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Abstract 

We study some  properties of the statistical characteristics of the 

function, almost periodic in the sense of Bohr. Obtained statistical 

evaluation for different  control systems. Also we study the external and 

internal parallel sets of convex � in the Euclidean space. 
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  Introduction 

this article is being studied such characteristics of the attainable set of 

the controlled system as relative frequencies ������,�	
��,��, 
����
�,��  absorption of attainability set �	��, �� of the control 

system (1.1) by the given set. 

In the works [1,2] the sta.s.cal characteris.cs of the controlled systems 

are investigated.  

�� = ���, �, ��,									��, �, �� ∈ ℝ × ℝ� × ℝ�																							�0.1� 
In this paper, we study the statistical characteristics for functions that 

are almost periodic in the sense of Bohr and the characteristic 

����
�∗, �−∞, "�� which is the relative frequency of hit path of the 

upper solution ∗���of the Cauchy problem 

�� = #��, ��,							��0� = �$.														 
in the set �−∞, 0�. There also obtain estimates of statistical charact- 

eristics ������,�	
��,��, ����
�,�� for different control systems. 



 

§1.Basic definitions 

We obtained characteristic estimates, which reflect the property of 

uniformity of stay reachable sets of the controlled system 

        �� = ���, �, ��,									��, �, �� ∈ ℝ × ℝ� ×ℝ�																							�1.1� 
in the set � on a segment of a given length. 

Consider the differen.al inclusion corresponding to system (1.1) 

                     �� ∈ %��, ��,												%��, �� = "&'''	(��, ��,																															�1.2� 
where for each fixed point ��, �� ∈ ℝ × ℝ� set (��, ��  consists of all 

limiting values of the function �*�+ , �+ , ,��+ , �+�-	at ��+ , �+� → ��, ��, 

	"&'''	(��, �� − closure of the convex hull of the set (��, ��. We suppose 

that that the function ���, �, �� continuous on set of variables and the 

function ,��, �� upper semi-continuous by ��, ��. Then the function 

%��, �� also upper semi-continuous, and the set %��, �� is non-empty, 

bounded, closed and convex, so for each initial point �$ ∈ ℝ� a local 

solu.on of the inclusion (1.2) exists (see [3, p. 60]). 

We denote by ���, �� attainability set of system (1.1) at the moment of 

time � from the initial set X. We assume that for each	� the attainable 

set  ���, �� exists for all � ≥ 0. This means that for each point � ∈ �  

there exists a solution ��, �� of the inclusion (1.2), satisfying the initial 

condition �0, �� = � and continuing for the half-axis ℝ	 = �0,∞�. 

In works [1, 2, 4] we consider introduced and studied such 

Characteristics,  as relative frequency ��������, ��,��, upper and 

lower relative frequencies	����∗����, ��,��,  ����∗����, ��,�� 
absorption  attainable  set ���, �� of the controlled system (1.1) by a 

given subset  



� = {��, �� ∈ ℝ × ℝ� 	 ∶ � ∈ ����} 
of space ℝ�	3. To determine these characteristics, we introduce into 

consideration a set of 

4�5, 6, �� =� {� ∈ �5, 5 + 6�:			���, �� ⊆ ����	}. 
Defini.on 1. (see [1,4]). The relative frequency of absorption of the 

attainability set ���, �� of system (1.1) by the set � called is the 

following limit  

��������, ��,�� =� lim
→=
>�?	4�0, 6, ��

6
= 		 lim
→=

>�?{� ∈ �0, 6�: ���, �� ⊆ ����		
6 ,															�1.3� 

where >�? − is the Lebesgue measure on the real line. If the limit (1.3) 

does not exist, then the characteristics 

����∗����, ��,�� =� lim
→=
>�?	4�0, 6, ��

6 ,

����∗����, ��,�� =� lim
→=
>�?	4�0, 6, ��

6 												�1.4� 

are called, respectively, the lower and upper relative frequency of 

absorption of the attainability set D (t, X) of system (1.1) by the set �. 

Defini.on 2 (see [2, 4]). The relative frequency of absorption of the 

attainability set of system (1.1) given by the set M on the interval 

�5, 5 + 6� is the characteristic 

������,�	
�����, ��,�� =� >�?	4
�5, 6, ��
6

= >�?{� ∈ �5, 5 + 6�: ���, �� ⊆ ����		6 .														 



It is important to consider the relative frequency ������,�	
�����, ��,�� 

for any time point 5 > 0, therefore, it is natural for a given 6 > 0 to 

determine the characteristic 

����
����, ��,�� =� inf�E$	������,�	
�����, ��,�� =

= inf�E$
>�?{� ∈ �5, 5 + 6�: ���, �� ⊆ ����		

6 .														 

