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Abstract: 

 The aim of this paper is to  study the omega limit set with new concepts of  the  prolongation 

limit random sets in  random dynamical systems, where some  properties are proved and 

introduced such as the relation among the orbit closure, orbit and omega limit random set. Also 

we prove that the first prolongation of a closed random set containing this set, the first 

prolongation is closed and invariant.  In addition, it is connected whenever it is compact 

provided that the phase space of the random dynamical systems is locally compact. Then, we 

study the prolongational limit random set  and examined some essential properties of this set. 

Finally, the relation among the first prolongation, the prolongational limit random set and the 

positive trajectory of a random set is given and proved. 
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1. Introduction.  
Random dynamical systems arise in the modeling of 

many phenomena in physics, biology, economics, 

climatology, etc. , and the random effects often 

reflect intrinsic properties of these phenomena rather 

than just to compensate for the defects in 

deterministic models. The history of study of 

random dynamical systems goes back to Ulam and 

von Neumann in 1945 [1] and it has flourished since 

the 1980s due to the discovery that the solutions of 

stochastic ordinary differential equations yield a 

cocycle over a metric dynamical system which 

models randomness, i.e. a random dynamical 

system.  Arnold and I.D. Chueshov (1998) [2] 

presented the universal view of an order-preserving 

random dynamical system, offered several examples 

and studied the chattels of their random equilibria 

and attractor. Son  (2009)[3] studied the Lyapunov 

exponents for random dynamical systems. Yingchao 

(2010)[4] used the theory of random dynamical 

systems and stochastic analysis to research the 

existence of random attractors and also stochastic 

bifurcation behavior for stochastic Duffing-van der 

Pol equation with jumps under some assumptions. 

Kadhim and A.H. Khalil(2016)[5] they define  the 

random dynamical system and random sets in 

uniform space are and proved some necessary 

properties of these two concepts. Also they study the 

expansivity of uniform random operator.  

   The structure of this paper is as follows: In Section 

2 we recall same basic definition and facts about 

random dynamical. In Section 3 we  study the 

definition of trajectories in random dynamical 

system. In Section 4 we recall some basic fact about 

omega-limit random set in random dynamical 

system. In Section 5 will be devoted to the concept 

of prolongations and prolongational limit  random 

sets under a random dynamical system. We define 

the first prolongations and prolongational limit 

random sets of random dynamical system 

(Definition 5.1,5.5) .If      is invariant. We have 

first prolongations and prolongational limit sets of 

random dynamical system so invariant 

( Theorem5.3, 5.7 ). the first prolongation and the  

prolongational limit random set are closed sets   

(Theorem5.2 ,5.6) .If   is locally compact. We have   

first prolongations and prolongational limit sets of 

random dynamical system are  connected 

( Theorem5.4, 4.13). 

 

2. Notation and basic definitions 
In this Section we recall some basic definition and facts 

about random dynamical system and notation . 

2.1. Notations  
(1)   locally compact group. 

(2)  =metric  space with metric  .  

(3)         is a probability space. 

 

 

 
 

(4)   
   the set of all measurable functions from   to 

 . 

(5)  [   ]      the set            . 
(6)           the set            . 

 

2.2. Basic definitions 
 Definition 2.2.1 [6-7]:The metric dynamical system 

(MDS) is the 5-tuple             where          is a 

probability space and         is       
     measurable, with 

(i)            ,  

(ii)                      and 

(iii)             ,           . 

Definition2.2.2[6]: The MDS             is said 

to be topological metric dynamical system (TMDS) 

if   is topological space and         is 

continuous. 

Definition2.2.3 [6-8]:The mapping         
  is said to be measurable random dynamical  

system  on  the measurable space           over  

an MDS             with if it has  the following 

properties: 

(i)    is                   measurable. 

(ii) The mappings                      

form a cocycle over     , that is,             

they satisfy  

                 ,         (2.2.1)                    

                                 (2.2.2)      

The RDS             shall denote by       .  

