

Abstract
Detect and recognition text in the natural image. In this work detect and recognize text automatically from image by MATLAB program based on five steps, detect text regions using MSER feature detector .It works well for text because the consistent color and high contrast of text. Remove non-text regions based on basic geometric properties Although the MSER algorithm picks out most of the text , it also detects many other stable regions that are not text . Remove non-text regions based on stroke width to help understand how the stroke width can be used to remove ,estimate the stroke width of one of the detected MSER regions. Merge text regions for final detection result and recognize detected text using OCR at this point ,all the detection results are composed of individual text characters .

Table of Contents
Chapter 1
Abstract …………………………………………………... 4
Table of Contents ………………………………………… 5
1. Introduction ……………………………………………..6
2. Definition ……………………………….…………..7
2-1. Frame difference …………………………….………..7
2-2.Feature Extraction……………………………………...... 7
2-3. Edges …………………………………………..7
2-4.Bounding Box with Color Feature …………………… 7
2-5.Object Detection …………………………………… ….8
2-6 Tracking …………………………… ………8
2-7.MSER (Maximally Stable Extremal Regions) …………8
2-8 Optical Character Recognition (OCR) ………………8
3.The Classification Process ………................................9
3-1. Training……………………………………………..9
3-2.Testing………………………………………………9
Chapter 2
4.Code:Automatically Detect and Recognize text in natural Image –MATLAB……………………………………………10 References…………………………………………………….19

Chapter 1
1. Introduction
The recent studies in the field of computer vision and pattern recognition show a great amount of interest in content retrieval from images and videos, this content can be in the form of objects , color, texture, shape as well as the relationships between them. The semantic information provided by an image can be useful for content based image retrieval as well as for indexing and classification purposes [4.10]. As stated by Jung,
Kim and Jain in [1], text data is particularly interesting, because text can be used to easily and clearly describe the contents of an image, Since the text data can be embedded in an image in different font styles, sizes, orientations, colors and against a complex background, the problem of extracting the candidate text region becomes a challenging one [1], Also, current Optical Character Recognition (OCR) techniques can only handle text against a plain monochrome background and cannot extract text from a complex or textured background [2].
Different approaches for the extraction of text regions from images have been proposed based on basic properties of text. As stated in reference [2], text has some common distinctive characteristics in terms of frequency and orientation information and also spatial cohesion. Spatial cohesion refers to the fact that text characters of the same string appear close to each other and are of similar height, orientation and spacing [2]. Two of the main methods commonly used to determine spatial cohesion are based on edge [3,4] and connected component features of text characters [5].
The fact that an image can be divided into categories depending on whether or not it contains any text data can also be used to classify candidate text regions, thus other methods for text region detection, as described in more detail in the following section. Utilize classification techniques such as support vector machines [7,11], k-means clustering [2] and neural network based classifiers [8]. The algorithm proposed in [9] uses the focus of attention mechanism from visual perception to detect text regions.

2. Definitions:
2.1 Frame Difference.
Frame difference calculates the difference between two frames at every pixel position and store the absolute difference. It is used to visualize the moving objects in a sequence of frames. It takes very less memory for performing the calculation [13].
Let us consider an example, if we take a sequence of frames, the present frame and the next frame are taken into consideration at every calculation and the frames are shifted (after calculation the next frame becomes present frame and the frame that comes in sequence becomes next frame). Figure 1 shows the frame difference between two frames.

[image:]
Figure 1: frame difference between two frames.