This characteris.c differs from (1.3), (1.4 ) that   it reflects the uniformity 

property of staying  of the attainability set D (t, X) in the set M on 

interval of predetermined length. 

Definition 3. The relative frequency of finding the graph of the 

function 	��� in the set �	��� on the interval �5, 5	 + 	6� is the 

characteristic 

������,�	
��,�� =� >�?{� ∈ �5, 5 + 6�:	��� ∈ �
���	}	

6 ,														 

such for any given 6 > 	0, we define the characteristic 

����
�,�� =� inf�E$	������,�	
��,��

= inf�E$
>�?{� ∈ �5, 5 + 6�:	��� ∈ ����	}	

6 .														 

In this notation  

������,�	
��, �−∞, "�� =� >�?{� ∈ �5, 5 + 6�:	��� ≤ "}	6 ,														 

����
�, �−∞, "�� =� inf�E$	������,�	
��, �−∞, "�� 			

= inf�E$
>�?{� ∈ �5, 5 + 6�:	��� ≤ "	}	

6 .														 



§ 2. Es�mates of rela�ve frequencies for almost periodic func�ons. 

Recall that the function 	��� is called almost periodic in the sense of 

Bohr, if it is continuous and for every G > 	0 the set of G-almost periods 

H�G� = {6 ∈ ℝ ∶ sup
L∈ℝ
|�� + 6� − ���| ≤ G} 

relatively tightly on the real axis ℝ, that is, there is a number N > 	0 such 

that, each interval �O, O	 + 	N� length N contains at least one element of 

the set (see, for example, [5, p. 367-368], [6, p. 7]). 

Lemma 1. Let the function 	��� be almost periodic in the sense of 

Bohr and N is a number such that each interval �O, O	 + 	N�	contains at 

least one ε-almost period and 6	 ∈ 	H	�G� ≥ 	N. Then for any 5 > 	0, the 

inequality holds 

�����$,
��, �−∞,−2G�� ≤ ������,�	
��, �−∞, 0�� ≤												 

																																					≤ �����$,
��, �−∞, 2G��																								�2.1� 

Therefore  �����$,
��, �−∞,−2G�� ≤ ����
�, �−∞, 0�� ≤
																																															≤ 	�����$,
��, �−∞, 2G��	.																									 

Proof: Since 6 > 	N, then the interval �5, 5	 + 	6� contains at least one  

G −almost period of the function 6	���. We fix one of them and denote it 

by 6. Consider the case when H	 ∈ 	 �5, 5	 + 	6� and represent the interval 

�5, 5	 + 	6� as a union  

�5, 5	 + 	6� 	= 	 �5, H� 	∪	 �H, 5	 + 	6�. 
Let �	 ∈ 	 �5, H�. Since H − 6 is 2G-almost the period of the function 	���, 

that performed  inequality |��� − �� − �H − 6��| ≤ 2G, i.e. 



��	 − 	H	 + 	6� − 	2G ≤ ��� ≤ ��	 − 	H	 + 	6� + 2G.	
Therefore, 

>�?{� ∈ �5, H�:	��	 − 	H	 + 	6� ≤ 	−2G} ≤ >�?{� ∈ �5, H�:	��� ≤ 0} ≤
≤ >�?{� ∈ �5, H�:	��	 − 	H	 + 	6� ≤ 2G},	

from which we obtain the inequality 

>�?{� ∈ �5 − H + 6, 6�:	��	� ≤ −	2G} ≤ >�?{� ∈ �5, H�:	��� ≤ 0} ≤
≤ >�?{� ∈ �5 − H + 6, 6�:	��	� ≤ 	2G}.																	�2.2� 

Let �	 ∈ 	 �H, 5	 + 	6�, then	��	 − 	H	� − 	G ≤ ��� ≤ ��	 − 	H	� + G. 
Hence, 

>�?{� ∈ �0, 5 − H + 6�:	��	� ≤ −	G} = >�?{� ∈ �H, 5 + 6�:	�� −
H	� ≤ −	G} ≤ >�?{� ∈ �H, 5 + 6�:	��� ≤ 0} ≤ >�?{� ∈ �H, 5 +
6�:	�� − H� ≤ 	G} = >�?{� ∈ �0, 5 − H + 6�:	��	� ≤ G}						�2.3�							   
adding term by term inequali.es (2.2) and (2.3) we get 

>�?{� ∈ �0, 6�:	��� ≤ −2G	}	
6 ≤ >�?{� ∈ �5, 5 + 6�:	��� ≤ 0	}	6 ≤

≤ >�?{� ∈ �0, 6�:	��� ≤ 2G	}	6 																																				�2.4� 

that is, inequality (2.1) is proved. 