If the function                ,       
        , is continuous for every     then the 

measurable dynamical system is called continuous 

or topological R 

Definition 2.2.4 [9]: Let        be a measurable  

RDS and        a set. 

(i)   is called forward invariant if for      

                         a.s.  

equivalently  

                            a.s.. 

(ii)   is called  invariant if for all     

                           a.s.,  

for  two-sided time equivalent to  

                                 a. 

Definition 2.2.5 [9-10]: Let       be a measurable 

space and       be a metric space which is considered a 

measurable space with Borel    algebra     . The set-

valued function                  , is said to be 

random set if for each     the function   
         is measurable. If     is closed (connected) 

(compact) for all    , it is called a random closed 

(connected) (compact) set. 
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Definition 2.2.6 [10]:  

An RDS        is said to be asymptotically 

compact in the universe  , if there exists an 

attracting random compact set        , i.e., foe any  

    and for any     we have  

                                                 
        ,    (2.2.3) 

where                        . 

 

3. Definitions and characterizations 
In this section we study the trajectories in random 

dynamical system. First we shall state the definition 

of trajectories in random dynamical system and We 

describe some measurable properties of the 

trajectory of random dynamical system. 

Definition 3.1: Let           be a 

multifunction. We call the multifunction  

            
     ⋃                     

the tail (from the moment  ) of the pull back 

trajectories emanating from  . If             is 

a single valued function, then           
     

is said to be the (pull back) trajectory ( or orbit) 

emanating from  . That is          
⋃                      

Definition 3.2: Let      
  and         

  and   
  be 

the mappings form   in to    defined as follows 

 (1)                                
(2)   

                             
(3)   

                              

For every     
 , the sets   ,   

 , and   
  are 

respectively called the trajectory, the forward semi-

trajectory and backward semi-trajectory. 

Definition 3.3:  Let    . and         
  and   

  be the 

mappings form    in to     defined as follows 

 (1)                       
(2)   

                       
(3)   

                     
For every    , the sets   ,   

 , and   
  are respectively 

called the trajectory, the forward semi-trajectory and 

backward semi-trajectory. 

Proposition 3.4: For and      
 , the sets   ,   

 , and 

  
  are invariant random sets. 

Proof. Let      
 . To show that    is an invariant. Let  

        and    . Then there exists      such that   

                  . Now  

                     
                         
                                            
                   
                                         
                   
                                          
                   
                                            

   
            

    
where       . 

                            
     

 

 

 

       
           

                 
     

                                
              

   , 
      . 

                           

               
       

       
     .  

Thus for every         and    , we have 

                             .  

 This means that the set       is an invariant. In a 

similar way we can show that   
 , and   

  are invariant 

random sets. 

 

4. Omega-limit set in random dynamical system 

 In this section, we state the definition of omega-limit set 

in random dynamical system is due to [10-11].Thus, we 

give some basic properties of omega-limit set in random 

dynamical system. 

Definition 4.1:   The   multifunctions      
  

           
                                                             

                                  

 

    
           

                                                        

                                     

are said to be the omega (alpha) -limit  set of the 

trajectories emanating from    respectively. 

If       , the we have  

〖    〗               

                                            

                 〖   〗                       

    
        

                                         
                                   . 

The following assertion gives another description of 

omega-limit sets. 

Theorem 4.2: Let   
      be the omega-limit set of 

the trajectories emanating from   . Then           

      ⋂   
    ̅̅ ̅̅ ̅̅ ̅̅

    

⋂ ⋃                    
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

     

Proof. Suppose that        , the for any     

there exists      in   and      in           such 

that                . Hence      

⋃           . Thus 

               ⋃                      

                              ⋃                    
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Therefore  

          ⋃                    
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , for all    . 

  

Thus      ⋂ ⋃                    
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

   .  