2.2 Feature Extraction.
[bookmark: _GoBack]Feature Extraction plays a major role to detect the moving objects in sequence of frames. Every object has a specific feature like color or shape. In a sequence of frames, any one of the feature is used to detect the objects in the frame.
2.3Edges.
Edges are formed where there is a sharp change in the intensity of images. If there is an object, the pixel positions of the object boundary are stored and in the next sequence of frames this position is verified. Corner based algorithm uses the pixel position of edges for defining and tracking of objects[10].
2.4 Bounding Box with Color Feature.
If the segmentation is performed using frame difference, the residual image is visualized with rectangular bounding box with the dimensions of the object produced from residual image.
For a given image scan is performed where the intensity values of the image is more than limit (depends on the assigned value, for accurate assign maximum). In this features is extracted by color and here the intensity value describes the color. The pixel values from the first hit of the intensity values from top, bottom, left and right are stored. By using this dimension values a rectangular bounding box is plotted within the limits of the values produced.
2.5 Object Detection.
Extraction of objects using the features is known as object detection. Every object has a specific feature based on its dimensions. Applying feature extraction algorithm, the object in each frame can be pointed out.
2.6 Tracking.
The process of locating the moving object in sequence of frames is known as tracking. This tracking can be performed by using the feature extraction of objects and detecting the objects in sequence of frames. By using the position values of object in every frame, we can calculate the position and velocity of the moving object[13].
2.7 MSER (Maximally Stable Extremal Regions).
MSER is a method for blob detection in images. The MSER algorithm extracts from an image a number of co-variant regions, called MSERs: an MSER is a stable connected component of some gray level sets of the image .MSER is based on the idea of taking regions which stay nearly the same through a wide range of thresholds. All the pixels below a given threshold are white and all those above or equal are black , MSER Computation is as following :
1- For each threshold, compute the connected binary regions.
2- Compute a function, area A(i), at each threshold value i.
3- Analyze this function for each potential region to determine those that persist with similar function value over multiple thresholds.
2-8 Optical Character Recognition (OCR).
The goal of Optical Character Recognition (OCR) is to classify optical patterns (often contained in a digital image) corresponding to alphanumeric or other characters. The process of OCR involves several steps including segmentation, feature extraction, and classification. Each of these steps is a field unto itself, and is described briefly here in the context of a Matlab implementation of OCR.
A few examples of OCR applications are listed here. The most common for use OCR is the first item; people often wish to convert text documents to some sort of digital representation.
1. People wish to scan in a document and have the text of that document available in a word processor.
2. Recognizing license plate numbers.
3. Post Office needs to recognize zip-codes.

3.The Classification Process:
(Classification in general for any type of classifier) There are two steps in building a classifier: training and testing. These steps can be broken down further into sub-steps:
1. Training.
a. Pre-processing– Processes the data so it is in a suitable form for.
b. Feature extraction– Reduce the amount of data by extracting relevant information usually results in a vector of scalar values. (We also need to NORMALIZE the features for distance measurements).
c. Model Estimation– from the finite set of feature vectors, need to estimate a model (usually statistical) for each class of the training data.
		2. Testing .
a. Pre-processing.
b. Feature extraction – (both same as above).
c. Classification– Compare feature vectors to the various models and find the closest match. One can use a distance measure.

[image:]
Fig 2. The pattern classification process.

Chapter 2:

4. Code: Automatically Detect and Recognize Text in Natural Images – MATLAB:

In this work shows how to detect regions in an image that contain text. This is a common task performed on unstructured scenes. Unstructured scenes are images that contain undetermined or random scenarios. For example, you can detect and recognize text automatically from captured video to alert a driver about a road sign. This is different than structured scenes, which contain known scenarios where the position of text is known beforehand. Segmenting text from an unstructured scene greatly helps with additional tasks such as optical character recognition (OCR). The automated text detection algorithm in this example detects a large number of text region candidates and progressively removes those less likely to contain text.

Step 1: Detect Candidate Text Regions Using MSER.
The MSER feature detector works well for finding text regions [3]. It works well for text because the consistent color and high contrast of text leads to stable intensity profiles.
Use the detect MSERF eatures function to find all the regions within the image and plot these results. Notice that there are many non-text regions detected alongside the text.
colorImage = imread ('handicapSign.jpg');
I = rgb2gray (colorImage);
%Detect MSER regions.
[mserRegions, mserConnComp] = detectMSERFeatures(I, ...
'RegionAreaRange',[200 8000],'ThresholdDelta',4);
figure
imshow(I)
hold on
plot(mserRegions, 'showPixelList', true,'showEllipses',false)
title('MSER regions')
hold off
Try This Example
[image:]fig 3. MSER regions