From (2.4) and defini.ons 

����
�, �−∞, 0�� = inf�E$
�QR{L∈��,�	
�:	S�L�T$	}	


 					also follows inequality 

>�?{� ∈ �0, 6�:	��� ≤ −2G	}	
6 ≤ ����
�, �−∞, 0��

≤ >�?{� ∈ �0, 6�:	��� ≤ 2G	}	6 	. 



If H	 = 	5, that is, τ is G −almost the period of 	���, then  

|��� − �� − 5�| ≤ G. Wri.ng inequali.es similar to (2.3), we obtain 

�����$,
��, �−∞,−2G�� ≤≤ ����
�, �−∞, 0��				≤ 	�����$,
��, �−∞, 2G��. 

 If H	 = 	5	 + 	6 is a 2G −almost period of the function 	���, then for all 

�	 ∈ 	 �−∞,∞� performed inequality Then, similarly to (2.2), we obtain  

|��� − �� − �H − 6��| ≤ G. 
Then, similarly to (2.2), we obtain 

>�?{� ∈ �0, 6�:	��� ≤ −2G	}
6 ≤ >�?{� ∈ �5, 5 + 6�:	��� ≤ 0	}6 ≤

≤ >�?{� ∈ �0, 6�:	��� ≤ 2G	}6 		,			 

that is, inequality (2.1) holds. 

 Consider the Cauchy scalar problem  

�� = #��, ��,							��0� = �$																																			�2.5� 
under the assumption that the following condition is satisfied. 

Condi.on 1. For each � ≥ 	0, the function �	 → 	#	��, �� is continuous in 

the totality(see [6] ) of variables and the inequality holds 

lim|V|→=
|#��, ��|
|�| < ∞		 

Recall that the upper solution ∗	��� of the Cauchy problem (2.5) It 

called a solution that for any other solution ϕ (t) of this problem on a 

common interval existence inequality holds ∗��� ≥ ���. In [7, p. 38] it 

is shown that if the function #	��, �� is continuous, then the upper 



solution ∗	��� of the Cauchy problem (2.5) exists for all � ≥ 0. Let X	��� 
be some almost periodic function. Then there is a limit, (see [8, p. 150]). 

�����X, �−∞, 0�� =� lim
→=
>�?{� ∈ �0, 6�:	X��� ≤ 0}

6 .														 

Lemma 2. Let the following conditions be satisfied: 

1) for each x ∈ R, the function t → w (t, x) is almost periodic in the sense 

of Bohr and is satisfied equality 

�����#, {0}� =� lim
→=
>�?{� ∈ �0, 6�:	#��, �� = 0}

6 = 0;														 

2) there exists an almost periodic solu.on ��� of the equation 

�� = #��, �� such that  

limL→=�∗��� − X ���� = 0. 

Then there is an inequality 

����
�X, �−∞, 0�� ≤ �����, �−∞, 0�� 
Proof: Since ϕ (t) is the upper solu.on of the Cauchy problem (2.5), then 

inequality holds  

�����, �−∞, 0�� =� lim
→=
>�?{� ∈ �0, 6�:	��� ≤ 0}

6 																																											

≥ lim
→=
>�?{� ∈ �0, 6�: ∗��� ≤ 0}

6 .																																					�2.6�																									 

In  work [2], it was shown that the equali.es ����	�#, {0}� 	= 	0 and the 

limL→=�∗��� − X ���� = 0 

must be  equality 



lim
→=
>�?{� ∈ �0, 6�: ∗��� ≤ 0}

6 ≤ lim
→=
>�?{� ∈ �0, 6�: X��� ≤ 0}

6 		�2.7� 

Consequently, from (2.6) and (2.7) we get the inequality  

�����, �−∞, 0�� ≥ lim
→=
>�?{� ∈ �0, 6�: X ≤ 0}

6
= �����X, �−∞, 0��	.																																																�2.8� 

Since (see [4])there exist  is an inequality 

����
�X, �−∞, 0�� = inf�E$
>�?{� ∈ �5, 5 + 6�:	X��� ≤ 0	}	

6
≤ �����X, �−∞, 0��,																																																		�2.9� 

that inequality ����
�X, �−∞, 0�� ≤ �����, �−∞, 0�� aright. 

§ 3. Es�mates of the characteristics of the attainability set of 

the controlled system 

Defini�on 4 (see [9]). External parallel set of a convex set � in the 

Euclidean space is called the following set  

�^ =� � + _^�0� = ⋃V∈a_^��� ,						#ℎ���				" > 0.	 

_^��� − close the ball of radius " with centre at �. 

Internal parallel set of a convex set M in a Euclidean space called the set 

�^ =� � − _^�0� = �	\ ⋃V∈da_^��� ,						#ℎ���				" > 0. 

