

power quality assessment of microgrid

Emad Jadeen Alshebaney

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electrical Power Systems)

Faculty of Power Engineering, University Politehnica of Bucharest

June 2017

"To my beloved Father, Mother, Wife and My daughters"

ACKNOWLEDGEMENT

First of all, gratefulness of thanks to our creator, "ALLAH" for this continuous blessing, which make this work neither the first nor the last.

I would like to express my thanks and gratitude to my supervisor "Conf.dr.ing. Radu Porumb". he gave me this opportunity to do project under his supervision.

Especially, I would like to send my deep appreciations to my family who brought me up with love and completely support during my study.

ABSTRACT

This work manages the rising issue of managing power quality issues, and goes for appraisal of the effect of new shrewd advancements on existing electrical distribution systems from the unwavering quality perspective. A primary point in the investigation performed in this work is the portrayal of the electric burdens display in the up and coming microgrids. The power quality assessment has then been performed to mitigate the concerns of utilities on power quality issues, this study determines the near-optimal allocation of capacities and locations of DG systems and then analyzes the impact of Nowadays, one of the main goals of utilities is to enhance their microgrids by various distributed generation (DG) systems with capacities in the range of several kW to hundreds of MW. In spite of the relatively small individual capacities of DG systems, their cumulative effects on the distribution network may change the steady-state and transient behaviors of the network decrease on which they are installed. In other words, DG systems can reliability and power quality, particularly by an increase in overvoltage resulting from the installation of DG systems on distribution networks. DG systems on the overvoltage issue in a steady state. For this purpose, the proposes a genetic algorithm that near optimally allocates the locations and the capacities of DG systems on distribution networks at peak load and an objective function that minimizes voltage variations of such networks. In addition, this study implements a volt/var control algorithm that utilities can use to improve the voltage profile along their feeders by adjusting the amount of reactive power to be injected into the grid. the characteristics of Micro-Grid, the present research status, and the key advancements of Smart Grid.

TABLE OF CONTENT

CHAPTER

TITLE

PAGE

DEDICATION	ii
AKNOWLEDGMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	V
LIST OF TABLES	ix
LIST OF FIGURES	ix
LIST OF SYMBOLS	xi
LIST OF ABBREVIATIONS	xii

1	1 CHAPTER ONE			
	INTRODUCTION	1		
	1.1 Background of The Project	1		
	1.2 Problem Statement	1		
	1.3 Objective of The Research	2		
	1.4 Scope of The Project	2		
2	CHAPTER TWO	3		
	2.1 Introduction of Microgrid	3		
	2.2 Smart Micro-Grid Overview	4		
	2.3 Research Status on Micro-Grid	5		
	2.3.1. Issues still need to be considers about Micro-Grid	6		
	2.4 Microgrid Characteristics	7		
	2.5 Impacts of Microgrid	9		

CHAPTER 3

3

3.1	POWER QUALITY	11
	3.1.1 What Is Power Quality?	12
	3.1.2 Power Quality _ Voltage Quality	14
	3.1.3 Why Are We Concerned about Power Quality?	14
3.2	Distributed Generation and Power Quality	17
	3.2.1 Perspectives on DG benefits	17
	3.2.2 Disadvantages of DG	18
	3.2.3 Perspectives on interconnection	18
3.3	DG Technologies	20
	3.3.1 Reciprocating engine genset	20
	3.3.2 Combustion (gas) turbines	22
	3.3.3 fuel cell	24
	3.3.4 Wind turbines	25
	3.3.5 Photovoltaic systems	26
3.4	Interface to the Utility System	27
	3.4.1 Synchronous machines	28
	3.4.2 Asynchronous (induction) machines	30
	3.4.3 Electronic power inverters	31
3.5	Impact of DG integration	33
	3.5.1 Simple standby generation scheme	34
	3.5.2 Secondary DG system with power quality support	35
	3.5.3 Primary DG system with power quality support	36
	to priority loads	

11

3.5.4 Soft grid-connected DG with power quality	
Support to priority loads	
3.5.5 DG with intermittent solar PV within power	38
quality environment	
3.5.6 DG with intermittent wind generator within	38
power quality environment	
3.5.7 Ultra-high reliability scheme using dual link DC bus	39
3.6 Power Quality Issues	41
3.6.1 Sustained interruptions	41
3.6.2 Voltage regulation	42
3.6.3 Harmonics	44
3.6.4 Voltage sags	45

4 RESULT AND DISCUSSION

46

(Case study)

Preview	46
4.1 Case study The Impact of Generation on	47
Distribution Networks	
4.1.1 improving power factor at C-1	49
4.1.2 improving power factor at C-3	50
4.1.3 improving power factor at C-4	51
4.1.4 improving power factor at C-5	51
4.1.5 improving power factor at C-8	51
Conclusion 4.1	52

