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Abstract

In this paper we consider a collection of d∗-ideals of a
d-algebra D. We use the connotation of congruence relation
regard to d∗-ideals to construct a uniformity which induces
a topology on D. We debate the properties of this topology.

Key Words and Phrases: d-algebra, uniformity, d∗-
ideal, topological d-algebras.

1 Introduction

Yoon and Kim [4] and Meng and Jun [5] introduced two classes
of abstract algebras: namely, BCK-algebras and BCI-algebras. It
is known that the class of BCK algebras is a proper subclass of
the class of BCI-algebras. In [2], [3] Bourbaki and Sims intro-
duced a wide class of abstract algebras: BCH-algebras. They have
shown that the class of BCI-algebras is a proper subclass of the
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class of BCH-algebras. Neggers et al. [6] introduced the notion
of d-algebras which is another generalization of BCK-algebras, and
investigated relations between d-algebras and BCK-algebras. They
studied the various topologies in a manner analogous to the study of
lattices. However, no attempts have been made to study the topo-
logical structures making the star operation of d-algebra continu-
ous. Theories of topological groups, topological rings and topolog-
ical modules are well known and still investigated by many math-
ematicians. Even topological universal algebraic structures have
been studied by some authors.

In this paper, we address the issue of attaching topologies to d-
algebras in as natural a manner as possible. It turns out that we
may use the class of d-ideals of a d-algebra as the underlying struc-
ture whence a certain uniformity and thence a topology is derived
which provides a natural connection between the notion of a d-
algebra and the notion of a topology in that we are able to conclude
that in this setting a d-algebra becomes a topological d-algebra.

2 Preliminaries

Definition 2.1([6]): A d-algebra is a non-empty set D with a con-
stant 0 and a binary operation ”∗” satisfying the following axioms:

(I) x ∗ x = 0,

(II) 0 ∗ x = 0,

(III) x ∗ y = 0 and y ∗ x = 0 imply x = y

for all x, y in D.
A non-empty subset S of a d-algebra D is called a sub d-algebra

of D if it is closed under the d-operation.
A non-empty subset I of a d-algebra D is called a BCK-ideal of D if

(D1) o ∈ I
(D2) x ∈ I and y ∗ x ∈ I imply y ∈ I. for all x, y ∈ D.

And I is called a d-ideal of D if it satisfies (D1) and
(D3) x ∈ I and y ∈ D imply x ∗ y ∈ I, i.e., I ∗D ∈ I.

A d-ideal I of D is called a d]-ideal of D if, for arbitrary
x, y, z ∈ D,
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(D4) x ∗ z ∈ I whenever x ∗ y ∈ I and y ∗ z ∈ I.
If a d]-ideal I of a d-algebra D satisfies

(D5) x ∗ y ∈ I and y ∗ x ∈ I imply (x ∗ z) ∗ (y ∗ z) ∈ I and
(z ∗ x) ∗ (z ∗ y) ∈ I for all x, y, z ∈ D, then we say that I is a
d∗-ideal of D.

Theorem 2.2 ([6]): In a d-algebra D, any BCK-ideal of D is a d-
subalgebra of D.

Lemma 2.3: ([6]): In a d-algebra any d-ideal is an BCK- ideal.

Corollary 2.4: ([6]): Any d∗-ideal of a d-algebra is a d-subalgebra.

Definition 2.5: Let D be a d-algebra. An equivalence relation ∼ on
D is called a congruence if x ∼ y, u ∼ v imply x ∗ u ∼ y ∗ v, where
x, y, u and v ∈ D.