To prove the converse inclusion, let  

   ⋂ ⋃                    
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

    

 then   ⋃                    
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for all     . 

In particular,  

        ⋃                    
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   for all    

      . 
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Therefore there exists a sequence      in  

⋃                     such that      . Thus 

      ⋃                      and          
   ,        . It follows that there exists      

and             such that     (      
 )  . 

That is   (       )    . Consequently, 

       .  

 

      ⋂   
    ̅̅ ̅̅ ̅̅ ̅̅

    

⋂ ⋃                    
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

   .  

                   

      ⋂   
    ̅̅ ̅̅ ̅̅ ̅̅

    

⋂ ⋃                    
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

   .Since   
    ̅̅ ̅̅ ̅̅ ̅̅  is 

closed an invariant, then so is       ⋂   
    ̅̅ ̅̅ ̅̅ ̅̅

   .           

 Theorem 4.3:  Let   
     is a random closed set, 

then the proof is devided in two parts:  

1: Indirect Proof. By above theorem we have            

      ⋂   
    ̅̅ ̅̅ ̅̅ ̅̅

    

⋂ ⋃                    
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

   . 

Since   
    ̅̅ ̅̅ ̅̅ ̅̅  is closed an invariant, then so is 

      ⋂   
    ̅̅ ̅̅ ̅̅ ̅̅

   . 

2: Direct proof. Let     
    ̅̅ ̅̅ ̅̅ ̅̅ . Then there exists  

     in be a sequence in    
     such that      . 

We wish to show that     
    . Indeed for each 

positive integer  , there is a sequence    
   in    and 

   
   in       

      with   
     and     

    
      

       
     . We assume without loss 

of generality that     (    (  
      

  )   
 )      

and   
    for    . Consider now the sequence 

     in   with        
  and a sequence      in 

           with   

     
 . Then       and we claim that   

 (  
      

  )     .To see this observe that  

 ( (        )    )   ( (        )     )  

         

                                      . 

Since     and         tend to zero we conclude 

that  

                   ( (        )    )    

Consequently  (       
 )     and   

  
    . Thus   

       
    ̅̅ ̅̅ ̅̅ ̅̅ , i.e.,   

     is closed.                           

Theorem 4.4: Let     be any metric space and 

   .. Then  

             
               

     for every        
Proof.  To prove    

               
     .Let  

  
      .Then 

                                        
                

          

                                             

                                                

 

 

 

 

 

                                              ,where 

       . Thus we have                  
    . 

Then            
     

Then   
                

     .Now let   
         

       Then there 

is     
    suchthat                       .Then 

                                        

        (       )     By continuity        ,  

        (        )             ,       

                

 (              )      .Thus we have 

    
       .Then  

        
       

       .Then  
       

        
      

Theorem 4.5.If                  is 

continuous, then 

                      
    ̅̅ ̅̅ ̅̅ ̅̅    

       
    . 

Proof. First, note that     
       

    ̅̅ ̅̅ ̅̅ ̅̅  . By 

Theorem (4.2), we have         
       

    ̅̅ ̅̅ ̅̅ ̅̅ . 

Therefore   
    ̅̅ ̅̅ ̅̅ ̅̅    

       
    . To prove the 

converse inclusion, let     
    ̅̅ ̅̅ ̅̅ ̅̅ . then there exists 

a sequence      in   
     such that      . Now 

   ⋃                    , then there exists a 

sequence       with      for every   and      in 

         such that      (        )  . We 

have two cases: 

  Case I: The sequence      has the property that 

     , in which case     
    . 

Case II: There is a subsequence      
  in    such 

that    
      (as    is closed). But then  

 (   
      

 )                
     (since 

                (since                  is 

continuous). Since (   
      

 )     , then from 

the uniqueness of the limit we have            
    

    . From Case I and Case II, we have  

    
       

    . Hence 

                          
    ̅̅ ̅̅ ̅̅ ̅̅    

       
    . 

