
Comparison of some penalized methods in time series models 

Tahir R. Dikheel    Alaa Q. Yaseen   

 

Abstract  

   In this paper , the lag weighted lasso (lwlasso) is compared with lasso and alasso to deal with 

effect of lag in linear time series models. The lwlasso methods are more stable than the other 

methods in the comparison. Consequently, lag weighted lasso methods are capable to dealing 

with lag effect . In particular, the lag weighted lasso methods with     and     weights gave 

the best results compared with the other methods. 

Introduction 

   Time series    is a set of observations arranged according to their occurrence in time such as 

years, seasons, months, days. ..etc. Therefore, it is a historical record that is adopted to build 

future expectations. There are two time series types (the discrete time series and the continuous 

time series). The time series is either to be non stationary in the mean and can be converted into 

stationary one using differences  or is non stationary in variance and can be converted to 

stationary using transformations. The stationary, time series can be divided into two common 

types, stationary of the second order and strictly stationary. Time series is said to be stationary of 

the second order if the first and second moment are known and the mean of the series is constant 

independent of time and the covariance depends only on the lag k: 
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   is the covariance function. 

   The time series is said to be strictly stationary if for each integer    , and for any partial set 

of time             and the               common distribution is constant by time difference. 

This means that for any positive integer k and for any integer l: 
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  is the distribution function  



     models 

   Stationary time series models was introduced by Yule in (1926), he studied the autoregressive 

model AR (q). Wlker in (1931) introduced the general model of the autoregressive models. 

Stutzky (1937) studied models of moving average MA(s) and put it’s  general formula. Then 

completed his way to find the model in a mixed and complete way by Wold in (1938), where he 

developed these two models with a series of operations into three directions in the estimation 

procedure and called it the autoregressive_ moving average (ARMA) models. This model is used 

if data is stationary. 

   ARMA models are mathematical formulas that represent the continuity pattern of the 

phenomenon, or the type of correlation between the time series and itself. It is widely used in 

many sciences such as economics, geography, aviation, agricultural sciences, physical systems 

and other fields. Models can help us to understand how the system works by detecting the 

properties associated with this system. 

    ARMA models can be described through a series of equations; these equations are easier if the 

mean time series is zero by subtracting the sample mean. Therefore, the modified series is treated 

with the sample mean, meaning that: 

       ̅                      ( ) 

where 

      represents the time series. 

     represents the modified time series.   

 ̅ represents the mean sample 

Thus the ARMA model can be written as: 

                                                                ( ) 

where  

  represent the autoregressive model order 

  represent the moving average model order  

  represent the autoregressive model parameter 

  represent the moving average model parameter 

   represent the random error 

   q and s can be found by looking at the form of the autocorrelation (ACF) function and the 

partial autocorrelation (PACF) function. When the autocorrelations decay exponentially to zero, 

this means that the model is an AR model and its  order is determined by a number of PACF  that 



are significantly different from zero. If the PACF decay exponentially to zero, the model is an 

MA model whose order is determined by the number of ACF with statistical significance. If ACF 

and PACF decay to zero exponentially, this ARMA model is determined by AR & MA. See the 

ACF and PACF function, if the ACF function does not give up quickly with increasing degrees 

of delay, it means that the time series is non stationary, and you need to take the differences. 

Summed up the diagnostic process through the following : 

Table(1): Determine  models order according to the behavior of  ACF and PACF for the 

stationary time series 

 

     

 

    

 

Model 

-Spike at lag 1,no correlation for 

other lags, if   =1; 

-Spikes at lags 1 to p, no correlation 

for other lags if    . 

 

-Exponential decay, if      
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-Exponential decay, if      

 

-Spike at lag 1,no correlation for other 

lags, if   =1; 

-Spikes at lags 1 to p, no correlation for 

other lags if    . 
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-Exponential decay, if      

 

-Exponential decay, if      
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the problem here  in the case of mixed models, to determine q and s. Because the ACF and 

PACF functions in this case behave in a similar manner. There are several criteria have been 

developed to compare the models in the selection process of the model order. Selecting a order 

lower than the actual order of the model results in the inconsistency of the model parameters 

While choosing a order higher than the actual order in the model increases the variation of the 

model, This leads to loss of accuracy. There are several criteria to selecting the model order such 

as: "Akaike information criterion" (AIC), "Bayesian Information Criterion" (BIC) and etc.  

Penalized Least Square Method(PLS)  

   Penalized least square (PLS) method is a convenient and common method to deal with high-

dimensional data, especially when the number of explanatory variables are greater than the 

sample size. it is not possible to use the ordinary least square method. 

   PLS methods is used to overcome computational problems in high-dimensional data as well as 

improve prediction accuracy  (Darwish & Buyuklu 2015). 