Step 2: Remove Non-Text Regions Based On Basic Geometric Properties.
Although the MSER algorithm picks out most of the text, it also detects many other stable regions in the image that are not text. You can use a rule-based approach to remove non-text regions. For example, geometric properties of text can be used to filter out non-text regions using simple thresholds. Alternatively, you can use a machine learning approach to train a text vs. non-text classifier. Typically, a combination of the two approaches produces better results [1]. This example uses a simple rule-based approach to filter non-text regions based on geometric properties.
There are several geometric properties that are good for discriminating between text and non-text regions [4,5], including:
Aspect ratio
Eccentricity
Euler number
Extent
Solidity
Use regionprops to measure a few of these properties and then remove regions based on their property values.
2 of 12 11/23/2018, 1:12 PM
% Use regionprops to measure MSER properties
mserStats = regionprops(mserConnComp, 'BoundingBox', 'Eccentricity', ...
'Solidity', 'Extent', 'Euler', 'Image');
% Compute the aspect ratio using bounding box data.
bbox = vertcat(mserStats.BoundingBox);
w = bbox(:,3);
h = bbox(:,4);
aspectRatio = w./h;
% Threshold the data to determine which regions to remove. These thresholds
% may need to be tuned for other images.
filterIdx = aspectRatio' > 3;
filterIdx = filterIdx | [mserStats.Eccentricity] > .995 ;
filterIdx = filterIdx | [mserStats.Solidity] < .3;
filterIdx = filterIdx | [mserStats.Extent] < 0.2 | [mserStats.Extent] > 0.9;
filterIdx = filterIdx | [mserStats.EulerNumber] < ‐4;
% Remove regions
mserStats(filterIdx) = [];
mserRegions(filterIdx) = [];
% Show remaining regions
figure
imshow(I)
hold on
plot(mserRegions, 'showPixelList', true,'showEllipses',false)
title('After Removing Non‐Text Regions Based On Geometric Properties')
hold off
[image:]
Fig 4. After Removing non-text Regions Based On Geometric Properties

Step 3: Remove Non-Text Regions Based On Stroke Width Variation Another common metric.
Used to discriminate between text and non-text is stroke width. Stroke width is a measure of the width of the curves and lines that make up a character. Text regions tend to have little stroke width variation, whereas non-text regions tend to have larger variations.
To help understand how the stroke width can be used to remove non-text regions, estimate the stroke width of one of the detected MSER regions. You can do this by using a distance transform and binary thinning operation [5].
% Get a binary image of the a region, and pad it to avoid boundary effects
% during the stroke width computation.
regionImage = mserStats(6).Image;
regionImage = padarray(regionImage, [1 1]);
% Compute the stroke width image.
distanceImage = bwdist(~regionImage);
skeletonImage = bwmorph(regionImage, 'thin', inf);
strokeWidthImage = distanceImage;
strokeWidthImage(~skeletonImage) = 0;
% Show the region image alongside the stroke width image. Figure
Subplot (1,2,1)
imagesc(regionImage)
title ('Region Image')
subplot (1,2,2)
imagesc(strokeWidthImage)
title('Stroke Width Image')
[image:]
Fig 5. Region Image & Stroke Width Image
In the images shown above, notice how the stroke width image has very little variation over most of the region. This indicates that the region is more likely to be a text region because the lines and curves that make up the region all have similar widths, which is a common characteristic of human readable text. In order to use stroke width variation to remove non-text regions using a threshold value, the variation over the entire
region must be quantified into a single metric as follows:
% Compute the stroke width variation metric
strokeWidthValues = distanceImage(skeletonImage);
strokeWidthMetric = std (strokeWidthValues)/mean(strokeWidthValues);
Then, a threshold can be applied to remove the non-text regions. Note that this threshold value may require tuning for
images with different font styles.
% Threshold the stroke width variation metric
strokeWidthThreshold = 0.4;
strokeWidthFilterIdx = strokeWidthMetric > strokeWidthThreshold;
The procedure shown above must be applied separately to each detected MSER region. The following for-loop
processes all the regions, and then shows the results of removing the non-text regions using stroke width variation.
% Process the remaining regions
for j = 1:numel(mserStats)
regionImage = mserStats(j).Image;
regionImage = padarray(regionImage, [1 1], 0);
distanceImage = bwdist(~regionImage);
skeletonImage = bwmorph(regionImage, 'thin', inf);
strokeWidthValues = distanceImage(skeletonImage);
strokeWidthMetric = std(strokeWidthValues)/mean(strokeWidthValues);
strokeWidthFilterIdx(j) = strokeWidthMetric > strokeWidthThreshold;
end
% Remove regions based on the stroke width variation
mserRegions(strokeWidthFilterIdx) = [];
mserStats(strokeWidthFilterIdx) = [];
% Show remaining regions
figure
imshow(I)
hold on
plot(mserRegions, 'showPixelList', true,'showEllipses',false)
title('After Removing Non‐Text Regions Based On Stroke Width Variation')
hold off