Therefore   
    ̅̅ ̅̅ ̅̅ ̅̅    

       
     

Corollary 4.6: For any        
    ̅̅ ̅̅ ̅̅ ̅̅    

     

  
     and   

    ̅̅ ̅̅ ̅̅ ̅̅    
       

     . 

Proof. By the definition we have     
     

  
        

    ̅̅ ̅̅ ̅̅ ̅̅ .To show that   
    ̅̅ ̅̅ ̅̅ ̅̅     

     

  
    ,let     

    ̅̅ ̅̅ ̅̅ ̅̅ .Then there is a sequence {    
in  

     such that      . Since       in    

  
     .Then        (        )  for a    in 

  .Either the sequence {    has the property that 

     ,in which case     
      or there is a 

subsequence         (as    is closed).But 

then  (         )               
    , and 

since also  (         )    we 

have                
    .Thus  

    ̅̅ ̅̅ ̅̅ ̅̅  

   
       

    .Thus   
    ̅̅ ̅̅ ̅̅ ̅̅    

       
    .  
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5. Some Properties of the Limit Random Sets 

in Random Dynamical Systems. 
the concepts of prolongations and prolongational 

limit sets are played an essential role. In the 

deterministic dynamical system the formal 

definition of prolongation is due to Ura [12] and the 

concept of prolongational limit set is due to Bhatia,  

Szegö [13]. By following this line of investigation, 

the present paper introduces the notions of 

prolongations and prolongational limit random sets 

of random dynamical  systems. We simplify several 

concepts and effects of reclusiveness and 

depressiveness from Bhatia and  Szegö [2]. We 

consider        random dynamical system then we 

define the first prolongations and  prolongational 

limit random set of   .we  prove some new  

properties of the studying of prolongations and 

prolongational limit random sets.  

Definition 5.1: Let            be 

multifunction. The multifunction     
    , 

where  

  
          

                               
                         

            
⋂           

                                 , is 

said to be to be first positive prolongation of  . If the 

set    replaced by    in above we get the notation of 

first negative prolongation of   and shall denoted by 

  
    . 

If       , the we have   

  
           

                              
                           

                               } 

Theorem 5.2:    
     is closed. 

Proof. To show that   
     is closed. Let      

    ̅̅ ̅̅ ̅̅ ̅̅ ̅, 

then there exists sequence       in   
     such that  

    . Since      
     for every  . Then by 

definition of   
     there exists sequences    

          
and     

          
      such that   

    

⋂       
     

    and     
      

     
    . We 

assume by taking subsequences if necessarily that  

  
    ,     

         and    (  
      

  )   
      

    for    . Now consider the sequences    
  ,    

   . 
Clearly   

    ⋂       
     

    and    
     . 

Note that 

    ( (  
      

  )  
   )   ( (  

      
  )  

    )  

        

                                                      . 

Since       and         tend to zero, then 

 (  
      

  )  
   , then     

    . This means 

  
    ̅̅ ̅̅ ̅̅ ̅̅ ̅    

     and so   
     is closed. 

 

Theorem 4.3: If    is invariant, then so is   
     . 

Proof. We need to show that          
     

  
       . 

 

 

 

Let           
    , then there exists      

     

such that 

            . 

To show that      
       .Since     

    , there 

exist sequences       in    and      in              

with      ⋂       
    

    and  

                   . Since         is continuous, 

then  

                      
             , then  

                  
                 

for and     
     by Definition. According to Def. 

            
      . then         

     
   

      . To prove the converse inclusion, let   
  

      . by Def. there exist sequences       in    and 

     in  (    
     ) with  

     ⋂              
    and  so  

               for all  . Since   is an invariant  

         
       , then  

                       , then there exists    

           such that                 , then 

                  . Now, 

                 ⋂  (       ) (       ) 
   .  

Then    (       ) (       ) for all  .  

