𝑖. 𝑑). 

A small RSS results in a lower 𝐴𝐼𝐶 value and therefore a better model. For best 

subset selection the  𝐴𝐼𝐶 offers a measure to compare models of different sizes 

with each other. In this way, the best model can be found. Though the 𝐴𝐼𝐶 process 

suffers from two major constraints, the first constraint is that 𝐴𝐼𝐶 relies on a weak 

procedure when 𝑘 is large, and the second constraint is that  𝐴𝐼𝐶 is no clear penalty 

takes in account the number of variables. 
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Schwarz (1978) proposed the Bayesian information criterion procedure (𝐵𝐼𝐶), this 

procedure approximated the 𝑙𝑛 of the marginal density of the data, which is the 

density of the data unconditional on the parameters. Note that the likelihood is the 

density of the data conditional on the parameters. Then formula of 𝐵𝐼𝐶 procedure 

is  

𝐵𝐼𝐶 = −2 𝑙𝑛 𝐿 + 𝑘 𝑙𝑛 𝑛 .  (1.7) 

The residual sum of squares (𝑅𝑆𝑆), the 𝐵𝐼𝐶 formula is  

𝐵𝐼𝐶 = 𝑛 𝑙𝑛(𝑅𝑆𝑆 𝑛⁄ ) + 𝑘 𝑙𝑛 𝑛 . (1.8) 

Though then BIC and AIC arise from two dissimilar procedures, their explanations 

are alike. Exactly, a 𝐵𝐼𝐶 procedure, such as the 𝐴𝐼𝐶 procedure, can be clarified as 

a measure of model fit plus a penalty for the complexity. While 𝑛 ≥ 10 then 

𝑙𝑛 (𝑛) > 2 and so the penalty term in BIC is greater than the penalty term in 𝐴𝐼𝐶. 

In addition, 𝐵𝐼𝐶 penalizes complex models more than 𝐴𝐼𝐶. The 𝐵𝐼𝐶 usually 

penalizes free parameters more strongly than the 𝐴𝐼𝐶. However, it relies on the 

size of 𝑛 and virtual magnitude of 𝑛 and 𝑘. The 𝐵𝐼𝐶 can be applied to compare 

models fitting only, then the numerical values of the response variable are identical 

for all estimates being compared. These compared models need not be overlapped, 

but that is some problems when using 𝐵𝐼𝐶 procedure, the first problem is that 𝐵𝐼𝐶 

procedure suffers from the approximation, it is only valid for 𝑛 > 𝑘 of parameters 

in the models. Additionally, the second problem is that 𝐵𝐼𝐶 cannot handle complex 

groups of models as in the VS problem in high dimension data. 

George and McCulloch (1993) suggested an alternative procedure for using an 

information criterion for model selection, this procedure is stochastic search VS 

(𝑆𝑆𝑉𝑆), which is feasible specifically to the Bayesian 𝑀𝐶𝑀𝐶 framework, is 𝑆𝑆𝑉𝑆 

procedure. Starting with the full coefficients model and selecting the mixture prior 
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distributions to removes inefficient coefficients in the regression and making them 

equal to zero, next that sampling the parameters from the posteriors and estimating 

the marginal inclusion probability (𝑀𝐼𝑃𝑠) for each coefficient using the amount of 

𝑆𝑆𝑉𝑆 samples containing each coefficient, at end estimating the posterior model 

probabilities (𝑃𝑀𝑃𝑠) for each model applying the quantities of 𝑆𝑆𝑉𝑆 samples 

consumed in each model. One of the disadvantages of an 𝑆𝑆𝑉𝑆 procedure takes a 

longer time to estimate, and the model with the highest posterior model may only 

be visited a handful of times. 

Statistical researchers and data predictors are occasionally faced with more 

difficulties such as a large number of independent variables or low ratio the 

number of observations to the number of independent variables, or because of 

appearing multicollinearity problems, there be many numbers of strategies for 

statisticians auto utilizes in transacting with highs dimensional data, as well as VS 

procedures, and data reduction performances. A third family of techniques that 

have proven beneficial in the context of high dimensional data involves alternative 

parameter estimation algorithms known as regularization or shrinkage techniques. 

There be another set of the model estimation process, which can be used in such 

circumstances. In a sense, these procedures regularize or adjust the imprecise and 

volatile estimates of the regression coefficients.  

Donoho and Johnstone (1994) have first introduced the notion of VS through 

regularization, it was then developed by Tibshirani (1996). Although these 

procedures are motivated by high dimensional data, they can also be effectively 

applied to sparse low to moderate dimensional problems, facilitating applications 

in a wide range of scientific problems. The general formula model, that illustrates 

the concept of regularization procedures, can be written as follows 



Bayesian adaptive Lasso Tobit regression with a practical application 

 
9 
 

𝜷̂ = argmin
𝜷

 (𝒚 − 𝑿𝜷)′(𝒚 − 𝑿𝜷) + 𝐹𝜆(𝜷), (1.9) 

where 𝐹𝜆(. ) is a function of the model coefficients in terms by a positive penalty 

parameter. 

This parameter has an effective influence in VS, where it controls the degree of 

deflation applied to estimates. Regularization procedures recognize good values of 

𝜷̂ such that the at most important coefficients accept advanced values, and the 

minimum important are allocated coefficients at or near 0. Many of these 

procedures have attracted much attention recently; see, for example, bridge 

procedure Frank and Friedman (1993), Lasso procedure introduced in order to 

interpretability of regression models such as LARS (Efron, 2004), LARS process 

makes available a quick execution of the Lasso solution.  

Zou and Hastie (2005) proposed the elastic net procedure to obtain enhanced 

performance when there is multicollinearity event between variables. In 2006, 

another regularization procedure introduced by Zou (2006), this procedure is 

adaptive Lasso regression, authorizing different penalty parameters to different 

regression coefficients, he proved that his proposed procedure had the 

characteristics of Oracle mentioned in Fan and Li (2001) that Lasso does not have. 

Park and Casella (2008) explicated that the parameters of the Lasso procedure can 

be estimated by the Bayesian pattern. Similarly, from a Bayesian point of view, 

"Bayesian Lasso regression (Hans, 2009)", "Bayesian adaptive Lasso; iterative 

adaptive Lasso (Sun, Zou, and Ibrahim, 2009)", "Bayesian adaptive Lasso with 

non-convex penalization (Griffin and Brown, 2010)", "The Bayesian elastic net (Li 

and Lin, 2010)", "A Bayesian Lasso via reversible jump MCMC (Chen, Wang, and 

McKeown, 2011)", "The new Bayesian Lasso (Mallick and Yi, 2014)", "Bayesian 
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adaptive Lasso (Leng, Tran, and Nott, 2014)", and "Bayesian variable selection 

and estimation for group Lasso (Xu and Ghosh, 2015)". 

In this thesis, we proposed two Bayesian regularization procedures, Bayesian 

Lasso and Bayesian adaptive Lasso in Tobit regression. 
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CHAPTER TWO 

 

 

2. BAYESIAN LASSO TOBIT REGRESSION 

2.1 Introduction: 

     The Lasso (least absolute shrinkage and selection operator) model is widely 

used as a regularization process for coefficient estimation in regression problems. 

Specifically, Tibshirani (1996) introduced Lasso method in order to interpretability 

of regression models, and get better prediction accuracy. The aim of the Lasso 

regression is to obtain a subset of the estimations that reduces the prediction error 

of the outcome variable, by imposing a constraint on model parameters that cause 

shrank the unimportant explanatory variables and reduced to zero. Efron (2004) 

presented an effective algorithm for calculating the Lasso estimates of 𝛽𝑗 via the 

LARS algorithm. The Lasso regression formulated as follows 

𝜷̂𝑳𝒂𝒔𝒔𝒐 = argmin
𝜷

(𝒚 − 𝑿𝜷)′(𝒚 − 𝑿𝜷) + 𝜆∑|𝛽𝑗|

𝑘

𝑗=1

…𝜆 ≥ 0 (2.1) 

where 𝜆 is a positive penalty parameter. 

Tibshirani (1996) and Park and Casella (2008) explicated that the parameters of the 

Lasso regression can be estimated by the Bayesian pattern. Then Lasso will be 

taken as posterior mode underneath independent Laplace distribution prior for the 

𝛽𝑗. On the other hand, Bayesian Lasso results are superbly like regular Lasso 

results. Though, the Bayesian Lasso is very simple to execute, and auto generate 

interval estimates for coefficients, containing the error variances. Following 

Andrews and Mallows (1974), Park and Casella (2008) represented the prior 

distribution of 𝜷 as follows 
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𝜋(𝜷|𝜎2, 𝜆) =∏
𝜆

2√𝜎2
 𝑒𝑥𝑝 {−

𝜆|𝛽𝑗|

√𝜎2
}

𝑘

𝑗=1

, 

= ∏ ∫
1

√2𝜋𝜎2𝑡𝑗

𝑒𝑥𝑝 (−
𝛽𝑗
2

2𝜎2𝑡𝑗
)
𝜆2

2
𝑒𝑥𝑝(−

𝜆2

2
𝑡𝑗)

∞

0
𝑑𝑡𝑗

𝑘
𝑗=1 . (2.2) 

 

Hans (2009) introduced a new aspect of other Bayesian remediation of Lasso 

regression, by using a new Gibbs sampler for Bayesian Lasso regression. Mallick 

and Yi (2014) proposed a new Bayesian Lasso by using scale mixture of uniform 

instead of scale mixture of normal distribution that used in Park and Casella 

(2008). The findings of Mallick and Yi (2014) in his research were very good and 

proved their efficiency from the previous Bayesian processes used. The good 

results notified in Mallick and Yi (2014) process encourage us to use the new 

Bayesian procedure in Tobit regression.  

Recently, a new representation of the Laplace density given by Mallick and Yi 

(2014), this representation provided a different process of Lasso based model by 

using the scale mixture of a uniform representation of the Laplace density. This 

representation is written as follows: 

𝜋(𝜷| 𝜎2, 𝜆) = ∏
𝜆

2√𝜎2
 𝑒𝑥𝑝 {−

𝜆|𝛽𝑗|

√𝜎2
}𝑘

𝑗=1 , 

=∏
𝜆

2√𝜎2

𝑘

𝑗=1

∫ 𝜆
𝑢𝑗>

|𝛽𝑗|

√𝜎2

. 𝑒−𝜆𝑢𝑗 . 𝑑𝑢𝑗 . (2.3) 

 

They pointed out that the posterior distribution 𝜋(𝜷|𝜎2, 𝜆) is similar to the main 

procedure of Park and Casella (2008), this formulation has gorgeous properties. In 

addition, Alhamzawi (2018) developed a new Gibbs sampler for Bayesian Lasso 
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via mixture of truncated normal formulation with exponential mixture densities. In 

this thesis, following Mallick and Yi (2014), we used a new hierarchical 

representation of BLTR.  

 

2.2 BLTR hierarchy model and prior distributions: 

Mallick and Yi (2014) proposed Bayesian Lasso procedure as follows: 

𝜆

2
𝑒−𝜆|𝛽𝑗| = ∫

1

2𝑤

𝜆2

Γ(2)𝑤>|𝛽𝑗|

 𝑤2−1 𝑒−𝜆𝑤𝑑𝑤…𝜆 ≥ 0 (2.4) 

 

In this thesis, we adopted the above formula as follows: 

Let 𝑧𝑗 = 𝜆𝑤𝑗          ⇒     𝑑𝑧𝑗 = 𝜆𝑑𝑤𝑗    then  

𝜆

2
 𝑒−𝜆|𝛽𝑗| = ∫

𝜆

2𝑧𝑗
 
𝜆2

𝛤2
 (
𝑧𝑗

𝜆
)
2−1

𝑒−𝑧𝑗
𝑧𝑗>𝜆|𝛽𝑗|

 
1

𝜆
𝑑𝑧𝑗, 

= ∫
𝜆

2𝑧𝑗>𝜆|𝛽𝑗|

 𝑒−𝑧𝑗𝑑𝑧𝑗 …𝜆 ≥ 0 (2.5) 

The hierarchical model of BLTR is 

𝑦𝑖 = {
𝑦𝑖 
∗                           𝑦𝑖 

∗  > 0

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ≤ 0
  

𝒚∗| 𝑿, 𝜷, 𝜎2 ∼ 𝑁(𝑿𝜷, 𝜎2𝐼𝑛) ,  

𝛽𝑗|𝜆 ∼ Uniform(−
1

𝜆
,
1

𝜆
) , 

(2.6) 

𝑧𝑗 ∼  Exp(1), 
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𝜎2 ∼  InvGamma(𝑎, 𝑏),  

𝜆 ∼ Gamma(ℎ, 𝑑),  

where 𝒛 = (𝑧1, ⋯ , 𝑧𝑘) 

2.3 Full conditional posterior distributions of BLTR: 

The conditional distribution of 𝒚∗ is follows: 

𝑦𝑖
∗| 𝑦𝑖 , 𝜷 ∼ {

𝑦𝑖 ,                                            𝑖𝑓  𝑦𝑖
∗ > 𝑦0

𝑁(𝑿𝜷, 𝜎2𝐼𝑛)𝐼{𝑦𝑖
∗ ≤ 𝑦0},     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}. 

where 𝑦0is a known censoring point. 