Let I be a d∗-ideal of a d-algebra (D, ∗, 0). For any x, y in
D, we define x ∼ y if and only if x ∗ y ∈ I and y ∗ x ∈ I . We
claim that ∼ is an equivalence relation on D. Since 0 ∈ I , we have
x ∗ x = 0 ∈ I, i.e., x ∼ x, for any x ∈ D. If x ∼ y and y ∼ z,
then x ∗ y, y ∗ x ∈ I and y ∗ z, z ∗ y ∈ I . By (D4) x ∗ z, z ∗ x ∈ I
and hence x ∼ z. This proves that ∼ is transitive. The symmetry
of ∼ is trivial. By (D5) we can easily see that ∼ is a congruence
relation on D. We denote the congruence class containing x by
[x]I , i.e., [x]I = {y ∈ X \ x ∼ y}. We see that x ∼ y if and only
if [x]I = [y]I . Denote the set of all equivalence classes of D by
D/I, i.e.,D/I = {[x]I |x ∈ D}[6].
Lemma 2.6:[6] Let I be a d∗-ideal of a d-algebra (D; ∗, 0) . Then
I = [0]I .
Theorem 2.7:[6] Let (D, ∗, 0) be a d-algebra and I be a d∗-ideal of
D. If we define [x]I ∗ [y]I = [x ∗ y]I for all x, y ∈ D, then (D/I, ∗, 0)
is a d-algebra, called the quotient d-algebra.

3 Uniformity in d-algebras

From now on, D is a d-algebra, unless otherwise is stated. Let D
be a non-empty set, and U and V be any subsets of D×D. Define :
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U 0 V = (x, y) ∈ D ×D/ for some z ∈ D, (x, z) ∈ U and (z, y) ∈ V .
U−1 = (x, y) ∈ D ×D/(y, x) ∈ U .
4 = (x, x)/x ∈ D.

Definition 3.1. By a uniformity on D, we mean a non-empty collec-
tion K of subsets of D×D which satisfies the following conditions:
(U1) 5 ⊆ U for any U ∈ K,
(U2) if U ∈ K, then U−1 ∈ K,
(U3) if U ∈ K, then there exists a V ∈ K such that V 0 V ⊆ U,
(U4) if U, V ∈ K, then U ∩ V ∈ K,
(U5) if U ∈ K and U ⊆ V ⊆ D ×D , then V ∈ K.
The pair (D,K) is called a uniform structure.

Theorem 3.2. Let A be a d∗-ideal of a d-algebra D. If we define

U I = {(x, y) ∈ D ×D/x ∗ y ∈ I and y ∗ x ∈ I}

and let
K∗ = {U I/I is a d∗-ideal of D}.

Then K∗ satisfies the conditions (U1)∼(U4).

Proof: (U1): If (x, x) ∈ 4, then (x, x) ∈ U I since x ∗ x = 0 ∈ I.
Hence 4 ∈ U I for any U I ∈ K∗.
(U2): For any U I ∈ K∗,

(x, y) ∈ U I ↔ x ∗ y ∈ I andy ∗ x ∈ I,
↔ y ∼I x,
↔ (y, x) ∈ U I ,

↔ (x, y) ∈ (U I)−1

Hence (U I)−1 = UI ∈ K∗.
(U3): For any U I ∈ K∗, the transitivity of ∼I implies that

U I0U I ⊆ U I .
(U4): For any U I and UJ in K∗, we claim that U I ∩ UJ ∈ K∗.

(x, y) ∈ U I ∩ UJ ↔ (x, y) ∈ U I and (x, y) ∈ UJ .

↔ x ∗ y; y ∗ x ∈ I ∩ J,
↔ x ∼I∩J y,
↔ (x, y) ∈ U I∩J .
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Since I ∩ J is a d∗-ideal of D,U I ∩ UJ = U I∩J ∈ K∗.This proves
the theorem.
Theorem 3.3: Let K = {U ⊆ D ×D/U I ⊆ U for some U I ∈ K∗}.
Then K satisfies the conditions for a uniformity on D and hence
the pair (D,K) is a uniform structure.

Proof: By Theorem 3.2, the collection K satisfies the conditions
(U1) ∼ (U4).It suffices to show that K satisfies (U5). Let U ∈ K
and U ⊆ V ⊆ D × D. Then there exists a U I ⊆ U ⊆ V , which
means that V ∈ K. This proves the theorem.