Then there exists   ⋂            
    such that 

              for all  . Since     , i.e. 

                          

                      .  

                                       

                , with    

                    .        (5.1) 

From (2.2.3) we have that          as    . 

Since      is compact, there exist       and         

such that    
   as    . Moreover by Def. 

    
    . From (5.1) we obtain that           . 

Therefore   
               

     for all     and 

   . Thus   
     is invariant. 

We now discuss about the connectedness of the First 

Prolongation . 

 

Theorem 4.4:  Let     be locally compact. Then    
     

is connected whenever it is compact. 

 

Proof. Let   
     be compact but disconnected. Then 

there are two compact non- empty sets   and    such 

that        
     and         .Since   and    

are compact    ,     .Thus there is     such 

that [   ] ,  [   ]are compact and disjoint .Now     

or     .Let      .Then there is a sequence      in    

and a sequence      in    such that      and  

                  .We may assume     [   ] 

and                 [   ] .Then the trajectory 

segments          
              intersect 

      ,and therefor is a sequence     ,          

such that                        .Since        is  
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compact we may assume that                

       .Then      
    ,but        as   

        .Thus contradiction shows that   
     is 

connected. 

Definition 5.5: Let            be 

multifunction.The multifunction     
    , where 

  
          

                               
                         

                                     

            , is said to be to be first positive 

prolongational limit set  of  . If the set    replaced by 

   in above we get the notation of first negative 

prolongational limit set of   and shall denoted by 

  
    . 

If       , then the definition of    
     becomes  

  
          

                               
               

               
                                    . 

The following result show that the prolongational limit 

set is closed and invariant. 

 

Theorem 5.6:   
     is closed. 

Proof. To show that   
     is closed. Let      

    ̅̅ ̅̅ ̅̅ ̅̅ , 

then there exists sequence       in   
     such that  

    . Since      
     for every  . Then by 

definition of   
     there exists sequences    

          
and     

          
      such that   

      , 

  
     and     

      
     

    . We assume by 

taking subsequences if necessarily that    
    , 

    
         and    (  

      
  )   

          for 

   . Now consider the sequences    
  ,    

   . Clearly 

  
       and   

    . Note that 

    ( (  
      

  )  
   )   ( (  

      
  )  

    )  

        

                                                      . 

Since       and         tend to zero, then 

 (  
      

  )  
   , then     

    . This means 

  
    ̅̅ ̅̅ ̅̅ ̅̅    

     and so   
     is closed. 

 

Theorem 4.7: If    is invariant, then so is   
     . 

Proof. We need to show that          
     

  
       . 

 

Let           
    , then there exists      

     such 

that          . 

 

To show that      
       .Since     

    , there exist 

sequences       in    and      in              with 

       ,       and                    . 

Since         is continuous, then  

                                       .  

By the cocycle property, we have 

                                       

 

 

 

for and     
     by definition. According to 

definition.              
      . then   

     
  
      . To prove the converse inclusion, let   

  
      .By definition there exist sequences       in    

and      in              with        ,       

and                      . By the cocycle  property  

we have  

                                       

                , with    

                    .            (5.2) 

From (2.2.3) we have that          as    . 

Since      is compact, there exist       and         

such that    
   as    . Moreover by Def. 

    
    . From (5.2) we obtain that           . 

Therefore   
               

     for all     and 

   . Thus   
     is invariant.  

Theorem 5.8:    
       

       
    . 

Proof.    
       

       
    . To prove the 

converse inclusion. Let       
     by Def. there exist 

sequences       in    and      in            with 

        and                    . We may 

assume that either          or       , if 

necessarily by taking subsequences. In the first case 

                         (since            

    is continuous for every    ). By uniqueness 

of the limit we have                 
     . In the 

second case     
     by Def. of   

    . Thus    
  

        
    . Hence   

       
       

    . 

Corollary 5.9:    
       

       
    . 