Then the conditional posterior distribution of 𝜷  as follows: 

π(𝜷|𝒚∗, X, 𝒛, 𝜎2) ∝ π(𝒚∗| X, 𝜷,𝜎2) π(𝜷|𝒛), 

∝𝑒𝑥𝑝 {−
1

2𝜎2
(𝒚∗ − X𝜷)′(𝒚∗ − X𝜷)}∏ 𝐼 {|𝛽𝑗| <

𝑧𝑗

𝜆
}𝑘

𝑗=1 , 

∝  𝑒𝑥𝑝 {−
1

2𝜎2
(−2𝒚∗′𝑿𝜷+ 𝜷′𝑿′𝑿𝜷)}∏𝐼 {|𝛽𝑗| <

𝑧𝑗
𝜆
} ,

𝑘

𝑗=1

 

  ∝ 𝑒𝑥𝑝 {−
1

2𝜎2
(−2𝜷̂′𝑿′𝑿𝜷∗ + 𝜷′𝑿′𝑿𝜷)}∏ 𝐼 {−

𝑧𝑗

𝜆
< 𝛽𝑗 <

𝑧𝑗

𝜆
}𝑘

𝑗=1 , 

𝜷| 𝒚∗, 𝑿, 𝒛 ~ 𝑁𝑘(𝜷̂𝑂𝐿𝑆,  (𝑿
′𝑿)−1 𝜎2)∏𝐼

𝑘

𝑗=1

{−
𝑧𝑗
𝜆
< 𝛽𝑗 <

𝑧𝑗
𝜆
} . (2.7) 

The conditional posterior distribution of 𝒛 as follows: 

𝜋(𝒛| 𝜷, 𝜆) ∝ 𝜋(𝜷| 𝒛, 𝜆)𝜋(𝒛), 

∝ ∏ 𝑒−𝑧𝑗  𝐼{𝑧𝑗 > 𝜆|𝛽𝑗|} ,
𝑘
𝑗=1  
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𝒛 ~∏𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1)

𝑘

𝑗=1

𝐼{𝑧𝑗 > 𝜆|𝛽𝑗|} . (2.8) 

The conditional posterior distribution of 𝜎2 as follows: 

𝜋(𝜎2| 𝒚∗, 𝑿, 𝜷) ∝ 𝜋(𝒚∗| 𝑿, 𝜷, 𝜎2)𝜋(𝜎2), 

∝   (𝜎2)−
𝑛

2  𝑒𝑥𝑝 {−
1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)} (𝜎2)−𝑎−1𝑒𝑥𝑝 {−

𝑏

𝜎2
}, 

𝜎2|𝒚∗,𝑿, 𝜷 ~ InvGamma (
𝑛

2
+ 𝑎,

1

2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) + 𝑏). (2.9) 

The conditional posterior distribution of 𝜆 as follows: 

𝜋(𝜆|𝜷) ∝ 𝜋(𝜷|𝜆) 𝜋(𝜆), 

∝ 𝜆𝑘𝜆ℎ−1𝑒−𝜆𝑑∏𝐼

𝑘

𝑗′=1

{𝜆 <
𝑧𝑗

|𝛽𝑗|
}, 

∝  𝜆(𝑘+ℎ)−1 𝑒𝑥𝑝{−𝜆𝑑}∏𝐼

𝑘

𝑗′=1

{𝜆 <
𝑧𝑗

|𝛽𝑗|
}, 

𝜆|𝜷 ∼  Gamma((𝑘 + ℎ), 𝑑)∏ 𝐼

𝑘

𝑗′=1

{𝜆 <
𝑧𝑗

|𝛽𝑗|
} , (2.10) 

where the 𝜷̂𝑂𝐿𝑆 is ordinary least squares estimators, and  𝐼(. ) denotes an indicator 

function. 

 

2.4 BLTR computation: 

In the beginning, we specify Gibbs samples for BLTR procedure by initiate with 

the initial valuations for parameters 𝜷 ,  𝒛 , 𝜆 and 𝜎2, then we carry out the 

algorithm as follows: 
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Algorithm 1 (Sampling in BLTR model). 

 

• Sampling 𝒚∗: We generate 𝒚∗ latent variable from truncated normal 

distribution with mean 𝑿𝜷 and variance  𝜎2𝐼𝑛. 

 

• Sampling 𝒛 : We generate 𝑧𝑗 as follows 𝑧𝑗 = 𝑧𝑗
∗ + 𝜆|𝛽𝑗|, where 𝑧𝑗

∗ is an 

exponential distribution. 

 

• Sampling 𝜷: We generate 𝜷 coefficients from truncated normal distribution 

with (𝜷̂𝑂𝐿𝑆,  (𝑿
′𝑿)−1𝜎2). 

 

• Sampling 𝝈𝟐:  We generate 𝜎2 from inverse gamma distribution with shape 

parameter  
𝑛

2
+ 𝑎 and rate parameter  

1

2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) + 𝑏. 

 

• Sampling 𝝀 :  We generate 𝜆 from truncated gamma distribution with shape 

parameter 𝑘 + ℎ and rate parameter d. 

 

 

2.5 BLTR with ridge parameter: 

In practice, the above procedure performs very well. However, the above estimator 

of 𝜷̂𝑂𝐿𝑆  is highly unsteady in the existence of multicollinearity. In addition, the 

matrix 𝑿′𝑿 is singular if explanatory variables 𝑘 is more than 𝑛. Gupta and 

Ibrahim (2007) have developed a process to deal with these situations. Specifically, 
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they added a ridge parameter within 𝑿′𝑿 matrix. Following Gupta and Ibrahim 

(2007), we added the ridge parameter remedy actual challenges that may appear 

via multicollinearity and overfitting problems.  

Now, referring to the equation (2.7) and adding ridge parameter 𝜗 to the equation, 

we will get  

𝑒𝑥𝑝 {−
1

2𝜎2
(−2𝒚∗′𝑿(𝑿′𝑿+ 𝜗𝐼𝑘)

−𝟏(𝑿′𝑿+ 𝜗𝐼𝑘)𝜷

+ 𝜷′(𝑿′𝑿+ 𝜗𝐼𝑘)𝜷)}∏𝐼 {|𝛽𝑗| <
𝑧𝑗
𝜆
} ,

𝑘

𝑗=1

 

∝ 𝑒𝑥𝑝 {−
1

2𝜎2
(−2𝜷𝑹

′(𝑿′𝑿+ 𝜗𝐼𝑘)𝜷 + 𝜷′(𝑿
′𝑿+ 𝜗𝐼𝑘)𝜷)}∏ 𝐼 {|𝛽𝑗| <

𝑧𝑗

𝜆
}𝑘

𝑗=1 , 

𝜷|𝒚∗, 𝑿, 𝒛~𝑁𝑘(𝜷𝑹, (𝑿
′𝑿+ 𝜗𝐼𝑘)

−1𝜎2)∏𝐼

𝑘

𝑗=1

{−
𝑧𝑗
𝜆
< 𝛽𝑗 <

𝑧𝑗
𝜆
} . (2.11) 

where the 𝜷𝑹 is ridge estimators and  𝐼(. ) denotes an indicator function. 

 

 

2.6 BLTR with ridge parameter computation: 

We require Gibbs samples for BLTR procedure with ridge parameter by initiate 

with the initial valuations for parameters  𝜷 ,  𝒛 ,  𝜆  and 𝜎2, then we carry out the 

algorithm as follows: 

Algorithm 2 (Sampling in BLTR model with ridge parameter). 

 

• Sampling 𝒚∗: We generate 𝒚∗ latent variable from truncated normal 

distribution with mean 𝑿𝜷 and variance  𝜎2𝐼𝑛. 

• Sampling 𝒛 : We generate the 𝑧𝑗 as follows 𝑧𝑗 = 𝑧𝑗
∗ + 𝜆|𝛽𝑗|, where 𝑧𝑗

∗is an 

exponential distribution. 
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• Sampling 𝜷:  We generate 𝜷  coefficients from truncated normal with mean 

𝜷𝑹 and variance covariance (𝑿′𝑿+ 𝜗𝐼𝑘)
−1𝜎2. 

 

• Sampling 𝝈𝟐:  We generate 𝜎2 from inverse gamma distribution with shape 

parameter   
𝑛

2
+ 𝑎 and rate parameter 

1

2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) + 𝑏. 

 

• Sampling 𝝀 :  We generate 𝜆  from truncated gamma distribution with shape 

parameter 𝑘 + ℎ and rate parameter d. 
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CHAPTER THREE 
 

 

3. BAYESIAN ADAPTIVE LASSO TOBIT REGRESSION 

3.1 Introduction: 

     A lot of work has been devoted to the development of diverse Bayesian 

organizational procedures for making a variable selection in linear models. One of 

these approaches is adaptive Lasso, as a regularization method, evades overfitting 

penalizing large coefficients. Also, it has the same advantage that Lasso, it can 

shrink some of the coefficients to exactly zero, giving subsequently a selection of 

attributes by the regularization. Zou (2006) proposed the adaptive Lasso, who 

upgraded the Lasso way proposed by Tibshirani (1996), the adaptive Lasso 

procedure permitting different penalty parameters to different regression 

coefficients. Zou (2006) proved that his proposed procedure had the characteristics 

of Oracle mentioned in Fan and Li (2001) that Lasso does not have. Specifically, 

Zou (2006) indicates that his proposed procedure adopts the correct form of non-

zero coefficients with the probability that he tends to one. Park and Casella (2008) 

suggested the Lasso procedure based on a Bayesian point of sight. Likewise, 

Mallick and Yi (2014) suggested a new procedure known to be as new Bayesian 

Lasso regression for VS and coefficient estimation in linear regression. In general, 

the last procedure observed results display that the Mallick and Yi (2014) 

procedure applied well compares with other Bayesian and non-Bayesian regression 

procedures. 

The good results reported in Mallick procedure motivate us to suggest a new 

Bayesian regression procedure. Subsequently, we suggested a Bayesian 

hierarchical for adaptive Lasso Tobit regression (BALTR), and proposed a new 
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Gibbs sampler (GS) for BALTR, that is sets up on a theoretical derivation of the 

Laplace density. 

It is well known, that the Lasso procedure gives biased estimates of considerable 

coefficients, so it might be below the required best level in terms of estimation 

risks. Zou (2006) evidenced that the Lasso selects the incorrect model with non-

fade the probability, despite the sample size and how λ is chosen. The event 

requires that coefficients not in the model aren't representable by coefficients in the 

real models. But this event is simply suffering because of the collinearity cases 

between the coefficients. On the opposite hand, that the Lasso process does not 

have Oracle properties. So, Zou (2006) suggested the adaptive Lasso technique 

which gives a consistent model for VS. Therefore, we consider BALTR approach 

in this thesis, the adaptive Lasso enjoys the Oracle properties by utilizing the 

adaptably weighted Lasso penalty parameter, and leads to a near minimax good 

estimators. Additionally, the adaptive Lasso technique needs to initials estimates of 

the regression coefficients, when a sample sizes is less than of the covariates 

number, which is mostly not available in the high dimensional data. The estimator 

of adaptive Lasso is given by 

𝜷̂𝑨𝒍𝒂𝒔𝒔𝒐 = argmin
𝜷

(𝒚 − 𝑿𝜷)′(𝒚 − 𝑿𝜷) +∑𝜆𝑗|𝛽𝑗|

𝑘

𝑗=1

 …  𝜆𝑗 ≥ 0 , (3.1) 

where varied penalty parameters are utilized for the regression coefficients. 