[image:]
Fig 6. After Removing non-text Regions Based On Stroke Width Variation

Step 4: Merge Text Regions For Final Detection Result.
At this point, all the detection results are composed of individual text characters. To use these results for recognition
tasks, such as OCR, the individual text characters must be merged into words or text lines. This enables recognition of
the actual words in an image, which carry more meaningful information than just the individual characters. For example,
recognizing the string 'EXIT' vs. the set of individual characters {'X','E','T','I'}, where the meaning of the word is lost
without the correct ordering.
One approach for merging individual text regions into words or text lines is to first find neighboring text regions and then
form a bounding box around these regions. To find neighboring regions, expand the bounding boxes computed earlier
with regionprops. This makes the bounding boxes of neighboring text regions overlap such that text regions that are
part of the same word or text line form a chain of overlapping bounding boxes.
7 of 12 11/23/2018, 1:12 PM
% Get bounding boxes for all the regions
bboxes = vertcat(mserStats.BoundingBox);
% Convert from the [x y width height] bounding box format to the [xmin ymin
% xmax ymax] format for convenience.
xmin = bboxes(:,1);
ymin = bboxes(:,2);
xmax = xmin + bboxes(:,3) ‐ 1;
ymax = ymin + bboxes(:,4) ‐ 1;
% Expand the bounding boxes by a small amount.
expansionAmount = 0.02;
xmin = (1‐expansionAmount) * xmin;
ymin = (1‐expansionAmount) * ymin;
xmax = (1+expansionAmount) * xmax;
ymax = (1+expansionAmount) * ymax;
% Clip the bounding boxes to be within the image bounds
xmin = max(xmin, 1);
ymin = max(ymin, 1);
xmax = min(xmax, size(I,2));
ymax = min(ymax, size(I,1));
% Show the expanded bounding boxes
expandedBBoxes = [xmin ymin xmax‐xmin+1 ymax‐ymin+1];
IExpandedBBoxes = insertShape(colorImage,'Rectangle',expandedBBoxes,'LineWidth',3);
figure
imshow(IExpandedBBoxes)
title('Expanded Bounding Boxes Text')
[image:]
Fig 7. Expanded Bounding Boxes Text