Proof.  By definitions    
       

       
    . . To 

prove the converse inclusion. Let       
     by Def. 

there exist a sequences       in    and a sequences      
with      such that                    . We 

may assume that either          or       , if 

necessarily by taking subsequences. In the first case 

         
                (since            

    is continuous for every    ). By uniqueness 

of the limit we have                 
    . In the 

second case     
     by Def. of   

    . Thus    
  

       
    . Hence  

  
       

       
          

Theorem5.10:Let  

                               

                                    

   . Then      
      if and only if   

    
    . 

Proof. Suppose that     
    . Then there exist 

sequences       in    and      in   with     , 

      and           
      . Set        

and                  . Then      is a sequence in 

   with        and          is a sequence in   and 

     .       
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Finlay we need to show that                . 

 ( (        )    )   

       ( (        )                 )  

           

  ( (        )   (        )    (        ) ),                                     

                  (               )         

Then we have                 .Thus     
    . 

Similarly we can prove the converse.                                 

 

Theorem 5.11:    
         =           

     

Proof.   To prove   
         =          

     .Let 

    
        . Then  there is a sequence       in    

with        and a sequence      in   with      

such that  (          )     ,    

                    (              )                 

                         (           )       

             

 (           )                ,where      

    .  

  Thus we have               
        . Then          

         
       

  then   
                   

     . To prove  the     

converse  inclusion  

 Let            
    . Then  there is  

    
     with            and a sequence       in 

   with       and a sequence      in   with 

     such that  (        )    . By the 

continuity of       ,                                               

        (        )               

 (          )           

 (              )          , where  

        ,     .   

Thus     
      ,we have  

        
       

           .  

Then   
        =         

       
Theorem 5.12: If    is locally  compact.Then 

  
        whenever    

     is non-empty and 

compact.                   

Proof. If possible let   
        .Then we claim that 

  
     is closed and disjoint with  

    .That  
     is 

closed follows from    
    ̅̅ ̅̅ ̅̅ ̅̅    

       
    =  

     

as    
        ,That   

         
       follows from 

the fact that if    
         

      ,then by invariance 

of    
    ,    

         
     Since   

     is compact ,we 

will  have   
        and compact(remember that any 

sequence{  }in a compact set Q has a convergent 

subsequence ). This again contradicts the assumption 

  
    =  .Thus  

     is closed and    
         

     
  .Since   

     is non-empty and compact we have   

    
       

            . thus there is a            such 

that     [  
      ]   is compact and disjoint  with 

 

 

 

           
     . Now   choose any  of      

     .   There 

is a sequence {       in       
     and a sequence     

{    in      such that                     and 

         and,  (       
 )     .We may assume 

that        
      ,   (        )        [  

      ]  for 

all n    .Then the trajectory segments  (        )      

with 0          ,  intersect     
         and therefor 

there is a sequence   {    ,  0       ,such that 

 (        )        
        .Since     

        is 

compacte we may assume  that    (        )       

    
        .By taking subsequences we may assume 

that either              or         .  If     ,  

then by the continuity axiom    (        )   

           ,i.e,      
               which  contradicts 

  
       [  

      ]        .If            ,then 

    
      ,but this contradicts         

         as 

  
          

         =  .                                                        

Theorem 5.13. Let  . be locally compact. Then      

  
        is non –empty  

And compact if and only if      
       is   compact. 

Proof.  Let     
       be non –empty and compact .Then    

  
      is non empty and compact .But then     

    ̅̅ ̅̅ ̅̅ ̅̅   is 

compact(  
    ̅̅ ̅̅ ̅̅ ̅̅  is closed with   be locally 

compact).Hence    
     =     

        
     

              
    ̅̅ ̅̅ ̅̅ ̅̅       

    is compact .Now    
       is 

compact . Since      
       

        .Then   
     is 

compact. 