Let x ∈ D and U ∈ K. Define:

U [x] = {y ∈ D/(x, y) ∈ U}.

Theorem 3.4: Let D be a d-algebra. Then

T = {G ⊆ D/∀x ∈ G,∃U ∈ K,U [x] ⊆ G}

is a topology on D.
Proof: It is clear that φ and the set D belong to T . Also from the
definition, it is clear that T is closed under arbitrary unions. Fi-
nally to show that T is closed under finite intersection, let G,H ∈ T
and suppose x ∈ G ∩H. Then there exist U and V ∈ K such that
U [x] ⊆ G and V [x] ⊆ H. Let W = U ∩ V . Then W ∈ K. Also
W [x] ⊆ U [x] ∩ V [x] and so W [x] ⊆ G ∩H. Therefore G ∩H ∈ T .
Thus T is a topology on D.

Notion 3.5: For any x in D, U [x] is a neighborhood of x.

Definition 3.6: Let Λ be an arbitrary family of d∗-ideals of an d-
algebra D which is closed under intersection. Then the topology T
comes from Theorem 3.4 is called a uniform topology on D induced
by Λ.

Notation 3.7 :Let Λ be a family of d∗-ideals of a d-algebra D, where
Λ is closed under intersection, we denoted by TΛ the uniform topol-
ogy by Λ. Especially if Λ = {I}, we denote it by TI

Example 3.8: Let D = {0, 1, 2, 3} be a d-algebra which is not a
BCK-algebra with the following table (1):
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∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 1 0 1
3 3 3 3 0

Then it is easy to show that {0}, F = {0, 3}, I = {0, 1, 2} and D
are the only d∗-ideals of D. We can see that U{0} = 4, UF = 4∪
{(0, 3), (3, 0)}, U I = 4∪{(0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1)} and
UD = D ×D. Therefore K∗ = {U{0}, UF , U I , UD} and K = {U ⊆
D×D/U I ⊆ U for some U I ∈ K∗}, If we take U = UF , then U [0] =
U [3] = {0, 3}, U [2] = {2} and U [1] = {1}. Therefore T = {G ⊆
D/∀x ∈ G,∃U ∈ K,U [x] ⊆ G} = {D,φ, {0, 3}, {0}, {1}, {2},
{0, 1, 3}, {0, 2, 3}}. If we take U = U I then U [0] = U [1] = U [2] =
{0, 1, 2} and U [3] = {3}. Therefore T = {D,φ, {3}, {0, 1, 2}}. If we
take U = U{0} then U [x] = {x},∀x ∈ D and we obtain T = 2D, the
discrete topology. Moreover, if we take D as a d∗-ideal of D , then
U [x] = D, ∀x ∈ D and obtain T = {φ,D}, the indiscrete topology.

4 Topological property of space (D,TΛ)

Note that from Theorem 3.4 giving the Λ family of d∗-ideals of an
d-algebra D which is closed under intersection. We can induce a
uniform topology TΛ on D. In this section we study topological
properties on (D,TΛ). Let D be a d-algebra and F,H be subsets
of D. We define a set F ∗H as follows:

F ∗H = {x ∗ y/x ∈ F, y ∈ H}.

Definition 4.1: Let D be a d-algebra and T be a topology on the
set D. Then we say that the pair (D,T ) is a topological d-algebra
if the operation “ ∗ ” is continuous with respect to T . (i.e.) If O is
an open set and a, b ∈ D such that a ∗ b ∈ O, then there exist open
sets O1 and O2 such that a ∈ O1, b ∈ O2 and O1 ∗O2 ⊆ O.

Theorem 4.2:The pair (D,TΛ) is a topological d-algebra. Proof:
Let x, y ∈ D and G an open subset of D such that x ∗ y ∈ G. Then
there exist U ∈ K,U [x ∗ y] ⊆ G and a d∗-ideal I of D such that
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U I ⊆ U . We claim that the following relation holds:

U I [x] ∗ U I [y] ⊆ U [x ∗ y].