6	Reference	76
5	CONCLUSION AND FUTURE WORKS	75
	Conclusion 4.7	74
	4.7.3- Consumer C-5 consider as source of 10th harmonic.	72
	source of 7 th harmonics.	
	4.7.2- PGD inject 3 MW connected to N 20 3 consider as	71
	source of 4th harmonic.	
	4.7.1- PGD inject 3 MW connected to N 20 3 consider as	69
	4.7 Harmonic emission calculation at the PCC	67
	Conclusion4.6	67
	disconnect distributed generator.	
	4.6 analyse variation of voltage according to connect /	65
	Conclusions 4.5	64
	4.5 Determine the maximum power that can be generated	62
	Conclusions 4.4	61
	Losses Improvement	
	4.4 Optimal Location of a Distributed Generator for Power	58
	Conclusion 4.3	57
	parallel, depending on the power demand of consumers.	00
	4.3 Establishing the optimum number of transformers in	55
	Conclusion 4.2	55
	network through reconfiguration.	
	4.2 Establishing optimal configuration of medium voltage	53

6

LIST OF TABLES

TABLE N	O. TITLE	PAGE
1	voltage difference in percentage for ring configuration and	48
	radial configuration	
2	Changes in active power losses depending on configuration	53
3	Active power losses, Umax KV and Umin KV within DG	60
4	Active power losses, Umax KV and Umin KV within	61
	DG 6.042 MW	
5	active power losses of DG power connected to N 20 3	63
6	active power losses depend of DG power connected to N 20 1	64
7	voltage variation with P_{DG} and without P_{DG}	66

LIST OF FIGURES

FIGURE	NO. TITLE	PAGE	
2.1	Overview of micro energy grid architecture		8
3.0	Basic steps involved in a power quality evaluation.		16
3.1	End-user and generator owner perspectives		19
	interconnection		
3.2	Distribution planner perspective on interconnection		20
3.3	Diesel reciprocating engine genset.		22
3.4	Microturbine in a combined heat and power installation		24
3.5	3.5 A fuel cell producing electricity and heat		25

3.6	Wind farm	25
3.7	photovoltaic solar system	27
3.8	Simplified schematic diagram of a modern switching	33
	inverter	
3.9	Simple standby generator scheme	35
3.10	Secondary DG system with power quality support	36
3.11	Secondary DG system with power quality support to	37
	priority loads	
3.12	Soft grid-connected DG with power quality support to	37
	priority loads	
3.13	Solar PV as intermittent DG within power quality	38
	environment	
3.14	Wind turbine as intermittent DG within power quality	39
	environment	
3.15	Ultra-high reliability scheme using dual link DC bus	40
3.16	Voltage drop across the system impedance is the root	43
	cause of voltage regulation problems	
3.17	DG may help reduce voltage sags on local facility bus,	45
	but impedance of interconnection transformer inhibits	
	any impact on adjacent utility customers.	
4.1	scheme for Microgrid and active distribution network	47
	by using ETAP software	
4.2	C-1 at power factor 0.89	49
4.3	C-1 at power factor 0.92	50
4.4	scheme for medium voltage networks by	54
	disconnected the line C-4_C-5	

4.5	Evolution transformer losses	56
4.6	two radial branches through one transformer	57
4.7	Distributed generation source connected to node N201	59
4.8	setting of electrical powers for a synchronous machine	60
4.9	DG connected to N 20 3	62
4.10	DG connected to N 20 1	63
4.11	DG connected to N 20 3	65
4.12	Asynchronous Machine as 3rd harmonic source	69
4.13	Consumer C-5 as 10th harmonic source	72

LIST OF SYMBOLS

Xd″	-	subtransient reactance
Xd′	-	transient reactance
Xd	-	synchronous reactance
Ζ	-	impedance
V1	-	voltage regulators
IX	-	inductive impedance drop
Q	-	reactive power
PF	-	power factor
δ critical	-	economic factor
δ	-	technical factor
S	-	apparent power

LIST OF ABBREAVIATIONS

AC	-	Alternating Current
ATS	-	Automatic Transfer Switch
CC	-	Central Controller
CHP	-	Combined Heat and Power
СО	-	Carbon monoxide
DC	-	Direct Current
GHG	-	Greenhouse gas
HVAC	-	heat ventilation air conditioning
IGBT	-	insulated gate bipolar transistor
LV	-	Low Voltage
MG	-	Micro-Grid
NOx	-	Nitrogen Oxides
PCC	-	point of common coupling
PV	-	Photovoltaic
P/Q	-	Active and Reactive Power
SOFC	-	solid oxide fuel cell
Sox	-	Sulfur oxides
T&D	-	transmission and distribution
TES	-	thermal energy storage
THD	-	Total harmonic distortion
UPS	-	uninterrupted power supply
+PG	-	export active power
±QG	-	export or import reactive power

xiii