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Abstract:

In this paper we will define a topological d — algebra and find some properties of this
structure and the most important characteristics and we came to define a new type of spaces
called D-periodic space.
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1. Introduction

Y. Imai and K. Iseki [4] and K. Iseki [5] introduced two classes of abstract algebras: namely,
BCK-algebras and BCl-algebras. It is known that the class of BCK algebras is a proper
subclass of the class of BCl-algebras. In [2], [3] Q. P. Hu and X. Li introduced a wide class
of abstract algebras: BCH-algebras. They have shown that the class of BCl-algebras is a
proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim [6] introduced the
notion of d-algebras which is another generalization of BCK-algebras, and investigated
relations between d-algebras and BCK-algebras. They studied the various topologies in a
manner analogous to the study of lattices. However, no attempts have been made to study the
topological structures making the star operation of d — algebra continuous. Theories of
topological groups, topological rings and topological modules are well known and still
investigated by many mathematicians. Even topological universal algebraic structures have
been studied by some authors.

In this paper we initiate the study of topological d — algebras. We need some preliminary
materials that are necessary for the development of the paper. Section 2 contains some basic
knowledges of the d — algebras which are needed for studying this topic. And we will define a
topological d — algebra and study some general facts for topological d — algebras.
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In section 3,we studied topological transformation monoid (D — space) and the most
important characteristics. In section 4 we given define a new type of spaces called D -
periodic space and study some properties of D — periodic space.

2. Topological d-algebra

In this section, we examine the definition of topological d-algebra and some issues and
examples related to the subject.
2.1De¢finition: A non-empty set D together with a binary operation = and a zero element 0 is
said to be a d — algebra if the following axioms are satisfied for all X, ye D

D)x*x=0

2)0*x=0

3)x*y=0andy * x =0 imply that x =.

2.2 Definition: An element e of D is called a left identity if e*a=a, a right identity if a*e = a
for all ae D and a=e. If e is both left and right identity then we called e is an identity element.
Also we say that (D,*) is d — algebra with identity element

2.3 Example:

i) Let D be any non — empty set and P(D) is power set of D then (P(D),-) is d — algebra and ¢
is right identity in (P(D) ,-).

ii) let D={ 0,a,b,c} and define the binary operation = on D by the following table:

* |0 |a |b |c
0 0 0 0 0
a |0 |0 |b |c
b |0 |b |0 |a
c 0 c a 0

Table (1)

Then the pair (D,*) is d — algebra with identity element a .

2.4 Definition: Let (D, *,0) be a d-algebra and¢ = 1< D. | is called a d-sub algebra of Dif x #
y el whenever x elandy e 1. lis called d—ideal of D if :

N0 el

2)yeland x*ye | imply that xe 1.

2.5D¢finition : Let (D,*) be a d — algebra and T be a topology on D. The triple (D,*,T) is
called a topological d — algebra (denoted by Td — algebra) if the binary operation * is
continuous.




2.6 Example:
1) Let D={ 0,a,b,c}and =be define by the following table:

* |0 a |b c
0 0 0 0 |0
a a 0 0 a
b b b 0 b
c c c c 0

Table (2)

It is clear that (D,*) is d — algebra and T={¢,{b},{c},{0,a},{b,c},{0,a,b},{0,a,c},D} is topology
on D such that the triple (D,*,T) is a topological d — algebra.

ii) Let R be a set of real number and * is a binary operation which define by a*b = a.(a-
b)? then (R,*) is d — algebra and (R,*,T) is Td — algebra where T is usual topology on R.
2.7 Definition: Let D be a Td — algebra ,U be a non — empty subset of D and a any
element in D we define the sets U,= {x eD/ xa eU} and ;U={x eD/ax eU}. Also if Kc D we
put kU=U ek aU and Ux = U ek Ua.

2.8 Example: Let D={0,1,2,3,...} and T be the discrete topology on D and a*b = a.(a-
b)2. It is clear the triple (D,*,T) is a Td — algebra and if U = {x eD/ x< 9} , K ={0,1,2} and
a=2 then U,={0,1,2,3}, .U ={0,1,2,3,4} and xkU ={0,1,2,3,4}.

2.9 proposition: Let D be a Td — algebra and A,B, W,K are subsets of D then :

DIf Ac B then \WcgW..