Confidently, for the not important explanatory variables, we must place larger 

penalty 𝜆𝑗  on their matching coefficients. 

We propose a BALTR procedure in this thesis for coefficients estimations and VS. 

We suggest a news practices of the adaptive Lasso form by using the scale 
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mixtures of a uniform representation of the Laplace distribution. Following 

Mallick & Yi (2014), the Laplace representation in equation (2.4) can adaptive as 

𝜆𝑗
2
 𝑒−𝜆𝑗|𝛽𝑗| = ∫

1

2𝑤𝑗
 
𝜆𝑗
2

Γ2𝑤𝑗>|𝛽𝑗|

 𝑤𝑗
2−1 𝑒−𝜆𝑗𝑤𝑗  𝑑𝑤𝑗   …  𝜆𝑗 ≥ 0 

In this thesis, we modify the above formula as follows: 

Let 𝑧𝑗 = 𝜆𝑗𝑤𝑗          ⇒     𝑑𝑧𝑗 = 𝜆𝑗𝑑𝑤𝑗     then  

𝜆𝑗

2
 𝑒−𝜆𝑗|𝛽𝑗| =

𝜆𝑗

2
 𝑒−|𝜆𝑗𝛽𝑗|, 

= ∫
𝜆𝑗

2𝑧𝑗
 
𝜆𝑗
2

𝛤2
 (
𝑧𝑗

𝜆𝑗
)
2−1

𝑒−𝑧𝑗  
𝑧𝑗>|𝜆𝑗𝛽𝑗|

1

𝜆𝑗
𝑑𝑧𝑗, 

= ∫
𝜆𝑗
2𝑧𝑗>|𝜆𝑗𝛽𝑗|

𝑒−𝑧𝑗𝑑𝑧𝑗   …  𝜆𝑗 ≥ 0 (3.2) 

In practices, this formula produces more tractable and efficient Gibbs Samples than 

the previous formula. 

 

3.2 BALTR hierarchy model and Prior Distributions: 

By using equation (1.1) and equation (3.2), the Bayesian hierarchical model can be 

formulated as follows: 

𝑦𝑖 = {
𝑦𝑖 
∗                             𝑦𝑖 

∗  > 0

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ≤ 0
 ,  

𝒚∗| 𝑿, 𝜷, 𝜎2  ∼  𝑁𝑛(𝑿𝜷, 𝜎
2𝐼𝑛) ,  

𝜷|𝜆 ∼  ∏Uniform(−
1

𝜆𝑗
, .
1

𝜆𝑗
) ,

𝑘

𝑗=1

 

(3.3) 

𝒛 ∼  ∏Exponential(1),

𝑘

𝑗=1
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𝜎2 ∼  InvGamma(𝑎, 𝑏),  

𝜆𝑗 ∼  Gamma(𝑐, 𝑑),  

 where 𝒛 = (𝑧1, ⋯ , 𝑧𝑘) and 𝝀 = (𝜆1, ⋯ , 𝜆𝑘). 

 

3.3 Full Conditional Posterior Distributions of BALTR: 

Firstly, we can express the joint posterior distribution of all BALTR procedure 

parameters as follows 

The distribution of 𝒚∗ is follows: 

𝑦𝑖
∗| 𝑦𝑖 , 𝜷 ∼ {

𝑦𝑖 ,                                            𝑖𝑓  𝑦𝑖
∗ > 𝑦0

𝑁(𝑿𝜷, 𝜎2𝐼𝑛)𝐼{𝑦𝑖
∗ ≤ 𝑦0},     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}. 

The conditional posterior distribution of 𝜷 is follows: 

𝜋(𝜷, 𝒛, 𝝀, 𝜎2|𝒚∗, 𝑿) ∝ 𝜋(𝒚∗|𝑿, 𝜷, 𝜎2) 𝜋(𝜷|𝝀), 

∝𝑒𝑥𝑝 {−
1

2𝜎2
(𝒚∗ − X𝜷)′(𝒚∗ − X𝜷)} ∏ 𝐼 {|𝛽𝑗| <

𝑧𝑗

𝜆𝑗
}𝑘

𝑗=1 , 

∝ 𝑒𝑥𝑝 {−
1

2𝜎2
(−2𝒚∗′𝑿𝑩+ 𝜷′𝑿′𝑿𝜷)} ∏ 𝐼 {|𝛽𝑗| <

𝑧𝑗

𝜆𝑗
}𝑘

𝑗=1 , 

∝ 𝑒𝑥𝑝 {−
1

2𝜎2
(−2𝒚∗′𝑿(𝑿′𝑿)−𝟏(𝑿′𝑿)𝜷 + 𝜷′𝑿′𝑿𝜷)} ∏ 𝐼 {|𝛽𝑗| <

𝑧𝑗

𝜆𝑗
} ,𝑘

𝑗=1  

∝ 𝑒𝑥𝑝 {−
1

2𝜎2
(−2𝜷̂′𝑿′𝑿𝜷+ 𝜷′𝑿′𝑿𝜷)} ∏ 𝐼 {−

𝑧𝑗

𝜆𝑗
< 𝛽𝑗 <

𝑧𝑗

𝜆𝑗
}𝑘

𝑗=1 , 

𝜷|𝒚∗, 𝑿, 𝒛, 𝝀 ~𝑁𝑘(𝜷̂𝑂𝐿𝑆, (𝑿
′𝑿)−1𝜎2)∏𝐼

𝑘

𝑗=1

{−
𝑧𝑗
𝜆𝑗
< 𝛽𝑗 <

𝑧𝑗
𝜆𝑗
} . (3.4) 

The conditional posterior distribution of 𝒛 as follows:  

𝜋(𝒛|𝜷, 𝝀) ∝  𝜋(𝜷|𝒛, 𝝀) 𝜋(𝒛) 

∝  𝜋(𝒛) 𝐼{𝑧𝑗 > |𝜆𝑗𝛽𝑗|}, 

∝ ∏ 𝑒−𝑧𝑗  𝐼{𝑧𝑗 > |𝜆𝑗𝛽𝑗|}
𝑘
𝑗=1 , 
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𝒛 ~∏Exponential(1) 

𝑘

𝑗=1

𝐼{𝑧𝑗 > |𝜆𝑗𝛽𝑗|} . (3.5) 

The conditional posterior distribution of 𝜎2 as follows: 

𝜋(𝜎2|𝒚∗, 𝑿, 𝜷) ∝ 𝜋(𝒚∗|𝑿, 𝜷,  𝜎2) 𝜋(𝜎2), 

∝   (𝜎2)−
𝑛

2  𝑒𝑥𝑝 {−
1

2σ2
(𝑦∗ − 𝑋𝛽)′(𝑦∗ − 𝑋𝛽)} (𝜎2)−𝑎−1 𝑒𝑥𝑝 {−

𝑏

σ2
}, 

𝜎2|𝒚∗,𝑿, 𝜷 ~InvGamma (
𝑛

2
+ 𝑎,

1

2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) + 𝑏). (3.6) 

The conditional posterior distribution of 𝜆 as follows: 

𝜋(𝜆𝑗|𝛽𝑗) ∝ 𝜋(𝛽𝑗|𝜆𝑗) 𝜋(𝜆𝑗), 

∝ 𝜆𝑗  𝜋(𝜆𝑗)𝐼 {𝜆𝑗 <
𝑧𝑗

|𝛽𝑗|
}, 

∝  𝜆𝑗
(𝑐+1)−1 𝑒𝑥𝑝{−𝑑𝜆𝑗} 𝐼 {𝜆𝑗 <

𝑧𝑗

|𝛽𝑗|
}, 

𝜆𝑗|𝛽𝑗~Gamma(𝑐 + 1, 𝑑)𝐼 {𝜆𝑗 <
𝑧𝑗

|𝛽𝑗|
} , (3.7) 

where the 𝜷̂𝑂𝐿𝑆 is ordinary least squares estimators and  𝐼(. ) denotes an indicator 

function. 

 

 

3.4 BALTR computation: 

We specify Gibbs samples for BALTR procedure by initiate with the initial 

valuations for parameters 𝜷 , 𝒛  , 𝝀  and 𝜎2, then we carry out the algorithm as 

follows: 
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Algorithm 3 (Sampling in BALTR model). 

 

• Sampling 𝒚∗: We generate 𝒚∗ latent variable from truncated normal 

distribution with mean 𝑿𝜷 and variance  𝜎2𝐼𝑛. 

 

• Sampling 𝒛:  We generate the 𝑧𝑗 as follows 𝑧𝑗 = 𝑧𝑗
∗ + |𝜆𝑗𝛽𝑗|, where 𝑧𝑗

∗is an 

exponential distribution.  

 

• Sampling 𝜷: We generate 𝜷 coefficients from truncated normal distribution 

with mean 𝜷𝑶𝒍𝒔 and variance covariance (𝑿′𝑿)−1𝜎2. 

 

• Sampling 𝝈𝟐:  We generate the 𝜎2 from the inverse gamma distribution 

with shape parameter 
𝑛

2
+ 𝑎 and rate parameter 

1

2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) + 𝑏 . 

 

• Sampling 𝝀:  We generate the 𝜆𝑗 from truncated gamma distribution with 

shape parameter 𝑐 + 1 and rate parameter d. 

 
 

 

3.5 BALTR with ridge parameter: 

For the same reasons mentioned in Chapter 2, exactly in section 2.5, we adding a 

ridge parameter to remedy actual challenges that may appear with multicollinearity 

and overfitting problems. Then, referring to the equation (3.4) and add ridge 

parameter 𝜗 to the equation as follows: 
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𝑒𝑥𝑝 {−
1

2𝜎2
(−2𝒚∗′𝑿(𝑿′𝑿+ 𝜗𝐼𝑘)

−𝟏(𝑿′𝑿+ 𝜗𝐼𝑘)𝜷

+ 𝜷′(𝑿′𝑿+ 𝜗𝐼𝑘)𝜷)}∏𝐼 {|𝛽𝑗| <
𝑧𝑗
𝜆𝑗
}

𝑘

𝑗=1

, 

∝ 𝑒𝑥𝑝 {−
1

2𝜎2
(−2𝜷𝑹

′(𝑿′𝑿+ 𝜗𝐼𝑘)𝜷 + 𝜷′(𝑿
′𝑿+ 𝜗𝐼𝑘)𝜷)}∏ 𝐼 {|𝛽𝑗| <

𝑧𝑗

𝜆𝑗
} ,𝑘

𝑗=1  

𝜷| 𝒚∗, 𝑿, 𝒛, 𝝀 ~𝑁𝑘(𝜷𝑹, (𝑿
′𝑿+ 𝜗𝐼𝑘)

−1𝜎2)∏𝐼

𝑘

𝑗=1

{−
𝑧𝑗
𝜆𝑗
< 𝛽𝑗 <

𝑧𝑗
𝜆𝑗
} , (3.8) 

where the 𝜷𝑹 is ridge estimators and  𝐼(. ) denotes an indicator function. 

 

3.6 BALTR with ridge parameter computation: 

We specify Gibbs samples for BALTR procedure with ridge parameter by initiate 

with the initial valuations for parameters 𝜷  , 𝒛 , 𝝀   and 𝜎2 , then we carry out the 

algorithm as follows 

Algorithm 4 (Sampling in BALTR model with ridge parameter). 

 

• Sampling 𝒚∗: We generate the latent variable 𝒚∗ from truncated normal 

distribution with mean 𝑿𝜷 and variance  𝜎2𝐼𝑛. 

 

• Sampling 𝒛 :  We generate 𝒛  as follows 𝑧𝑗 = 𝑧𝑗
∗ + |𝜆𝑗𝛽𝑗|, where 𝑧𝑗

∗ is an 

exponential distribution.  