Now, the overlapping bounding boxes can be merged together to form a single bounding box around individual words or text lines. To do this, compute the overlap ratio between all bounding box pairs. This quantifies the distance between all pairs of text regions so that it is possible to find groups of neighboring text regions by looking for non-zero overlap ratios. Once the pair-wise overlap ratios are computed, use a graph to find all the text regions "connected" by a nonzero overlap ratio.
Use the bboxOverlapRatio function to compute the pair-wise overlap ratios for all the expanded bounding boxes, then use graph to find all the connected regions.
% Compute the overlap ratio
overlapRatio = bboxOverlapRatio(expandedBBoxes, expandedBBoxes);
% Set the overlap ratio between a bounding box and itself to zero to
% simplify the graph representation.
n = size(overlapRatio,1);
overlapRatio(1:n+1:n^2) = 0;
% Create the graph
g = graph(overlapRatio);
% Find the connected text regions within the graph
componentIndices = conncomp(g);
The output of conncomp are indices to the connected text regions to which each bounding box belongs. Use these
indices to merge multiple neighboring bounding boxes into a single bounding box by computing the minimum and
maximum of the individual bounding boxes that make up each connected component.
% Merge the boxes based on the minimum and maximum dimensions.
xmin = accumarray(componentIndices', xmin, [], @min);
ymin = accumarray(componentIndices', ymin, [], @min);
xmax = accumarray(componentIndices', xmax, [], @max);
ymax = accumarray(componentIndices', ymax, [], @max);
% Compose the merged bounding boxes using the [x y width height] format.
textBBoxes = [xmin ymin xmax‐xmin+1 ymax‐ymin+1];
Finally, before showing the final detection results, suppress false text detections by removing bounding boxes made up
of just one text region. This removes isolated regions that are unlikely to be actual text given that text is usually found in
groups (words and sentences).
% Remove bounding boxes that only contain one text region
numRegionsInGroup = histcounts(componentIndices);
textBBoxes(numRegionsInGroup == 1, :) = [];
% Show the final text detection result.
ITextRegion = insertShape(colorImage, 'Rectangle', textBBoxes,'LineWidth',3);
figure
imshow(ITextRegion)
title('Detected Text')
[image:]
Fig 8. Detected Text
Step 5: Recognize Detected Text Using OCR.
After detecting the text regions, use the ocr function to recognize the text within each bounding box. Note that without first finding the text regions, the output of the OCR function would be considerably more noisy.
ocrtxt = ocr(I, textBBoxes);
[ocrtxt.Text]
ans = 'HANDICIXPPED
PARKING
SPECIAL PLATE
REQUIRED
UNAUTHORIZED
VEHICLES
MAY BE TOWED
AT OWNERS
EXPENSE
'
This example showed you how to detect text in an image using the MSER feature detector to first find candidate text regions, and then it described how to use geometric measurements to remove all the non-text regions. This example code is a good starting point for developing more robust text detection algorithms. Note that without further
enhancements this example can produce reasonable results for a variety of other images, for example, posters.jpg or
licensePlates.jpg.

References
[1] Keechul Jung, Kwang In Kim and Anil K. Jain, Text information extraction in images
and video: a survey, The journal of the Pattern Recognition society, 2004.
[2] Victor Wu, Raghavan Manmatha, and Edward M. Riseman, TextFinder: An
Automatic System to Detect and Recognize Text in Images, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 21, No. 11, November 1999.
[3] Xiaoqing Liu and Jagath Samarabandu, An Edge-based text region extraction
algorithm for Indoor mobile robot navigation, Proceedings of the IEEE, July 2005.
[4] Xiaoqing Liu and Jagath Samarabandu, Multiscale edge-based Text extraction from
Complex images, IEEE, 2006.
[5] Julinda Gllavata, Ralph Ewerth and Bernd Freisleben, A Robust algorithm for Text
detection in images, Proceedings of the 3rd international symposium on Image and
Signal Processing and Analysis, 2003.
 [6] Kongqiao Wang and Jari A. Kangas, Character location in scene images from digital
camera, The journal of the Pattern Recognition society, March 2003.
[7] Qixiang Ye, Qingming Huang, Wen Gao and Debin Zhao, Fast and Robust text
detection in images and video frames, Image and Vision Computing 23, 2005.
[8] Rainer Lienhart and Axel Wernicke, Localizing and Segmenting Text in Images and Videos, IEEE Transactions on Circuits and Systems for Video Technology, Vol.12,
No.4, April 2002.
 [9] Xiaoqing Liu and Jagath Samarabandu, A Simple and Fast Text Localization
Algorithm for Indoor Mobile Robot Navigation, Proceedings of SPIE-IS&T
Electronic Imaging, SPIE Vol. 5672, 2005.
[10] http://images.google.com
[11] Qixiang Ye, Wen Gao, Weiqiang Wang and Wei Zeng, A Robust Text Detection
Algorithm in Images and Video Frames, IEEE, 2003.
[12] http://softpixel.com/~cwright/programming/colorspace/yuv/
[13] http://www.captcha.net
4

image3.emf

image4.emf

image5.emf

image6.emf

image7.emf

image8.emf

image1.emf

image2.emf