Indeed, for any h ∈ U I [x] and k ∈ U I [y] we have that x ∼I h
and y ∼I k. Since ∼I is a congruence relation, it follows that
x ∗ y ∼I h ∗ k. From that fact we have (x ∗ y, h ∗ k) ∈ U I ⊆ U .
Hence h ∗ k ∈ U I [x ∗ y] ⊆ U [x ∗ y]. Then h ∗ k ∈ G.

Theorem 4.3 [3]. Let X be a set and S ⊆ P (X × X) be a family
such that for every U ∈ S the following conditions hold:
(a) 4 ⊆ U ,
(b) U−1 contains a member of S,
(c) there exists an V ∈ S such that V oV ⊆ U . Then there exists a
unique uniformity U , for which S is a sub base.

Theorem 4.4: If we set S = {U I/I is a d∗−ideal of a d−algebra D},
then S is a sub base for a uniformity of D. We denote its associated
topology by TS.
Proof: Since ∼I is an equivalence relation, it is clear that S satisfies
the axioms of Theorem 4.3.

Example 4.5:In Example 3.7, we can see that S = {U0 = 4, UF =
4∪{(0, 3), (3, 0)}, U I = 4∪{(0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1)}, UD =
D ×D}.

Theorem 4.6: Let Λ be a family of d∗-ideals of D which is closed
under intersection. Any d∗-ideal in the collection Λ is a clopen sub-
set of D for the topology TΛ.
Proof: Let I be a d∗-ideal of D in Λ and y ∈ Ic. Then y ∈ U I [y] and
we obtain that Ic ⊆ ∪{U I [y]/y ∈ Ic}. We claim that U I [y] ⊆ Ic

for all y ∈ Ic. Let z ∈ U I [y], then y ∼I z. Hence y ∗ z ∈ I. If z ∈ I,
then y ∈ I, since I is a d∗-ideal of D, which is a contradiction. So
z ∈ Ic and we obtain

∪{U I [y]/y ∈ Ic} ⊆ Ic.

Hence Ic = ∪{U I [y]/y ∈ Ic}. Since U I [y] is open for any y ∈ D, I
is a closed subset of D. We show that I = ∪{U I [y]/y ∈ I}. If y ∈ I
then y ∈ U I [y] and hence I ⊆ ∪{U I [y]/y ∈ I}. Given y ∈ I, if
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z ∈ U I [y], then y ∼I z and so z ∗ y ∈ I. Since y ∈ I and I is a d∗-
ideal of D, we have z ∈ I. Hence we get that ∪{U I [y]/y ∈ I} ⊆ I,
i.e., I is also an open subset of D.

In Example 3.8, the d∗-ideals I, F, {0} and D are clopen subsets
of D, where Λ = {I, F, {0}, D}.

Theorem 4.7: TΛ = TJ , where J = ∩{I/I ∈ Λ}.
Proof: Let K and K∗ be as Theorems 3.2 and 3.3, respectively. Now
consider Λ0 = {J}. Define (K0)∗ := {UJ} and K0 = {U/UJ ⊆ U}.
Let G ∈ TΛ. Given an x ∈ G, there exists U ∈ K such that
U [x] ⊆ G. From J ⊆ I, we obtain that UJ ⊆ U I , for any d∗-ideal
I of D. Since U ∈ K, there exists I ∈ Λ such that U I ⊆ U . Hence
UJ [x] ⊆ U I [x] ⊆⊆ G. Since UJ ∈ K0, G ∈ TJ . Hence TΛ ⊆ TJ .
Conversely, if H ∈ TJ , then for any x ∈ H, there exists U ∈ K0

such that U [x] ⊆ H. So UJ [x] ⊆ H and hence Λ is closed under
intersection, J ∈ Λ. Then we get UJ ∈ K and so H ∈ TΛ. Thus
TJ ⊆ TΛ.