 

• Sampling 𝜷 : We generate 𝜷 coefficients from truncated normal distribution 

with mean 𝜷𝑹 and variance covariance (𝑿′𝑿+ 𝜗𝐼𝑘)
−1𝜎2. 
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• Sampling 𝝈𝟐 :  We generate the 𝜎2  from the inverse gamma distribution 

with shape parameter 
𝑛

2
+ 𝑎 and rate parameter 

1

2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) + 𝑏. 

 

• Sampling 𝝀.:  We generate the 𝜆𝑗 from truncated gamma distribution with 

shape parameter 𝑐 + 1 and rate parameter d. 
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CHAPTER FOUR 
 

 

4. SIMULATION STUDY ANALYSIS 

4.1 Introduction: 

     In this part of this Chapter, we test our proposed procedures and measure its 

performance compared to previous techniques for estimating parameters and VS in 

Tobit regression. This test is carried out by applying simulation examples to our 

procedures BALTR and BLTR, Tobit regression (Tr) by implementing the AER 

package (Kleiber et al., 2017), Bayesian Tobit regression method (Btr) by 

implementing the MCMCpack package (Martin et al., 2018), and the Bayesian 

Tobit Quantile regression method (Btqr) by using the Brq package (Alhamzawi, 

2018). All these packages will be implemented in R language. For comparison, we 

draw 10,000 iterations of the Gibbs sampling, the first 1000 were ruled out as burn 

in. The procedures are evaluated based on the median of mean absolutes deviations 

MMAD). The formula of MMAD as follows 

MMAD′ = median′(means(′. |𝑿𝜷̂ − 𝑿𝜷𝒕𝒓𝒖𝒆. |
′

), (4.1) 
' 

where the parameter 𝜷′

̂ is a vector of estimated coefficients and the parameter 

𝜷𝒕𝒓𝒖𝒆 is a vector of true coefficients values in the simulation examples. In this 

chapter, we set a=b=c=d=0.05,  𝜗=0.01 and Tau=0.5 0. For each simulation study, 

we run 2040 simulations. 

 

4.2 Independents and identically distributed (i.i.d) random errors: 

Here, a clarification of what we will do in this simulation, that we will create 

independent variables from the multivariate normal distribution with parameters 

mean 0, and three values of the variance 𝜎2. 
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4.2.1 Simulation example 1: 

In this simulations example, we create 7 independent variables with 100 

observations, the pair wise correlation between each independent variable 

equalizes to 0.5|𝑖−𝑗|,  and we set the true regression coefficients as follows: 

𝜷𝒕𝒓𝒖𝒆 = (1, 0, 1, 0, 1, 0, 1, 0)′. 

We simulated 𝑦𝑖
∗ as follows: 

𝑦𝑖
∗ = 1 + 𝑥2𝑖 + 𝑥4𝑖 + 𝑥6𝑖 + 𝜀𝑖  

where 𝜀𝑖 ∼ Normal (0,  𝜎
2), and  𝜎2 ∈ {1, 4, 9}. 

We list the results of regression coefficients estimates as tables below 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟏 0.98827 0.98864 0.99785 0.96099 0.97584 

𝜷𝟏 = 𝟎 0.00038 0.00045 0.00002 0.00145 0.00296 

𝜷𝟐 = 𝟏 1.01733 1.01547 1.01471 1.03469 1.02866 

𝜷𝟑 = 𝟎 -0.00748 -0.00737 -0.00842 -0.00566 -0.00396 

𝜷𝟒 = 𝟏 1.00599 1.00435 1.00140 1.02812 1.03061 

𝜷𝟓 = 𝟎 -0.00089 -0.00054 -0.00036 -0.00301 0.00045 

𝜷𝟔 = 𝟏 1.00329 1.00104 0.99984 1.02516 1.02201 

𝜷𝟕 = 𝟎 -0.00801 -0.00840 -0.00916 -0.00666 -0.01113 

Table 1: The coefficients estimates of Simulationsexample 1, when 𝜀𝑖 ∼ N(0,1) 
 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟏 0.96165 0.96346 0.98341 0.90094 0.92477 

𝜷𝟏 = 𝟎 -0.03419 -0.03484 -0.03525 -0.03771 -0.04608 

𝜷𝟐 = 𝟏 1.03859 1.03449 1.03971 1.07396 1.08750 

𝜷𝟑 = 𝟎 -0.01906 -0.01769 -0.01797 -0.02327 -0.04456 

𝜷𝟒 = 𝟏 0.99276 0.98515 1.00533 1.04831 1.07056 

𝜷𝟓 = 𝟎 -0.00555 -0.00538 -0.00443 0.00100 -0.01794 

𝜷𝟔 = 𝟏 0.96883 0.96457 0.97656 1.00677 1.00723 

𝜷𝟕 = 𝟎 -0.00152 -0.00026 0.00109 -0.00239 -0.01064 

Table 2: The coefficients estimates of Simulation s example 1, when 𝜀𝑖 ∼ N(0,4) 
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𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 1 0.93230 0.93821 0.98741 0.85266 0.92306 

𝜷𝟏 = 0 -0.00241 -0.00409 -0.00274 0.00304 0.00642 

𝜷𝟐 = 𝟏 0.90639 0.89763 0.96096 1.00688 0.97875 

𝜷𝟑 = 𝟎 0.06056 0.06073 0.06894 0.06871 0.08918 

𝜷𝟒 = 𝟏 0.92676 0.91765 0.95287 1.00207 0.97170 

𝜷𝟓 = 𝟎 -0.00396 -0.00296 -0.00268 -0.00263 0.01202 

𝜷𝟔 = 𝟏 0.93320 0.92347 0.97901 1.02463 1.01493 

𝜷𝟕 = 𝟎 0.02254 0.01934 0.01915 0.01989 0.00235 

Table 3: The coefficients estimates of Simulation s example 1, when 𝜀𝑖 ∼ N(0,9) 

 

Procedure 𝝈𝟐 MMAD SD 

BALTR 

1 

0.253714 0.066260 

BLTR 0.254578 0.068390 

Tr 0.255161 0.069849 

BTr 0.264513 0.075860 

BTqr 0.282732 0.077842 

BALTR 

4 

0.486562 0.142146 

BLTR 0.487090 0.142711 

Tr 0.492903 0.149641 

BTr 0.508624 0.168405 

BTqr 0.559407 0.166772 

BALTR 

9 

0.688334 0.197845 

BLTR 0.699088 0.196353 

Tr 0.711708 0.209395 

BTr 0.735739 0.231249 

BTqr 0.789161 0.230088 

Table 4: The MMADs and SDs results of Simulation s example 1 
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4.2.2 Simulation example 2: 

This simulation example is same as example above except we create 8 independent 

variables, and we set the true regression coefficients as follows: 

𝜷𝒕𝒓𝒖𝒆 = (1, 2, 1, 0, 0, 2, 0, 0, 0)′. 

We simulated 𝑦𝑖
∗ as follows: 

𝑦𝑖
∗ = 1 + 2𝑥1𝑖 + 𝑥2𝑖 +  2𝑥5𝑖 + 𝜀𝑖 

where 𝜀𝑖 ∼ Normal (0,  𝜎
2), and 𝜎2 ∈ {1, 4, 9}. 

We list the results of regression coefficients estimates as tables below 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟏 0.97159 0.97221 0.98196 0.94891 0.93512 

𝜷𝟏 = 𝟐 2.00872 2.00722 2.00367 2.03296 2.00367 

𝜷𝟐 = 𝟏 1.00763 1.00670 1.00807 1.01861 1.00807 

𝜷𝟑 = 𝟎 0.03387 0.03542 0.03594 0.03729 0.05146 

𝜷𝟒 = 𝟎 -0.02673 -0.02681 -0.02934 -0.02641 -0.02389 

𝜷𝟓 = 𝟐 2.03684 2.03427 2.03763 2.04875 2.05431 

𝜷𝟔 = 𝟎 -0.01184 -0.01180 -0.01395 -0.00831 -0.01093 

𝜷𝟕 = 𝟎 0.01131 0.01112 0.01176 0.01293 0.01731 

𝜷𝟖 = 𝟎 0.02385 0.02455 0.02422 0.02653 0.03331 

Table 5: The coefficients estimates of Simulation s example 2, when 𝜀𝑖 ∼ N(0,1) 
 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟏 0.97095 0.97731 1.00273 0.89674 0.90440 

𝜷𝟏 = 𝟐 1.99212 1.98133 1.98334 2.04186 2.02277 

𝜷𝟐 = 𝟏 0.99698 0.99874 1.00515 1.03967 1.03717 

𝜷𝟑 = 𝟎 0.01277 0.01409 0.01603 0.00550 -0.01092 

𝜷𝟒 = 𝟎 0.00038 -0.00033 -0.00220 0.00672 -0.01011 

𝜷𝟓 = 𝟐 2.01144 1.99696 2.00244 2.06962 2.08351 

𝜷𝟔 = 𝟎 -0.01746 -0.01740 -0.01891 -0.02984 -0.03428 

𝜷𝟕 = 𝟎 0.00332 0.00659 0.00527 0.00489 0.02098 

𝜷𝟖 = 𝟎 -0.01538 -0.01637 -0.01637 -0.01705 -0.03639 

Table 6: The coefficients estimates of Simulation s example 2, when 𝜀𝑖 ∼ N(0,4) 
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𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟏 0.88552 0.91542 0.94838 0.73714 0.79963 

𝜷𝟏 = 𝟐 2.09478 2.06696 2.09071 2.19900 2.16909 

𝜷𝟐 = 𝟏 0.95556 0.95517 1.00633 1.07622 1.09604 

𝜷𝟑 = 𝟎 -0.01773 -0.02413 -0.01887 -0.00588 -0.01590 

𝜷𝟒 = 𝟎 0.06045 0.06462 0.06589 0.06675 0.07159 

𝜷𝟓 = 𝟐 2.02103 1.98286 2.02437 2.14770 2.15143 

𝜷𝟔 = 𝟎 -0.04312 -0.04821 -0.04970 -0.05432 -0.04958 

𝜷𝟕 = 𝟎 0.01631 0.01681 0.02267 0.03698 0.01310 

𝜷𝟖 = 𝟎 -0.02775 -0.02589 -0.02533 -0.02832 -0.03070 

Table 7: The coefficients estimates of Simulation s example 2, when 𝜀𝑖 ∼ N(0,9) 

 

Procedure 𝝈𝟐 MMAD SD 

BALTR 

1 

0.2867665 0.0784412 

BLTR 0.2878924 0.0794854 

Tr 0.2886266 0.0804479 

BTr 0.3030122 0.0875418 

BTqr 0.3292688 0.0884608 

BALTR 

4 

0.5291207 0.1342116 

BLTR 0.5317522 0.1358630 

Tr 0.5358101 0.1419345 

BTr 0.5736709 0.1478548 

BTqr 0.6248725 0.1717885 

BALTR 

9 

0.8161338 0.2344180 

BLTR 0.8247406 0.2504589 

Tr 0.8639433 0.2594731 

BTr 0.9450992 0.3328603 

BTqr 0.9945814 0.3460455 

Table 8: The MMADs and SDs results of Simulation s example 2 
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4.2.3 Simulation example 3: 

In this simulation example, we create 7 independent variables with 200 

observations, the pair wise correlation between each independent variable 

equalizes to 0.5|𝑖−𝑗|,  and we set the true regression coefficients as follows: 

𝜷𝒕𝒓𝒖𝒆 = (1, 6, 0, 0, 0, 0, 0,0)′. 

We simulated 𝑦𝑖
∗ as follows: 

𝑦𝑖
∗ = 1 + 6𝑥1𝑖 + 𝜀𝑖  

where 𝜀𝑖 ∼ Normal (0,  𝜎
2), and  𝜎2 ∈ {1, 4, 9}. 