(here e� is the boundary of the set �). Will consider  

� = {��, �� ∈ ℝ × ℝ� 	 ∶ � ∈ ����} 



in suppose that for each � ∈ f the set �	��� is convex and has a non-

empty interior. 

Theorem 1.  1) Suppose that there exists is a number " such that 

|��� − g���| ≤ " for all �	 ∈ 	 �5, 5	 + 	6�. Then the inequality holds  

������,�	
��g,�h^� ≤ ������,�	
��,�� ≤ ������,�	
��g,�^�.						�3.1� 

2) If there exists a "3 such that |��� − g���| ≤ "3 for all �	 ∈ 	 �0, +	∞�, 
then 	

����
�g,�h^i� ≤ ������,�	
��,�� ≤ ����
�g,�^i�.						�3.2�	

Proof:		Define	the	sets �^ = {��, �� ∈ ℝ × ℝ� 	 ∶ � ∈ �^���} and 	
�h^ = {��, �� ∈ ℝ × ℝ� 	 ∶ � ∈ �h^���}.  from  the inequality 

|��� − g���| ≤ ", which is true for all 	� ∈ �5, 5	 + 	6�, followed by the 

inclusion 	
{� ∈ �5, 5 + 6�:	g ∈ �h^���} ⊆ {� ∈ �5, 5 + 6�:	 ∈ ����} ⊆

⊆ {� ∈ �5, 5 + 6�:	g ∈ ����},																	 
from which we get inequalities  

>�?{� ∈ �5, 5 + 6�:	g ∈ �h^���} ≤ >�?{� ∈ �5, 5 + 6�:	 ∈ ����} ≤
≤ >�?{� ∈ �5, 5 + 6�:	g ∈ �^���}.																			�3.3�																	 

Therefore, for all � ∈ �5, 5	 + 	6� we have:  

������,�	
��g,�h^� =� >�?{� ∈ �5, 5 + 6�:	g��� ∈ �
h^ 	}

6
≤ >�?{� ∈ �5, 5 + 6�:	��� ∈ �	}6 = ������,�	
��,���3.4� 



������,�	
��,�� = >�?
{� ∈ �5, 5 + 6�:	��� ∈ �	}

6
≤ >�?{� ∈ �5, 5 + 6�:	g��� ∈ �

^ 	}
6 =� ������,�	
��g,�^�, �3.5� 

from (3.4) and (3.5) we obtain inequality (3.1). 

 Let us prove the second statement of the theorem. Similarly, as in 

inequality (3.3) we get 

>�?{� ∈ �5, 5 + 6�:	g ∈ �h^i���} ≤ >�?{� ∈ �5, 5 + 6�:	 ∈ ����} ≤
≤ >�?{� ∈ �5, 5 + 6�:	g ∈ �^i���}.																		�3.6�																	 

From inequality (3.6) for all � ∈ �0,+	∞� we get  

inf�E$
>�?{� ∈ �5, 5 + 6�:	g��� ∈ �h^ 	}

6
≤ inf�E$

>�?{� ∈ �5, 5 + 6�:	��� ∈ �	}
6

≤ inf�E$
>�?{� ∈ �5, 5 + 6�:	g��� ∈ �^i 	}

6 , �3.7� 

from the fact that  

inf�E$	������,�	
��g,�h^i� ≤ inf�E$	������,�	
��,��
≤ inf�E$	������,�	
��g,�^i�. 

Since  

	����
�,�� =� 	 inf�E$	������,�	
��,��

= inf�E$
>�?{� ∈ �5, 5 + 6�:	��� ∈ �	}

6 , 

then inequality (3.7) is equivalent to (3.2). 



Example 1: Consider the set � = {��, �� ∈ �0,+∞� × �0,1�} and take as 

 and g are continuous functions  and defined by them at � > 0  

��� = sin � + 1 + 1
8�� + 1� , g��� = sin � + 1. 

Obviously, for all � > 	0, the inequality holds |��� − g���| ≤ 3
q. 

We find estimates of the characteristics ����
�g,�^i� and 

����
�g,�^i�, where "3 = 3
q and 6 = 2r. Since 

�i
s = {��, �� ∈ �0,+∞� × t0,1isu}, 

�vis = w��, �� ∈ �0,+∞� × x0, 78yz, 

it is easy to calculate that ����{| }g,�i
s~ = 3

{+
3
| ∙ ?��h3

3
q   and  

����{| }g,�his~ = 3
{−

3
| ∙ ?��h3is, therefore, by using  Theorem 1, we 

obtain 

1
2 −

1
r ∙ ?��

h33
q ≤ ����{|�g,�� ≤

1
2 +

1
r ∙ ?��

h33
q. 
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