Corollary 4.8: Let I and J be d∗-ideals of a d-algebra D and I ⊆ J .
Then J is clopen in the topological space (D,TI).
Proof. Consider Λ = {I, J}. Then by Theorem 4.7, TΛ = TI and
therefore J is clopen in the topological space (D,TI).

Theorem 4.9: Let I and J be d∗-ideals of a d-algebra D. Then
TI ⊆ TJ if J ⊆ I.
Proof: Let J ⊆ I. Consider: Λ1 = {I}, K∗1 = {U I}, K1 = {U/U I ⊆
U} and Λ2 = {J}, K∗2 = {UJ}, K2 = {U/UJ ⊆ U}. Let GTI .
Then for any x ∈ G, there exists U ∈ K1 such that U [x] ⊆ G.
Since J ⊆ I, we have UJ ⊆ U I .U I [x] ⊆ G implies UJ [x] ⊆ G. This
proves that UJ ∈ K2 and so G ∈ TJ . Thus TI ⊆ TJ .

Remark 4.10: Let Λ be a family of d∗-ideals of D which is closed
under intersection and J = ∩{I : I ∈ Λ}. We have the following
statements:

8



(i) By Theorem 4.9, we know that TΛ = TJ . For any U ∈ K, x ∈
D, we can get that UJ [x] ⊆ U [x]. Hence TΛ is equivalent to
{A ⊆ D : ∀x ∈ A,UJ [x] ⊆ A}. So A ⊆ D is open set if and
only if for all x ∈ A,UJ [x] ⊆ A if and only if A = ∪x∈A UJ [x].

(ii) For all x ∈ D , by (i), we know that UJ [x] is the smallest
neighborhood of x.

(iii) Let BJ = {∪J [x] : x ∈ D}. By (i) and (ii), it is easy to check
that BJ is a base of TJ .

(iv) For all x ∈ D, {UJ [x]} is a fundamental system of neighbor-
hoods of x.

Theorem 4.11: If I is a d∗-ideal of D , then for all x ∈ D, then:

i) U I [x] is a clopen subset in the topological space (D,TI).

ii) U I [x] is a compact set in a topological space (D,TI).

Proof:

i) We show that (U I [x])c is open. If y ∈ (U I [x])c, then x∗y ∈ Ic
or y ∗ x ∈ Ic. We assume that y ∗ x ∈ Ic. By applying
Theorems 4.2 and 4.3,we obtain (U I [y] ∗U I [x]) ⊆ U I [y ∗ x] ⊆
Ic. We claim that U I [y] ⊆ (U I [x])c. If z ∈ U I [y], then z ∗x ∈
(U I [z] ∗ U I [x]). Hence z ∗ x ∈ Ic then we get z ∈ (U I [x])c;
proving that (U I [x])c is open. Hence U I [x] is closed. It is
clear that U I [x] is open. So U I [x] is a clopen subset of D.

ii) Let U I [x] ⊆ ∪(α∈Ω)Oα where each Oα is an open set of D.
Since x ∈ U I [x], then there exists α ∈ Ω such that x ∈ Oα.
Hence U I [x] ∈ Oα, proving that U I [x] is compact.

Proposition 4.12[3]:Let (X,T ) be uniform structure . Then Uni-
form space (X,T ) is completely regular.

Corollary 4.13: Let Λ be a family of d∗-ideals of D which is closed
under intersection. Then topological space (D,TΛ) is completely
regular.

9



Theorem 4.14: Let Λ be a family of d∗-ideals of D which is
closed under intersection. Then (D,TΛ) is a discrete space if and
only if there exists I ∈ Λ such that U I [x] = {x} for all x ∈ D.