We list the results of regression coefficients estimates as tables below 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟏 0.97368 0.97753 0.98879 0.94602 0.94129 

𝜷𝟏 = 𝟔 6.01734 6.00915 6.00311 6.04569 6.06105 

𝜷𝟐 = 𝟎 0.01687 0.02028 0.02032 0.01908 0.00891 

𝜷𝟑 = 𝟎 -0.02981 -0.03250 -0.03228 -0.03437 -0.03492 

𝜷𝟒 = 𝟎 0.01732 0.01819 0.01768 0.01843 0.01383 

𝜷𝟓 = 𝟎 -0.00262 -0.00358 -0.00503 0.00219 0.00320 

𝜷𝟔 = 𝟎 -0.00378 -0.00401 -0.00218 -0.00925 -0.00812 

𝜷𝟕 = 𝟎 -0.00518 -0.00384 -0.00430 -0.00595 -0.01012 

Table 9: The coefficients estimates of Simulation s example 3, when 𝜀𝑖 ∼ N(0,1) 
 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟏 0.94907 0.96559 1.00646 0.88484 0.89730 

𝜷𝟏 = 𝟔 6.02860 5.99982 5.97664 6.10380 6.09037 

𝜷𝟐 = 𝟎 -0.02884 -0.03165 -0.03466 -0.02816 -0.01705 

𝜷𝟑 = 𝟎 0.02693 0.02488 0.02954 0.01865 0.01067 

𝜷𝟒 = 𝟎 -0.02435 -0.02439 -0.02528 -0.03082 -0.00979 

𝜷𝟓 = 𝟎 -0.00439 -0.00282 -0.00963 0.01587 0.01298 

𝜷𝟔 = 𝟎 0.03007 0.03157 0.04076 0.02071 -0.00122 

𝜷𝟕 = 𝟎 -0.00213 0.00071 0.00041 0.00368 0.02046 

Table 10: The coefficients estimates of Simulation s example 3, when 𝜀𝑖 ∼ N(0,4) 
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𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟏 0.85252 0.90898 0.97288 0.78279 0.78323 

𝜷𝟏 = 𝟔 6.12307 6.04103 6.01833 6.21566 6.25580 

𝜷𝟐 = 𝟎 -0.00169 -0.01736 -0.02162 0.00461 0.02084 

𝜷𝟑 = 𝟎 -0.00479 -0.00091 0.00215 -0.02989 -0.04074 

𝜷𝟒 = 𝟎 0.01931 0.02467 0.02528 0.03211 0.03718 

𝜷𝟓 = 𝟎 -0.03964 -0.03964 -0.03971 -0.06806 -0.08469 

𝜷𝟔 = 𝟎 -0.01256 -0.00415 -0.00234 -0.01975 -0.01429 

𝜷𝟕 = 𝟎 -0.00448 -0.006959 -0.01159 0.00913 0.01829 

Table 11: The coefficients estimates of Simulation s example 3, when 𝜀𝑖 ∼ N(0,9) 

 

Procedure 𝝈𝟐 MMAD SD 

BALTR 

1 

0.3106147 0.1013127 

BLTR 0.3115898 0.1060711 

Tr 0.3121467 0.1046592 

BTr 0.3161041 0.1115924 

BTqr 0.3446810 0.1168242 

BALTR 

4 

0.5711975 0.1695946 

BLTR 0.5864465 0.1737943 

Tr 0.5941101 0.1866304 

BTr 0.6330689 0.1966508 

BTqr 0.6741430 0.2176665 

BALTR 

9 

0.8190953 0.2743333 

BLTR 0.8360951 0.2539165 

Tr 0.8664098 0.2966426 

BTr 0.8928808 0.3108317 

BTqr 0.9693136 0.3371386 

Table 12: The MMADs and SDs results of Simulations example 3 
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4.2.4 Simulation example 4: 

In this simulation example, we create 8 independent variables with 100 

observations, the pair wise correlation between each independent variable 

equalizes to 0,9,  and we set the true regression coefficients as follows: 

𝜷𝒕𝒓𝒖𝒆 = (1, 4, 0, 0, 0, 0, 0, 0, 0)′. 

We simulated 𝑦𝑖
∗ as follows: 

𝑦𝑖
∗ = 1 +  4𝑥1𝑖 + 𝜀𝑖 

where 𝜀𝑖 ∼ Normal (0,  𝜎
2), and  𝜎2 ∈ {1, 4, 9}. 

We list the results of regression coefficients estimates as tables below 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟏 0.98066 0.98114 0.99732 0.94336 0.94509 

𝜷𝟏 = 𝟒 4.01580 4.01280 4.00121 4.05204 4.05518 

𝜷𝟐 = 𝟎 -0.02369 -0.02443 -0.02401 -0.02597 -0.02490 

𝜷𝟑 = 𝟎 0.00661 0.00656 0.00627 0.00755 -0.00942 

𝜷𝟒 = 𝟎 -0.01306 -0.01326 -0.01122 -0.01811 -0.01485 

𝜷𝟓 = 𝟎 -0.01593 -0.01743 -0.01530 -0.02417 -0.02233 

𝜷𝟔 = 𝟎 -0.01972 -0.02033 -0.01952 -0.02484 -0.02248 

𝜷𝟕 = 𝟎 0.00007 -0.00030 -0.00002 -0.00108 -0.00336 

𝜷𝟖 = 𝟎 0.00155 0.00184 0.00259 0.00056 0.00530 

Table 13: The coefficients estimates of Simulation s example 4, when 𝜀𝑖 ∼ N(0,1) 
 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟏 0.93806 0.94796 0.98354 0.85672 0.87234 

𝜷𝟏 = 𝟒 4.00038 3.97771 3.95982 4.09213 4.09190 

𝜷𝟐 = 𝟎 -0.05298 -0.05676 -0.05471 -0.06522 -0.05747 

𝜷𝟑 = 𝟎 0.01241 0.01078 0.01139 0.01108 0.01751 

𝜷𝟒 = 𝟎 0.01391 0.01499 0.01537 0.01834 0.01579 

𝜷𝟓 = 𝟎 -0.00205 -0.00121 -0.00191 -0.00161 -0.00616 

𝜷𝟔 = 𝟎 0.00512 0.00353 0.00019 0.01596 0.02037 

𝜷𝟕 = 𝟎 -0.00527 -0.00625 -0.00654 -0.00443 0.00298 

𝜷𝟖 = 𝟎 0.02382 0.02719 0.02781 0.02752 0.01539 

Table 14: The coefficients estimates of Simulation s example 4, when 𝜀𝑖 ∼ N(0,4) 
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𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟏 0.85857 0.87405 0.93708 0.76538 0.79680 

𝜷𝟏 = 𝟒 4.06267 4.03328 4.02374 4.15795 4.14522 

𝜷𝟐 = 𝟎 0.01158 0.01511 0.01580 0.02550 0.02188 

𝜷𝟑 = 𝟎 -0.04653 -0.04888 -0.05147 -0.05095 -0.05048 

𝜷𝟒 = 𝟎 -0.00739 -0.00989 -0.01354 0.00265 0.01444 

𝜷𝟓 = 𝟎 -0.02513 -0.02520 -0.02375 -0.03634 -0.03140 

𝜷𝟔 = 𝟎 0.02400 0.01936 0.01766 0.01341 0.01714 

𝜷𝟕 = 𝟎 0.01162 0.01649 0.01981 0.01195 0.00986 

𝜷𝟖 = 𝟎 0.01130 0.00759 0.00732 0.01839 0.01591 

Table 15: The coefficients estimates of Simulation s example 4, when 𝜀𝑖 ∼ N(0,9) 

 

Procedure 𝝈𝟐 MMAD SD 

BALTR 

1 

0.3175153 0.0878509 

BLTR 0.3188315 0.0883490 

Tr 0.3241813 0.0892745 

BTr 0.3317360 0.0943799 

BTqr 0.3483748 0.0999571 

BALTR 

4 

0.5533796 0.1576824 

BLTR 0.5586609 0.1638874 

Tr 0.5673092 0.1745200 

BTr 0.5902533 0.1929422 

BTqr 0.6342843 0.2009979 

BALTR 

9 

0.7782545 0.2106083 

BLTR 0.7823382 0.2187003 

Tr 0.8064242 0.2196771 

BTr 0.8462888 0.2480293 

BTqr 0.8727480 0.2616631 

Table 16: The MMADs and SDs results of Simulations example 4 
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4.2.5 Simulation example 5: 

In this example, we set the same number of observations and same true regression 

coefficients in the example above. But, the pair wise correlation between 𝑥𝑖 and 

𝑥𝑗is high correlation and it is equal to 0,75. 

We list the results of regression coefficients estimates as tables below 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟏 0.96334 0.97432 0.98914 0.93030 0.93054 

𝜷𝟏 = 𝟒 3.99911 3.97485 3.96787 4.03959 4.04445 

𝜷𝟐 = 𝟎 0.02810 0.02907 0.02915 0.03780 0.05102 

𝜷𝟑 = 𝟎 -0.05722 -0.05931 -0.05809 -0.07588 -0.09464 

𝜷𝟒 = 𝟎 0.03286 0.03630 0.03240 0.05007 0.05885 

𝜷𝟓 = 𝟎 0.02766 0.02966 0.03094 0.02647 0.02646 

𝜷𝟔 = 𝟎 -0.03771 -0.04115 -0.03994 -0.04496 -0.05025 

𝜷𝟕 = 𝟎 0.00514 0.00745 0.00778 0.01035 0.02153 

𝜷𝟖 = 𝟎 0.01061 0.01078 0.01007 0.01590 0.01057 

Table 17: The coefficients estimates of Simulation s example 5, when 𝜀𝑖 ∼ N(0,1) 

 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟏 0.90221 0.92680 0.98491 0.85950 0.87261 

𝜷𝟏 = 4 4.09041 4.05841 4.03304 4.14416 4.14184 

𝜷𝟐 = 𝟎 -0.02764 -0.03752 -0.03607 -0.04203 -0.05109 

𝜷𝟑 = 𝟎 -0.03041 -0.02766 -0.03004 -0.03646 -0.04094 

𝜷𝟒 = 𝟎 0.08249 0.07324 0.06840 0.10042 0.13265 

𝜷𝟓 = 𝟎 -0.02687 -0.03145 -0.02989 -0.04422 -0.06207 

𝜷𝟔 = 𝟎 0.01350 0.00990 0.00329 0.01418 0.02799 

𝜷𝟕 = 𝟎 -0.03645 -0.03800 -0.03699 -0.05141 -0.06235 

𝜷𝟖 = 𝟎 0.04680 0.04654 0.04803 0.05217 0.06563 

Table 18: The coefficients estimates of Simulation s example 5, when 𝜀𝑖 ∼ N(0,4) 
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𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟏 0.73119 0.78657 0.94885 0.75659 0.80464 

𝜷𝟏 = 𝟒 4.12586 4.03465 3.99195 4.14338 4.15168 

𝜷𝟐 = 𝟎 0.02199 0.02505 0.04213 0.04481 0.00129 

𝜷𝟑 = 𝟎 -0.02119 -0.04096 -0.07182 -0.04829 -0.00941 

𝜷𝟒 = 𝟎 0.02292 0.04250 0.06801 0.04011 0.02100 

𝜷𝟓 = 𝟎 0.05144 0.04283 0.02239 0.04867 0.07637 

𝜷𝟔 = 𝟎 -0.04245 -0.05081 -0.03979 -0.05118 -0.06790 

𝜷𝟕 = 𝟎 0.01408 0.00877 -0.00874 0.00103 0.03011 

𝜷𝟖 = 𝟎 0.73119 0.78657 0.94885 0.75659 0.80464 

Table 19: The coefficients estimates of Simulation s example 5, when 𝜀𝑖 ∼ N(0,9) 

 

Procedure 𝝈𝟐 MMAD SD 

BALTR 

1 

0.3143854 0.1002000 

BLTR 0.3157433 0.1004268 

Tr 0.3249725 0.1007086 

BTr 0.3270238 0.1140092 

BTqr 0.3693706 0.1202663 

BALTR 

4 

0.5635968 0.1528850 

BLTR 0.5690248 0.1624616 

Tr 0.5784414 0.1919185 

BTr 0.5923137 0.1807643 

BTqr 0.6501139 0.1794833 

BALTR 

9 

0.7290041 0.2281853 

BLTR 0.7558415 0.2599720 

Tr 0.8092581 0.2846500 

BTr 0.8406544 0.2806326 

BTqr 0.8931200 0.2883510 

Table 20: The MMADs and SDs results of Simulations example 5 
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4.2.6 Simulation example 6: 

In this simulation example, we create 7 independent variables with 200 

observations, the pair wise correlation between each independent variable equalize 

to 0.5 |𝑖−𝑗|,  and we set the true regression coefficients as follows: 

𝜷𝒕𝒓𝒖𝒆 = (0, 0.7, … , 0.7⏟      
7

)′. 