   PLS method is based on the principle of minimizing the SSE with some limitations on 

parameters. The estimates of the least square are obtained by reducing the objective function, 

which consists of two parts, the loss function and the penalty function. Which are in accordance 

with the following formula: (Flexeder 2010) 
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where 

   ( ) : penalty function.   

   : penalty parameter. 

   Accordingly, the penalized estimator is obtained according to the following formula: 

 ̂         *   (   )+                    ( )    

   PLS method is the process of estimation and variables selection in the same time (Mylona & 

Goos 2010). 

   The good penalty function gives an estimator of three characteristics, including (Fan& Li 

2001). 

1-Unbiasedness: PLS estimator should be unbiased or almost unbiased when the real 

anonymous parameter is large. 

2-Sparsity: PLS estimator  should be the threshold rule, which sets estimates with small 

coefficients to zero. 

3-Continuity: PLS estimator should be a continuous function in the data, meaning that little 

change in the data does not lead to a significant change in the estimates. 

   Fan & Li also stated that ideally estimator has the characteristics of Oracle Properties, meaning 

(Fan& Li 2001) 

1- Probability Consistency The real model is one when (   ). Where T is the sample size. 

This property is called Sparsity, i.e.: 
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Where An refer to the estimator has an asymptotical normal distribution 

2-The estimator has an asymptotical normal distribution as in the case of the Oracle estimator, 

i.e.: 

√ ( ̂    )  (   )                    ( )    



1- Least absolute shrinkage and selection operator (lasso)  

    In (1996), Tibshirani suggested a lasso function, an abbreviation for "least absolute shrinkage 

and selection operator", to estimate linear model parameters and variable selection together. The 

main idea of the lasso method is to minimized sum square residuals, plus a constraint 

representing the absolute sum of the coefficients. For the linear model, the lasso estimator of the 

ARMA model is obtained according to the following formula: (Tibshirani 1996)  
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Where 

   Penalty Parameter or Regularization Parameter 

  | 
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   : penalty function or regularization function.  

lasso is often used in practice because the L1 penalty limit allows the coefficients to be reduced 

to exactly zero (Konzen & A. Ziegelmann 2013, Nardi & Rinaldo,2011). 

 

2- adaptive lasso (alasso) 

  The lasso estimator as in previous studies may be inefficient and that the results of choosing the 

real model may be inconsistent (Fan & Li, 2001; Yuan & Lin, 2007; Zou, 2006). To deal with 

these problems, Zou (2006) suggested alasso. The alasso method has assigns different penalty 

limits for each coefficient based on weights. These penalty limits have reflected the size of the 

parameter for each variable, and alasso is able to determine the correct consistent model and 

efficient coefficients. 
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Where,  ̂   
 

| ̂ |
  ,   > 0 and  ̂ refers to OLS estimators. (Zou 2006, Audrino & Camponovo 

2013) 

 

3- The lag weighted lasso (lwlasso) 

The alasso method can determine the correct form in regression models. However, it can not 

calculate the lag effect period, which is necessary for a time series model. Thus, it can not reflect 

the properties of the time series model. To improve the prediction accuracy of the time series 

model, Park and Sakaori (2013) suggested the (lwlasso) method. The lwlasso has imposed 



different penalty limits for each coefficient on the basis of weights that reflect coefficients size 

and also the lag effect period, the coefficient vector can be measured as follows: 
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where     is the time series,    is the matrix of explanatory variables,   is the regression 

coefficient vector,   is the tuning parameter and   is a weighted function. 

Equation (9) depends on the following three types of weight: (Park and Sakaori, 2013) 
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The relative prediction error (   ) is used to compare the methods forecast accuracy: 
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Real world data: temperature 

   A real data is used to compare the lwlasso with the alasso and lasso. The data is monthly 

mortality of temperature from April 2004 to September 2015. This data was collected from Iraqi 

medical center in Diwaniyah city, Iraq. the LARS algorithm is used (Efron et al. 2004), and the 

OLS estimators  , to analyze this data and compare lwlasso with the alasso and lasso methods. 

As follow: 

 

Table (2):RPE values for each method 

RPE lwlasso with w
1
 lwlasso with w

2
 lwlasso with w

3
 Lasso Adlasso 

 1.143095  1.088992 1.080726 1.144328 1.143055 

 



-  

Fig (1): RPE for each method 

 

   It was noted in Table (2) and Fig (1) that the efficiency for alasso and lasso methods decreased. 

The good results of the lwlasso methods were observed. The lwlasso method with  ̂   is the best 

with      value of 1.080726 followed by the lwlasso method with  ̂   at 1.088992 and then 

the lwlasso method with  ̂   at 1.143095. 

 

Conclusions 

   The results in the section of real data showed that the lag weight lasso with w3 outperforms 

than both the lag weight lasso with w1 and lag weight lasso with w2 in real situation. For these 

studies, the lwlasso with w3 enables improving the accuracy of forecast. 
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