Proof: Let TΛ be a discrete topology on D. If for any I ∈ Λ,
there exists x ∈ Λ such That U I [x] 6= {x}. Let J = ∩Λ. Then
J ∈ Λ , there exists x0 ∈ D such that UJ [x0] 6= {x0}. It follows
that there exists y0 ∈ U I [x0] and x0 6= y0. By Remark 4.10,(ii),
UJ [x0] is the smallest neighborhood of x0. Hence {x0} is not an
open subset of D, which is a contradiction. Conversely, for any
x ∈ D, there exists I ∈ Λ such that U I [x] = {x}. Hence {x} is an
open set of D. Therefore, (D,TΛ) is a discrete space.

Theorem 4.15: Let Λ be a family of d∗-ideals of D which is closed
under intersection. Then J = ∩Λ and D be a d-algebra with right
identity 0. Then the following conditions are equivalent:

(i) (D,TJ) is a discrete space;

(ii) J = {0}.

Proof: (i) ⇒ (ii) By Theorem 4.14, we have UJ{0} = {0}. We
show that J ⊆ UJ [0]. Let x ∈ J . Since (x ∗ 0) ∗ x = 0 and J is
d∗-ideal then x ∗ 0 and 0 ∗ x ∈ J we get that x ∈ UJ [0]. It follows
that J ⊆ UJ [0]. Since UJ [0] = {0} and 0 ∈ J . Therefore, J = {0}.
(ii) ⇒ (i) Let J = {0}.Since D is d-algebra with right identity 0,
we can get that UJ [x] = {x} .It follows that (D,TΛ) is discrete.

Corollary 4.16: Let Λ be a family of d∗-ideal of D which is closed
under intersection, J = ∩Λ and D be a d-algebra with right iden-
tity 0 . Then (D,TJ) is a Hausdorff space if and only if J = {0}.

Proof: Let (D,TJ) be a Hausdorff space. First we show that for
any x ∈ D,UJ [x] = {x}. If there exists x 6= y ∈ UJ [x], then
y ∈ UJ [x] ∩ UJ [x]. By Remark 4.10 (ii), UJ [x] and UJ [y] are
the smallest neighborhoods of x and y, respectively. Hence for
any neighborhood U of x and neighborhood V of y, we have that
y ∈ UJ [x] ∩ UJ [y] ⊆ U ∩ V 6= φ, which is a contradiction. Hence
by Theorems 4.14 and 4.15, J = {0}. The other side of the proof
directly follows from Theorem 4.15.
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Definition 4.17 [3]: Recall that a uniform space (X,K) is said to be
totally bounded if for each U ∈ K, there exist x1, ..., xn ∈ X such
that X = ∪ni=1U [xi].

Theorem 4.18: Let I be a d∗-ideal of a d-algebra D. Then the
following conditions are equivalent:

(1) the topological space (D,TI) is compact,

(2) the topological space (D,TI) is totally bounded,

(3) there exists P = x1, ..., xn ⊆ D such that for all a ∈ D there
exist xi ∈ P (i = 1, ..., n) with a ∗ xi ∈ I and xi ∗ a ∈ I.

Proof: (1)⇒ (2): It is clear by [3]. (2)⇒(3): Let U I ∈ K. Since
(D,TI) is totally bounded, there exist x1, , xn ∈ I such that D =
∪ni=1U [xi] .If a ∈ D, then there exists xi such that a ∈ UI [xi],
therefore a ∗ xi ∈ I and xi ∗ a ∈ I. (3) ⇒ (1): For any a ∈ D,
by hypothesis, there exists xi ∈ P with a ∗ xi ∈ I and xi ∗ a ∈ I.
Hence a ∈ U I [xi]. Thus D = ∪ni=1U [xi] . Now let D = ∪α∈ΩOα

where each Oα is an open set of D. Then for any xi ∈ D there
exists αi ∈ Ω such that xi ∈ Oαi

, since Oαi
is an open set. Hence

U I [xi] ⊆ Oαi
. Hence D = ∪ni=1U [xi] ⊆ ∪ni=1Oαi

, i.e.,D = ∪ni=1Oαi

, which means that (D,TI) is compact.