We simulated 𝑦𝑖
∗ as follows: 

𝑦𝑖
∗ = 0.7𝑥1𝑖 + 0.7𝑥2𝑖 + 0.7𝑥3𝑖 + 0.7𝑥4𝑖 + 0.7𝑥5𝑖 + 0.7𝑥6𝑖 + 0.7𝑥7𝑖 + 𝜀𝑖  

where 𝜀𝑖 ∼ Normal (0,  𝜎
2), and  𝜎2 ∈ {1, 4, 9}. 

We list the results of regression coefficients estimates as tables below 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟎 -0.00121 -0.00423 -0.00533 -0.08591 -0.06556 

𝜷𝟏 = 𝟎. 𝟕 0.70947 0.71037 0.71166 0.73317 0.73406 

𝜷𝟐 = 𝟎. 𝟕 0.69885 0.69889 0.69910 0.70385 0.69077 

𝜷𝟑 = 𝟎. 𝟕 0.70073 0.70289 0.70702 0.72777 0.73125 

𝜷𝟒 = 𝟎. 𝟕 0.67094 0.67292 0.67990 0.69661 0.69749 

𝜷𝟓 = 𝟎. 𝟕 0.68911 0.68964 0.69058 0.69096 0.68514 

𝜷𝟔 = 𝟎. 𝟕 0.69695 0.69789 0.69921 0.72360 0.71674 

𝜷𝟕 = 𝟎. 𝟕 0.69993 0.70086 0.70014 0.72937 0.72692 

Table 21: The coefficients estimates of Simulation s example 6, when 𝜀𝑖 ∼ N(0,1) 
 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟎 0.01359 -0.00959 -0.02789 -0.20080 -0.15736 

𝜷𝟏 = 𝟎. 𝟕 0.67988 0.68716 0.70428 0.72475 0.71989 

𝜷𝟐 = 𝟎. 𝟕 0.68443 0.69440 0.71776 0.74273 0.73490 

𝜷𝟑 = 𝟎. 𝟕 0.68594 0.70291 0.73325 0.78796 0.79404 

𝜷𝟒 = 𝟎. 𝟕 0.70081 0.67994 0.70662 0.72362 0.73400 

𝜷𝟓 = 𝟎. 𝟕 0.69904 0.68332 0.71282 0.76138 0.73504 

𝜷𝟔 = 𝟎. 𝟕 0.68678 0.69480 0.70902 0.73962 0.76310 

𝜷𝟕 = 𝟎. 𝟕 0.69172 0.67046 0.68789 0.71432 0.69523 

Table 22: The coefficients estimates of Simulation s example 6, when 𝜀𝑖 ∼ N(0,4) 
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𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟎 -0.05573 -0.03550 -0.07786 -0.35636 -0.28588 

𝜷𝟏 = 𝟎. 𝟕 0.67484 0.66341 0.70466 0.76623 0.77236 

𝜷𝟐 = 𝟎. 𝟕 0.66696 0.64567 0.74590 0.81375 0.83822 

𝜷𝟑 = 𝟎. 𝟕 0.69203 0.68537 0.69142 0.72902 0.69549 

𝜷𝟒 = 𝟎. 𝟕 0.70936 0.61233 0.69836 0.75535 0.76538 

𝜷𝟓 = 𝟎. 𝟕 0.63479 0.61751 0.69721 0.75672 0.76575 

𝜷𝟔 = 𝟎. 𝟕 0.74763 0.73993 0.77888 0.83389 0.84087 

𝜷𝟕 = 𝟎. 𝟕 0.68780 0.66230 0.65789 0.69270 0.66976 

Table 23: The coefficients estimates of Simulation s example 6, when 𝜀𝑖 ∼ N(0,9) 

 

Procedure 𝝈𝟐 MMAD SD 

BALTR 

1 

0.276327 0.104663 

BLTR 0.277788 0.105090 

Tr 0.280375 0.106778 

BTr 0.286062 0.127102 

BTqr 0.305961 0.126867 

BALTR 

4 

0.545705 0.137516 

BLTR 0.545787 0.141699 

Tr 0.549043 0.154127 

BTr 0.612324 0.198907 

BTqr 0.626475 0.200574 

BALTR 

9 

0.785711 0.230850 

BLTR 0.805738 0.253614 

Tr 0.814186 0.285252 

BTr 0.906358 0.377037 

BTqr 0.946205 0.386729 

Table 24: The MMADs and SDs results of Simulations example 6 
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4.2.7 Simulation example 7: 

This example considers a difficult case model. We create 4 independent variables 

with 100 observations, and the pair wise correlation between each independent 

variable is low correlation, it is equalized to -0.25, and we set the true regression 

coefficients as follows: 

𝜷𝒕𝒓𝒖𝒆 = (0, 6.8, 6.8, 6.8, 0)′. 

And we simulated 𝑦𝑖
∗ as follows: 

𝑦𝑖
∗ = 6.8𝑥1𝑖 + 6.8𝑥2𝑖 + 6.8𝑥3𝑖 + 𝜀𝑖 

where 𝜀𝑖 ∼ Normal (0,  𝜎
2), and  𝜎2 ∈ {1, 4, 9}. 

We list the results of regression coefficients estimates as tables below 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟎 -0.03204 -0.02874 -0.02564 -0.04972 -0.04884 

𝜷𝟏 = 𝟔. 𝟖 6.81289 6.80855 6.80866 6.82615 6.82673 

𝜷𝟐 = 𝟔. 𝟖 6.82236 6.81757 6.81833 6.83434 6.82800 

𝜷𝟑 = 𝟔. 𝟖 6.80231 6.79864 6.79951 6.81096 6.79943 

𝜷𝟒 = 𝟎 -0.00738 -0.00849 -0.00822 -0.00876 -0.01579 

Table 25: The coefficients estimates of Simulation s example 7, when 𝜀𝑖 ∼ N(0,1) 
 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟎 -0.01848 -0.01769 -0.00053 -0.07119 -0.05421 

𝜷𝟏 = 𝟔. 𝟖 6.80706 6.80504 6.79841 6.83788 6.83524 

𝜷𝟐 = 𝟔. 𝟖 6.78025 6.77714 6.77373 6.80896 6.79998 

𝜷𝟑 = 𝟔. 𝟖 6.81374 6.81031 6.80598 6.84394 6.84213 

𝜷𝟒 = 𝟎 -0.01473 -0.01726 -0.01741 -0.01320 -0.01883 

Table 26: The coefficients estimates of Simulation s example 7, when 𝜀𝑖 ∼ N(0,4) 
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𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟎 -0.05187 -0.05787 -0.00290 -0.20772 -0.22551 

𝜷𝟏 = 𝟔. 𝟖 6.82950 6.82827 6.80091 6.94322 6.95459 

𝜷𝟐 = 𝟔. 𝟖 6.88990 6.88623 6.86843 6.99837 7.01069 

𝜷𝟑 = 𝟔. 𝟖 6.82117 6.81366 6.79564 6.93702 6.98893 

𝜷𝟒 = 𝟎 0.03453 0.03309 0.03350 0.04149 0.04776 

Table 27: The coefficients estimates of Simulation s example 7, when 𝜀𝑖 ∼ N(0,9)  

 

Procedure 𝝈𝟐 MMAD SD 

BALTR 

1 

0.2715830 0.1158086 

BLTR 0.2739781 0.1161730 

Tr 0.2748512 0.1167151 

BTr 0.2755876 0.1208232 

BTqr 0.2970783 0.1276834 

BALTR 

4 

0.4730141 0.2025605 

BLTR 0.4736110 0.2042301 

Tr 0.4852631 0.2043655 

BTr 0.4895753 0.2118048 

BTqr 0.5720289 0.2340398 

BALTR 

9 

0.7991411 0.3320651 

BLTR 0.8110890 0.3479748 

Tr 0.8323682 0.3412223 

BTr 0.8268126 0.4119798 

BTqr 0.9511592 0.4644230 

Table 28: The MMADs and SDs results of Simulations example 7 
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4.2.8 Simulation example 8: 

This simulation example is same in the example above except the pair wise 

correlation between each independent variable is very low correlation, it is 

equalized to 0.95, and we set the true regression coefficients as follows: 

𝜷𝒕𝒓𝒖𝒆 = (0, 5.5, 5.5, 5.5, 0)′. 

We simulated 𝑦𝑖
∗ as follows: 

𝑦𝑖
∗ = 5.5𝑥1𝑖 + 5.5𝑥2𝑖 + 5.5𝑥3𝑖 +  𝜀𝑖 

where 𝜀𝑖 ∼ Normal (0,  𝜎
2), and  𝜎2 ∈ {1, 4, 9}. 

We list the results of regression coefficients estimates as tables below 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟎 0.00060 0.00606 0.01219 -0.02171 -0.02990 

𝜷𝟏 = 𝟓. 𝟓 5.49903 5.49370 5.49235 5.51362 5.51767 

𝜷𝟐 = 𝟓. 𝟓 5.49752 5.49176 5.49292 5.50951 5.50678 

𝜷𝟑 = 𝟓. 𝟓 5.51334 5.50702 5.50574 5.53024 5.53255 

𝜷𝟒 = 𝟎 -0.00655 -0.00587 -0.00761 -0.00458 -0.00813 

Table 29: The coefficients estimates of Simulation s example 8, when 𝜀𝑖 ∼ N(0,1) 
 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟎 -0.02741 -0.02886 -0.05559 -0.09647 -0.09765 

𝜷𝟏 = 𝟓. 𝟓 5.53919 5.53667 5.52496 5.59940 5.60046 

𝜷𝟐 = 𝟓. 𝟓 5.52721 5.52524 5.50943 5.58874 5.59006 

𝜷𝟑 = 𝟓. 𝟓 5.54451 5.54064 5.53180 5.60197 5.62056 

𝜷𝟒 = 𝟎 0.00502 0.00462 0.00431 0.01049 0.00578 

Table 30: The coefficients estimates of Simulation s example 8, when 𝜀𝑖 ∼ N(0,4) 
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𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟎 -0.12842 -0.14020 -0.18551 -0.28450 -0.25737 

𝜷𝟏 = 𝟓. 𝟓 5.53337 5.53558 5.50877 5.64924 5.64082 

𝜷𝟐 = 𝟓. 𝟓 5.50742 5.50453 5.48611 5.62610 5.64194 

𝜷𝟑 = 𝟓. 𝟓 5.57582 5.57051 5.56494 5.67917 5.67718 

𝜷𝟒 = 𝟎 -0.03505 -0.04467 -0.04179 -0.03981 -0.01707 

Table 31: The coefficients estimates of Simulation s example 8, when 𝜀𝑖 ∼ N(0,9) 

 

Procedure 𝝈𝟐 MMAD SD 

BALTR 

1 

0.2693833 0.1276641 

BLTR 0.2701359 0.1276692 

Tr 0.2737591 0.1278145 

BTr 0.2809201 0.1340808 

BTqr 0.3205587 0.1549083 

BALTR 

4 

0.4916656 0.2144122 

BLTR 0.4948648 0.2147106 

Tr 0.4962678 0.2168003 

BTr 0.5145276 0.2295402 

BTqr 0.5344612 0.2361655 

BALTR 

9 

0.6875267 0.3454354 

BLTR 0.7362656 0.3522602 

Tr 0.7448768 0.3553119 

BTr 0.7762767 0.4178073 

BTqr 0.7977359 0.4015878 

Table 32: The MMADs and SDs results of Simulations example 8 
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4.2.9 Simulation example 9: 

In this simulation example, we create 7 independent variables with 200 

observations, and without intercept. The pair wise correlation between each 

independent variable equalize to 0.8 |𝑖−𝑗|,  and we set the true regression 

coefficients as follows: 

𝜷𝒕𝒓𝒖𝒆 = (1, 0, 0, 1, 0, 0, 1)′. 