Theorem 5.14:  If    is locally compact. Then    
     is 

connected. 

Proof:  Let   
     be compact . If   

     =  there is 

nothing to prove. So let   
       .If   

     is 

disconnected ,then there are non-empty compact sets 

    such that   
         and        .Since 

   
      is non- empty and compact ,hence 

connected ,we have    
        or    

        .Let 

   
        .Since  

       =   
    ̅̅ ̅̅ ̅̅ ̅̅       

as   
        and   

    ̅̅ ̅̅ ̅̅ ̅̅          is compact. Then 

  
       is compact. Now let      

          

       
            ,then     

   .But   

must be invariant .Thus will show that    
      

 ,aconradiction .Then   
       is compact and 

disjoint from   ,   
    =   

    
        

     
     .since   

       and   are disjoint compact 

sets we have   
     is disconnected. Thus is  a 

contradiction  . Then    
     is connected. 

 

6. Conclusion 

This paper has been studied the concept of Prolongation 

Limit Random Sets in Random Dynamical Systems. we 

prove that the First Prolongation of a closed random set 

containing this set, the First Prolongation is closed and 

invariant, also it is connected whenever it is compact 

provided that the phase space of the RDS is locally 

compact. Then we study the Prolongational Limit Set for 

RDS and proved some essential properties of this set.  
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Where we prove that the Prolongational Limit Set for 

RDS is closed and invariant. Also the relation among the 

the First Prolongation, the Prolongational Limit Set and 

the positive trajectory of a random set is given and 

proved. Also if the phase space of RDS is locally 

compact then the following statements are true : if the 

Prolongational Limit Set for RDS is nonempty and 

compact, then the omega-limit set is non-empty; the 

Prolongational Limit Set for RDS is nonempty and 

compact if and only if the the First Prolongation is 

compact. Finally the Prolongational Limit Set for RDS is 

connected. 
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 بعض الخصائص مجموعات الغايه المستطيله العشوائيه في
 النظام الديناميكي العشوائي

 

 ر كاظمابسندس طالب محسن      احسان ج

 جامعة القادسية, كلية علوم الحاسوب والرياضيات  ,قسم الرياضيات 

 

 

 المستخلص :

الِذف هي ُذا البحث ُْ دراسَ هجوْعَ الغاٌَ هي ًوظ اّهٍكا هع هفاٍُن جذٌذٍ للوجوْعات الغاٌَ        

الوستطٍلَ العشْائٍَ فً الاًظوَ الذٌٌاهٍكٍَ العشْائٍَ ,حٍث تن بزُاى بعض الخْاص الجذٌذٍ هثل 

َ للٌظن الذٌٌاهكٍَ العلاقَ بٍي اغلاق الوسار ّالوسار ّهجوْعَ الغاٌَ هي الٌوظ اّهٍكا بالٌسب

العشْائٍَ ,ّكذلك بزٌُا باى الاستطالَ الأّلى لوجوْعَ عشْائٍَ هغلقَ تحتْي تلك الوجوْعَ ّاى 

الاستطالَ الأّلى لوجوْعَ تكْى هغلقَ ّغٍز هتغاٌزٍ بشزط اى تلك الوجوْعَ غٍز هتغاٌزٍ , ّكذلك 

لٌظام الذٌٌاهكً العشْائً هتزاص تكْى هحوْعَ هتزابطَ عٌذها تكْى هتزاصَ بشزط اى فضاء الطْر ل

هحلٍا ّهي ثن درسٌا هجوْعَ الغاٌَ الوستطٍلَ للٌظن الذٌٌاهكٍَ العشْائٍَ ّبزٌُا بعض الخْاص 

الاساسٍَ,ّأخٍزا بزٌُا العلاقَ بٍي الاستطالَ الأّلى ّهجوْعَ الغاٌَ الوستطٍلَ ّالوسار الوْجب 

 لوجوْعَ عشْائٍَ.
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