Theorem 4.19: If I is a d-ideal of D such that Ic is a nite set,
then the topological space (D,TI) is compact.

Proof: Let D = ∪α∈FOα, where each Oα is an open subset of D.
Let Ic = {x1, . . . , xn}. Then there exist α, α1, . . . , αn ∈ F such that
0 ∈ Oα, x1 ∈ Oα1, . . . , xn ∈ Oαn. Then U I [0] ⊆ Oα ,but U I [0] = I.
Hence D = ∪ni=1Oαi

∪Oα.

Theorem 4.20: If I is a d-ideal of D, then I is a compact set in
the topological space (D,TI).

Proof: Let I ⊆ ∪α∈F Oα , where each Oα is open set of D. Since
0 ∈ I, there is α ∈ F such that 0 ∈ Oα . Then I = U I [0] ⊆ Oα.
Hence I is a compact set in the topological space (D,TI).
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Definition 4.21 [8]: Let D1 and D2 be d-algebras. A mapping
f : D1 −→ D2 is called an d-morphism from D1 to D2 if

f(x ∗ y) = f(x) ∗ f(y)

for any x, y ∈ D1. If the mapping ′ is bijective, then we call f an
d-isomorphism and note that f(01) = 02 when f is an d-morphism.

Proposition 4.12: Let f : D1 −→ D2 be an d-morphism. Then
the following properties hold:

(i) if J is a d∗-ideal of D2, then the set f−1(J) is a d∗-ideal of
D1.

(ii) if f is bijective and I is a d∗-ideal of D1, then f(I) is a d∗-ideal
of D2.

Proof:
(i) 1)Since 02 ∈ J and f(01) = 02, then 01 ∈ f−1(J) 6= φ.

2) Let x ∈ f ( − 1)(J) and y ∈ D1 ,then f(x) ∈ J and f(y) ∈
D2. Since J is d∗-ideal. So f(x) ∗ f(y) ∈ J ⇒ f(x ∗ y) ∈ J .Thus
x ∗ y ∈ f−1(J).
3) Let x, y, z ∈ D1 such that x ∗ y, y ∗ z ∈ f−1(J), then
f(x ∗ y), f(y ∗ z) ∈ J ⇒ f(x) ∗ f(y), f(y) ∗ f(z) ∈ J . Since J is
d∗-ideal, then f(x) ∗ f(z) ∈ J ⇒ f(x ∗ z) ∈ J ⇒ x ∗ z ∈ f−1(J).
From (1),(2) and (3) we get that f−1(J) is d∗-ideal.

ii) 1)Since 01 ∈ I and f(01) = 02, then 02 ∈ f(I) 6= φ.
2) Let x ∈ f(J) and y ∈ D2 , Since f is surjective then there

exist a ∈ I and b ∈ D1 such that f(a) = x, f(b) = y and Since
I is d∗-ideal. So a∗ b ∈ I ⇒ f(a∗ b) ∈ f(I)⇒ f(a)∗ f(b) ∈ f(I).
Thus x ∗ y ∈ f(I).
3) Let x, y, z ∈ D2 such that x ∗ y, y ∗ z ∈ f(I), then there exist
a, b, c ∈ D1 such that f(a) = x, f(b) = y, f(c) = z
⇒ f(a) ∗ f(b), f(b) ∗ f(c) ∈ f(I). Since f is injective , then
a ∗ b = f−1(f(a ∗ b)) ⊆ f−1(f(I)) = I, b ∗ c = f−1(f(b ∗ c)) ⊆
f−1(f(I)) = I and I is a d∗-ideal, then a ∗ c ∈ I ⇒ f(a ∗ c) ∈
f(I)⇒ x ∗ z ∈ f(I). Thus from (1),(2) and (3) we get that f(I)

is d∗-ideal.