We simulated 𝑦𝑖
∗ as follows: 

𝑦𝑖
∗ = 𝑥1𝑖 + 𝑥4𝑖 + 𝑥7𝑖 + ′𝜀𝑖  

where 𝜀𝑖 ∼ Normal (0,  𝜎
2), and  𝜎2 ∈ {1, 4, 9}. 

We list the results of regression coefficients estimates as tables below 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟏 = 𝟏 0.99602 0.99472 0.99891 0.99938 1.00005 

𝜷𝟐 = 𝟎 0.02253 0.02361 0.02502 0.02872 0.02909 

𝜷𝟑 = 𝟎 -0.01936 -0.02096 -0.02302 -0.01557 -0.01819 

𝜷𝟒 = 𝟏 0.98914 0.98748 0.98879 0.99998 1.01144 

𝜷𝟓 = 𝟎 0.00151 0.00218 0.00401 0.00070 -0.00791 

𝜷𝟔 = 𝟎 0.00593 0.00778 0.00648 0.01289 0.01664 

𝜷𝟕 = 𝟏 1.02899 1.02624 1.02538 1.05374 1.07164 

Table 33: The coefficients estimates of Simulation s example 9, when 𝜀𝑖 ∼ N(0,1) 
 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟏 = 𝟏 1.00121 0.99423 1.00942 1.05071 1.06561 

𝜷𝟐 = 𝟎 -0.01434 -0.02126 -0.01914 -0.03293 -0.03984 

𝜷𝟑 = 𝟎 -0.00154 -0.00022 -0.00004 -0.01048 -0.01597 

𝜷𝟒 = 𝟏 1.04370 1.03332 1.05055 1.10838 1.11395 

𝜷𝟓 = 𝟎 -0.02595 -0.02849 -0.02941 -0.03784 -0.02168 

𝜷𝟔 = 𝟎 0.02130 0.02220 0.01712 0.04521 0.00745 

𝜷𝟕 = 𝟏 0.98648 0.98243 0.99409 1.00535 1.03446 

Table 34: The coefficients estimates of Simulation s example 9, when 𝜀𝑖 ∼ N(0,4) 
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𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟏 = 𝟏 0.87722 0.87473 0.93722 0.93620 0.96776 

𝜷𝟐 = 𝟎 0.02059 0.02356 0.01815 0.02717 0.04077 

𝜷𝟑 = 𝟎 0.03436 0.03484 0.04302 0.02835 0.02563 

𝜷𝟒 = 𝟏 0.99151 0.97907 1.03864 1.08294 1.06385 

𝜷𝟓 = 𝟎 -0.02858 -0.03023 -0.03350 -0.00132 -0.01357 

𝜷𝟔 = 𝟎 -0.00635 -0.01027 -0.01450 -0.03378 -0.05047 

𝜷𝟕 = 𝟏 1.00904 0.99530 1.05497 1.09108 1.10440 

Table 35: The coefficients estimates of Simulation s example 9, when 𝜀𝑖 ∼ N(0,9) 

 

Procedure 𝝈𝟐 MMAD SD 

BALTR 

1 

0.2637977 0.0629574 

BLTR 0.2645657 0.0630926 

Tr 0.2661152 0.0641458 

BTr 0.2690778 0.0672531 

BTqr 0.3022255 0.0756868 

BALTR 

4 

0.4451257 0.1621673 

BLTR 0.4584184 0.1585630 

Tr 0.4645096 0.1603979 

BTr 0.4939741 0.1682316 

BTqr 0.5428853 0.1769871 

BALTR 

9 

0.6663666 0.1890329 

BLTR 0.6716854 0.1890237 

Tr 0.7004311 0.1977441 

BTr 0.7115157 0.2022168 

BTqr 0.7552406 0.2121890 

Table 36: The MMADs and SDs results of Simulations example 9 
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4.2.10 Simulation example 10: 

This simulation example is same as example 9 except we set the true regression 

coefficients as follows: 

𝜷𝒕𝒓𝒖𝒆 = (2, 0, … , 0⏟  
6

)′. 

We simulated 𝑦𝑖
∗ as follows: 

𝑦𝑖
∗ = 2𝑥1𝑖 +  𝜀𝑖 

where 𝜀𝑖 ∼ Normal (0,  𝜎
2), and  𝜎2 ∈ {1, 4, 9}. 

We list the results of regression coefficients estimates as tables below 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟏 = 𝟐 2.02453 2.02054 2.02216 2.03512 2.03164 

𝜷𝟐 = 𝟎 0.01362 0.01412 0.01344 0.01859 0.01118 

𝜷𝟑 = 𝟎 0.00231 0.00285 0.00208 0.00654 0.00891 

𝜷𝟒 = 𝟎 -0.01615 -0.01740 -0.01611 -0.02272 -0.01397 

𝜷𝟓 = 𝟎 0.01777 0.01868 0.01845 0.02269 0.01890 

𝜷𝟔 = 𝟎 0.00883 0.00852 0.00901 0.00715 0.00495 

𝜷𝟕 = 𝟎 -0.00492 -0.00466 -0.00480 -0.00474 -0.00445 

Table 37: The coefficients estimates of Simulation s example 10, when 𝜀𝑖 ∼ N(0,1) 
 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟏 = 𝟐 2.03589 2.01806 2.02225 2.09623 2.09136 

𝜷𝟐 = 𝟎 -0.02655 -0.02897 -0.01920 -0.06953 -0.07637 

𝜷𝟑 = 𝟎 0.01203 0.01314 0.00604 0.03564 0.03165 

𝜷𝟒 = 𝟎 0.00093 0.00088 0.00063 -0.00408 -0.00881 

𝜷𝟓 = 𝟎 -0.00516 -0.00285 0.00208 -0.02818 -0.01613 

𝜷𝟔 = 𝟎 0.00599 0.00667 0.00192 0.03046 0.02646 

𝜷𝟕 = 𝟎 -0.03617 -0.03757 -0.04135 -0.04638 -0.04298 

Table 38: The coefficients estimates of Simulation s example 10, when 𝜀𝑖 ∼ N(0,4) 
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𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟏 = 𝟐 2.03086 1.98035 2.03613 2.12114 2.11584 

𝜷𝟐 = 𝟎 -0.00503 -0.00731 -0.01374 -0.00790 -0.01854 

𝜷𝟑 = 𝟎 0.04881 0.04794 0.06198 0.05704 0.06209 

𝜷𝟒 = 𝟎 0.01883 0.01793 0.01211 0.06594 0.05424 

𝜷𝟓 = 𝟎 -0.01938 -0.02196 -0.02338 -0.04635 -0.03894 

𝜷𝟔 = 𝟎 -0.00672 -0.00744 -0.00609 -0.01412 -0.00675 

𝜷𝟕 = 𝟎 0.00185 -0.00638 -0.00801 -0.00229 -0.00272 

Table 39: The coefficients estimates of Simulation s example 10, when 𝜀𝑖 ∼ N(0,9) 

 

Procedure 𝝈𝟐 MMAD SD 

BALTR 

1 

0.2425656 0.0606486 

BLTR 0.2432271 0.0698898 

Tr 0.2444597 0.0700119 

BTr 0.2493422 0.0699531 

BTqr 0.2732725 0.0735678 

BALTR 

4 

0.4527618 0.1528419 

BLTR 0.4556374 0.1539392 

Tr 0.4613127 0.1539059 

BTr 0.4755329 0.1625885 

BTqr 0.5232845 0.1674268 

BALTR 

9 

0.6200592 0.2003216 

BLTR 0.6468788 0.2013237 

Tr 0.7054764 0.2016802 

BTr 0.7411863 0.2152123 

BTqr 0.7909137 0.2284264 

Table 40: The MMADs and SDs results of Simulations example 10 
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4.3 Non-i.i.d (Heterogeneous)  'random errors: 

4.3.1 Simulation example 11: 

In this simulation example, we created 100 observations, and 8 independent 

variables, 5 of these variables are represented as standard normal noise variables, 

and we set the true regression coefficients as follows: 

𝜷𝒕𝒓𝒖𝒆 = (1, 2, 1, 2, 0, 0, 0, 0, 0)′ 

We simulated 𝑦𝑖
∗ as follows: 

𝑦𝑖
∗ = 𝑥𝑖′𝜷 + (1 + 𝑥3𝑖)𝜀𝑖 

where 𝜀𝑖 ∼ Normal(0,1), 

𝑥1𝑖 ∼ Normal (0, 1), 𝑥3𝑖 ∼ Uniforms(0, 1), 

𝑥2𝑖 = 𝑥1𝑖 + 𝑥3𝑖 + 𝑧𝑖,  𝑧𝑖 ∼ Normal (0, 1) 

We list the results of regression coefficients estimates as tables below 

 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟎 = 𝟏 0.96936 0.96770 0.98601 0.96044 0.97442 

𝜷𝟏 = 𝟐 2.01515 2.01446 2.00962 2.02357 2.02289 

𝜷𝟐 = 𝟏 0.99955  1.00096 0.99772 1.00197 0.99635 

𝜷𝟑 = 𝟐 2.00402 1.98195 2.01909 2.02554 2.03448 

𝜷𝟒 = 𝟎 - 0.00316 -0.00300 -0.00252 -0.00489 0.00180 

𝜷𝟓 = 𝟎 -0.01780 -0.01785 -0.01846 -0.01910 -0.02701 

𝜷𝟔 = 𝟎 0.00675 0.00713 0.00685 0.00907 0.01659 

𝜷𝟕 = 𝟎 -0.01106 -0.01131 -0.01095 -0.01031 -0.00753 

𝜷𝟖 = 𝟎 0.00066 0.00075 0.00121 -0.00144 0.00883 

Table 41: The coefficients estimates of Simulation s example 11 
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Procedure MMAD SD 

BALTR 0.2488675 0.0673076 

BLTR 0.2489086 0.0676727 

Tr 0.2498349 0.0679520 

BTr 0.2498877 0.0689287 

BTqr 0.2718577 0.0777695 

Table 42: The MMADs and SDs results of Simulations example 11 

 

4.3.2 Simulation example 12: 

This simulation example is same as example 11, except the number of independent 

variables is 7, and without intercept, 4 variables are represented as standards 

normal noise variables. we set the true regression coefficients as follows:  

𝜷𝒕𝒓𝒖𝒆 = (1, 1, 0, 0, 0, 1, 1)′ 

We list the results of regression coefficients estimates as tables below 

 

𝜷𝒕𝒓𝒖𝒆 BALTR BLTR Tr Btr Btqr 

𝜷𝟏 = 𝟏 0.97645 0.97437 0.98484 0.99867 1.02606 

𝜷𝟐 = 𝟏 0.98797 0.98689 0.98858 1.00582 1.00308 

𝜷𝟑 = 𝟎 0.07754 0.07911 0.09580 -0.00931 -0.05584 

𝜷𝟒 = 𝟎 -0.02608 -0.02539 -0.02589 -0.02436 -0.03266 

𝜷𝟓 = 𝟎 0.01822 0.02086 0.02213 0.02496 0.01569 

𝜷𝟔 = 𝟏 0.98689 0.98565 0.98829 0.99837 1.02980 

𝜷𝟕 = 𝟏 1.01277 1.01076 1.01569 1.02484 1.03444 

Table 43: The coefficients estimates of Simulation example 12 
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Procedure MMAD SD 

BALTR 0.3876545 0.1058635 

BLTR 0.3880013 0.1059328 

Tr 0.3898011 0.1064951 

BTr 0.3975563 0.1119146 

BTqr 0.4086063 0.1165248 

Table 44: The MMADs and SDs results of Simulations example 12 

 

From all tables of the previous examples, it can be observed that the proposed 

methods (BLTR and BALTR) generally perform better than the other methods (Tr, 

Btr, and Btqr) used in the comparisons. The MMADs results of BALTR approach 

were relatively less than these results of the other procedures and gives the best 

MMADs and SD most of the times. This indicates the quality of the performance 

of the BALTR procedure in terms of coefficient estimation and VS. 
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CHAPTER FIVE 

 

 

5. PRACTICAL APPLICATION 

5.1 Introduction: 

     In this part of application chapter, and after we have demonstrated the merit of 

our proposed methods in the simulation study, we applied our proposed methods to 

the real data and then analyze the results statistically. The identification and 

detection of the causes about increasing the rate wheat production are one of the 

priorities of agricultural economist researchers. So, the determination of the real 

factors to increase wheat crop production among several factors that will help us to 

predict the rate of increase wheat production in the future. Hence the importance of 

our new proposed methods, which attempt to identify some variables and to show 

how strong their impact on the rate of increase in wheat production. We make our 

methods BALTR and BLTR within the three processes in wheat production data 

for comparison in terms of accurate prediction and variable selection. The data 

used in this chapter is taken from the National program for the development of 

wheat cultivation in Iraq; Qadisiyah governorate board (2017). The wheat 

production data includes 11 variables within 584 observations, these variables are 

sorting as follows in table 45. The response variable in this dataset represents the 

relative increase in wheat yield per dunum, note that each dunum is equal to 

2500 𝑚2. R code is available upon request. 
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5.2 The Independent variables: 

• Urea fertilizer (U): The urea fertilizer is a simple fertilizer that supplies the 

major essential element nitrogen, and the crops need it in larger quantities 

than any other nutrient. 

• Date of sowing (Ds): The date of cultivation of wheat seeds in the field. 

• Quantity of sowing seeds (Qs): The quantity of wheat seeds in the field, and 

this amount is measured in kilograms per dunum. 

• Laser field leveling technique (LT): This method is a smoothing procedure 

and leveling the farm ground. This method offers the potential for water 

savings. 

• Compound fertilizer (NPK): NPK fertilizer is a complex fertilizer containing 

principally of the three fundamentals nutrients necessary for healthy plants 

growth (Nitrogen, Phosphorus and Potassium). 

• Seed sowing machine technique (SMT): A sowing seed machine is a device 

that sows the seeds for crops in the soil, then cover the seeds to a nominated 

typical rate depth. 

• Planting successive (SC): Successive planting is a way to extend corps 

harvest by staggering planting of crops, or planting varieties with staggered 

maturing dates. In this real dataset, the other corps which planting before 

sowing wheat seeds is Mung bean corp. 

• Herbicide for weed (H): This process contains chemical applications. top 

control the growth of weeds types. 

• High Potassium fertilizer (K): High Potassium is essential for crops health 

and there must be an adequate supply in the soils to maintain goods growth. 
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• Micro-Elements fertilizer (ME): Mineral elements that are needed by crops 

in only trace amounts are known as micro-elements. This fertilizer which 

helps the growth of crops, such as iron, magnesium, potassium, and 

manganese. 

 

symbol Variables description Rank Rank description 

Y The outcome variable Percentage increase of wheat product 

U Urea fertilizer Numeral Quantity in kilogram 

Ds Date of sowing 

1 Ideal 

2 Early 

3 Late 

Qs Quantity of sowing Numeral Quantity in kilogram 

LT Laser field leveling 
1 Unused 

2 Used 

NPK Compound fertilizer Numeral Quantity in kilogram 

SMT Sowing seeds machine 
1 Unused 

2 Used 

SC 
Planting successive 

(Mung bean crop) 

1 Planting 

2 Not planting 

H Herbicide for weeds Numeral Quantity in milliliter 

K High Potassium Numeral Quantity in kilogram 

ME Micro-Elements Numeral Quantity int gram 

Table 45: The top 11 worthy variables 
 

5.3 Real data results: 

 𝐁𝐀𝐋𝐓𝐑 𝐁𝐋𝐓𝐑 𝐓𝐫 𝐁𝐭𝐫 𝐁𝐭𝐪𝐫 

𝜷𝟎 ′

 -0.0433838 -0.0431762 -0.084922 -0.081976 -1.2196515 

L.C I -0.3578263 -0.3604089 -0.8722770 -0.898573 -1.8071276 

U.C I 0.2323458 0.2673627 0.7024328 0.719634 -0.4907951 
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′𝐔′ 0.0211009 0.0213583 0.020928 0.020974 0.0243195 

L.C I 0.0199047 0.0200037 0.0137744 0.013798 0.0176873 

U.C I 0.0228502 0.0236142 0.0280822 0.028236 0.0307460 

′𝐃𝐬′ -0.6671660 -0.6763215 -0.663651 -0.665663 -0.6545110 

L.C I -0.7316255 -0.7574811 -0.7864428 -0.790510 -0.8024576 

U.C I -0.6207167 -0.6239916 -0.5408589 -0.546217 -0.5029025 

′𝐐𝐬′ -0.0218912 -0.0220591 -0.021788 -0.021790 -0.0057674 

L.C I -0.0242680 -0.0247427 -0.0347353 -0.034747 -0.0177361 

U.C I -0.0199373 -0.0200504 -0.0088414 -0.008437 0.0032729 

′𝐋𝐓′ 1.3392113 1.2890701 1.357168 1.357630 1.4284952 

L.C I 1.0704020 0.9941205 0.6807916 0.657868 0.4566205 

U.C I 1.6029090 1.5630652 2.0335436 2.035161 2.3610716 

′𝐍𝐏𝐊' 0.0049840 0.0050224 0.004908 0.004920 -0.0052290 

L.C I 0.0033343 0.0033702 -0.0075619 -0.007545 -0.0164622 

U.C I 0.0069746 0.0071492 0.0173782 0.017452 0.0068326 

′𝐒𝐌𝐓′ -0.0936879 -0.1100872 -0.142634 -0.145098 0.2445190 

L.C I -0.3627955 -0.3842552 -0.8377516 -0.839958 -0.6438307 

U.C I 0.1158550 0.1310164 0.5524826 0.558794 1.2208572 

′′𝐒𝐂′′ 0.9282265 0.9198140 0.932829 0.930684 1.0000151 

L.C I 0.8565598 0.8406293 0.6111322 0.600929 0.6683828 

U.C I 0.9953362 0.9880197 1.2545265 1.258660 1.3113546 

′𝐇′ 0.0043298 0.0043892 0.004315 0.004323 0.0051035 

L.C I 0.0038758 0.0039010 0.0027357 0.002712 0.0037272 

U.C I 0.0048939 0.0050331 0.0058946 0.005972 0.0064843 

′𝐊' 0.0327570 0.0328492 0.032676 0.032692 0.0246412 

L.C I 0.0321197 0.0321597 0.0254615 0.025595 0.0139049 

U.C I 0.0335991 0.0338707 0.0398907 0.039990 0.0360497 

′𝐌𝐄′ 0.0062279 0.0062152 0.006228 0.006250 0.0075853 

L.C I 0.0060113 0.0059725 0.0045106 0.004517 0.0046838 

U.C I 0.0063928 0.0063932 0.0079452 0.007948 0.0101096 

Table 46 - Coefficients estimation s and Credible intervals CIs ((250%, 950%)) 
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In table 46, the results showed the coefficients estimation and credible intervals 

(low credible interval L.CI and upper credible interval U.CI). The credible interval 

results of the proposed techniques BLTR and BALTR are narrower than Tr, BTr, 

BTqr methods, and our proposed methods are including all the estimations of other 

methods. At the same time, the results described above have shown that the 

proposed method BALTR is the best technique of all other techniques used. 
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Figure 1- Histograms of BLTR coefficients estimation 
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Figure 2- Trace plots of BLTR coefficients estimation 
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Figure 3- Autocorrelations of BLTR coefficients estimation 
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Figure 4- Histograms of BALTR coefficients estimation 
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Figure 5- Trace plots of BALTR coefficients estimation 
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Figure 6- Autocorrelations of BALTR coefficients estimation 
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CHAPTER SIX 

 

 

6. CONCLUSION $ RECOMMENDATION 

6.1 Conclusion: 

     This thesis has presented new techniques for model selection of Tobit 

regression from Bayesian framework, where we suggested BLTR, and BALTR 

procedures to estimates the coefficients with VS. The proposed procedures depend 

on the scale mixture uniform as prior distribution. We developed a new Bayesian 

hierarchical model for BLTR and BALTR procedures. Furthermore, we have 

provided the Gibbs samples for these procedures. The extension of our procedures 

has been included in our thesis, where the ridge parameter is added within the 

variance covariance matrix to prevent the singularity in case of multicollinearity 

and overfitting problems. We demonstrated the advantages of the new procedures 

in both simulations and analysis of real data in chapter four. The results showed 

that our procedures performed well in terms of VS and parameter estimation. In 

particular, the BALTR technique is absolutely the best of all the procedures 

mentioned above. Through the conclusions of this thesis, statisticians are assisted 

by the presence of BALTR technique in statistics, using this new technique to 

ensure accurate and useful results for the correct prediction. 

 

6.2 Recommendations for future research: 

The BLTR and BALTR procedures in this thesis will provide statistical researchers 

with promising hope, to introduce and extend new procedures for coefficients 

estimation and VS in the Tobit regression. There are many other probable 

extensions, such as, using the Bayesian group Lasso in Tobit regression, Bayesian 
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elastic net in Tobit regression, Bayesian Bridge and group Bridge in Tobit 

regression. 
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1 

 

 الخلاصة

 

المثلى  الجزئية المشاكل التي يحاول فيها المرء تحديد المجموعة نوعإلى  تشير راتاختيار المتغياجراء  ان

، والتي يمكن استخدامها للحصول على تعديلات دقيقة على نتائج متغير  في النموذج الصلة اتذ اتللمتغير

استجابة معين. في كثير من الأحيان ، عندما يكون عدد المتغيرات كبيرًا جدًا ، يصعب تحديد المتغيرات 

حليل مهمة جدا في ت اتاختيار المتغير اجراءالهامة والمؤثرة في متغير الاستجابة. لهذا السبب ، اعتبرت 

 البيانات.

في السنوات و،  أثبتت فعاليتها في التعامل مع البيانات عالية الأبعاد من افضل الطرق التيالتنظيم  قطرتعد  

. اتاختيار المتغير مشاكللحل  التنظيم طرقالسابقة ، بذل الباحثون الإحصائيون جهودًا كبيرة في تطوير 

من خلال تعيين معاملات معينّة إلى الصفر وتقليص  اتالمتغيراختيار عملية  تلقائياً  تسهلّالطرق هذه ف

. متغيرات عالية الارتباطكان النموذج يحتوي على عدد كبير من  وان، وتقديم تقديرات مفيدة حتى  المتبقي

ر ب  .الطرقفي السنوات الأخيرة ، إلا أنه لا يزال بالإمكان تحسين هذه  التنظيم طرقالرغم من تطوُّ

لاسو  توبتانحدار  طريقة،  توبت انحدارلاختيار النموذج في تان جديد يقتانطر، اقترحنا  ةالرسالفي هذه 

تقدير  اعطت افضلالتي و ميزات كثيرة تمتلك الطريقتان لاسو التكيفي البيزي. انحدار توبتطريقة البيزي  و

لكل  بس جديدةجمع عينات  هرمياً  جديداً نموذجًا  قدمناعلى وجه التحديد ، و. مةات المهاختيار المتغير مع 

  .طريقة

داخل مصفوفة التباين لتجنب  (Ridge) الحرف عن طريق إضافة معلمة قترحتانالم يقتانطرال وسعناثم  

تم إجراء و. المشاهداتأكبر من عدد من المتغيرات أو في حالة عدد  خطيال مشكلة التعدد فيالتفرد حالة 

من الجدير وحقيقية. بيانات استخدام السابقة الأخرى من خلال تطبيق أمثلة المحاكاة و الطرقمقارنة مع 

 .ةنتائج أفضل مقارنة بالطرق السابق والتي اعطتبالذكر أن النتائج التي تم الحصول عليها واعدة ومشجعة ، 
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ء��حصاق�� ا                  
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 التكي�� الب��ي ��سوا��دار توبت 

 مع تطبيق ���� 
 

 رسا�� مقدمة
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 و�ي ��ء من متطلبات نيل در�ة ا��اجست�� �ي ���م ا��حصاء
 

 من الطالب

 حيدر ك�ظم عباس ا�����ي
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