12



Lemma 4.23: Let D1 and D2 be d-algebras and J be a d∗-ideal of
D2. If f : D1 −→ D2 is an d-isomorphism, then (x, y) ∈ U f−1(J) ⇔
(f(x), f(y)) ∈ UJ for every x, y ∈ D1.

Proof: For any (x, y) ∈ U f−1(J) ⇔ x ∼ y ∈ U f−1(J) ⇔ f(x) ∼
f(y) ∈ J ⇔ (f(x), f(y)) ∈ UJ .

Theorem 4.24: Let D1 and D2 be d-algebras and J be a d∗-ideal
of D2. If f : D1 −→ D2 is an d-isomorphism, then the following
properties hold:

(i) for any x ∈ D1, f(U f−1(J)[x]) = UJ [f(x)],

(ii) for any y ∈ D2, f
−1(UJ [y]) = U f−1(J)[f−1(y)].

Proof:
(i) Let y ∈ f(U f−1(J)[y]). Then there exists xo ∈ U f−1(J)[x] such
that y = f(xo). It follows that x ∼ xo ∈ f−1(J)⇒ f(x) ∼ f(xo)⇒
f(x) ∼ y ∈ J ⇒ b ∈ UJ [f(x)]

Conversely, let y ∈ UJ [f(x)] ⇒ f(x) ∼ y ∈ J ⇒ f−1(f(x) ∼
y) ∈ f−1(J) ⇒ x ∼ f−1(y) ∈ f−1(y) ⇒ f−1(y) ∈ U f−1(J)[x] ⇒ b ∈
f(U f−1(J)[x]).
(ii) x ∈ f−1(UJ [y])⇔ f(x) ∈ UJ [y]⇔ f(x) ∼ y ∈ J ⇔ f−1(f(x) ∼
y) ∈ f−1(J)⇔ x ∼ f−1(y) ∈ f−1(J)⇔ x ∈ U f−1(J)[f−1(y)].

Theorem 4.25: Let D1 and D2 be d-algebras and J be a d∗-ideal of
D2. If f : D1 → D2 is an d-isomorphism, then f is a homeomor-
phism map from (D1, τf−1(J)) to (D2, τJ).

Proof: First we prove that f is continuous. Let A ∈ τ . By Re-
mark (4.10), we can get that A = ∪α∈AUJ [a]. It follows that
f−1(A) = f−1(∪α∈AUJ [a]) = ∪α∈Af−1(UJ [a]) We claim that if
b ∈ f−1(UJ [a]), then U f−1(J)[b] ⊆ f−1(UJ [a]). Indeed, let c ∈
U f−1(J)[b], we get that c ∼ b ∈ f−1(J), so f(c) ∼ f(b) ∈ J by lemma
(4.23). Since f(b) ∈ UJ [a], we get that f(b) ∼ a ∈ J . It follows that
f(c) ∼ a ∈ J . Thus we have that f(c) ∈ UJ [a]. So c ∈ f−1(UJ [a]).
Hence f−1(UJ [a]) = ∪b∈f−1(UJ [a])U

f−1(J)[b] ∈ τf−1(J). Therefore,
f−1(A) = ∪α∈Af−1(UJ [a]) ∈ τf−1(J). So f is a continuous map
.finally we show that f is an open map. Let A be an open set
of (D1, τf−1(J)). We claim that f(A) is an open set of (D2, τJ) .
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Let a ∈ f(A). We shall show that UJ [a] ⊆ f(A). Indeed, for any
b ∈ UJ [a], we get that b ∼ a ∈ J . By Lemma (4.23), we have
f−1(a) ∼ f−1(b) ∈ f−1(J). Hence f−1(b) ∈ U f−1(J)[f−1(a)] Since
a ∈ f(A) and f is injective we get that f−1(a) ∈ A. By Remark
(4.10,i), it follows that U f−1(J)[f−1(a)] ⊆ A, So f−1(b) ∈ A, we get
that b ∈ f(A).Therefore UJ [a] ⊆ f(A). So f is open map.
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