2) If W K then AW aK.

Proof:

1) Let x e AW, then there exist a €A such that x e,W. Since Ac B, so A\WcsW .

2) Let xe aW, then there exist aeA such that xe,W. Thus axeW, since WcK, then
X &K, so0 p\WnK

2.10 Proposition : Let D be Td — algebra, U and F be two non — empty subset of D, then:
i)If U is open set , then ,U and U, are open sets for all aeD.

i) If F is closed set , then 4F and F, are closed sets for all aeD.

Proof:

i) Let U be an open set, ae D and let xe;U. Then ax e U, since » is continuous, then there
exist two open sets A and B of D Such that (a,x) € AxB , axeAB= «(A,B) c U, thus aBc
U. Then xe B U, so ;U is open set of D. By same way we can prove that U, is an open
set.

ii) Let F be an closed set and aeD. Now we prove that 4F is closed set. Let x &,F then
there exist a net {X,},c2 in aF such that x,—x . Since D is Td — algebra, then ax,— ax.
Thus ax eF, so x eaF. Hence 4F is closed set and by same way we prove that F, is closed
set.

2.11 Corollary :Let D be Td — algebra, U and A be two non — empty subset of D, then :
i)The sets AU and U, are open sets if U is open set.

ii))The sets sU and U, are closed sets if U is closed set and A is finite.




2.12Proposition: Let D be Td — algebra and D be a T, — compact space . If U is compact
set of D then ;U and U, are compact sets for all aeD.
Proof:
Let U be a compact subset of D. Since D is T, then U is closed set in D. Thus by
proposition (2.10) then ;U and U, are closed sets in D for all aeD. Then ;U and U, are
compact sets in D for all aeD.
2.13 Proposition: If H is sub algebra of a Td — algebra D, then H is sub algebra.
Proof:
Let x,y €H, then there exist two nets {X,}oc2{ya}acdn H such that x,—x and y,—y, since *
is continuous then X, y,—xy. Since His closed set, then xy eH. Thus H is sub d — algebra.
2.14 Proposition : If {0} is open set of a Td — algebra D , then D is discrete.
Proof:
Let x eD. Since x# x = 0 (by definition 2.1) and {0} is open ,then by continuity of binary
operation of d — algebra, there exist two open sets V and U of x such that U #V = {0}. Put
W=U nV.Then W *W = {0}. This implies that W = {x}, so D is discrete space.
2.15 Proposition:{0} is closed in a Td — algebra D if and only if D is Hausdorff.
Proof:
=) Assume that x and y are different elements in D. Then x# = 0 or y* x = 0 (by
definition2.1,3). We can assume x#y = 0.Since D is a Td — algebra. Then there exist two open
sets U and V of x and y respectively, such that
UV < X /{0}
Thus U nV = ¢,s0 D is Hausdorff.
&) clear.
2.16Proposition:If I is an open ideal of a Td — algebra D. Then 1 is also closed.
Proof: Let x #I. Then by the continuity of d — algebra there exists an open neighborhood V of
x such that V# Vc | (since x#x = 0). If for some y is contained in V I, then V < | by
definition of d — ideals. This is contradiction. Thus V < I°. So | is d — ideal.

3. D —space
In this section we will examine the D - space and some simple illustrative examples and
their causes and consequences.

3.1Definition:A topological transformation d - algebra is a triple (D,X,p) where D is a
topological d — algebra, X is a topological space and ¢ :DxX — X is a continuous function
such that ¢ (d1,¢ (dz, X)) = ¢ (d1#d>, x) for all d;,d, €D, xeX, and if (D, #) is a topological d —
algebra with identity e, we say that the triple (D,X,¢) is a topological transformation d —
nalgebra with identity such that ¢ (e, x) = x for all xeX.

3.2 Example: Let (R, #U) be Td — algebra where a# = a(a — b) for all a,b € R and ( R,U) be
usual space then (R,R,¢) is a topological transformation d — algebra where ¢(a,b) = b for all
a,b eR.




3.3 Remark:

(i) The function ¢ is called an action of D on X and the space X together with ¢ is called a
D — space ( or more precisely left D — space ) and if (D, *) is a topological d — algebra
with identity, then the space X together with ¢ is called a D — space with identity.

(if) Since ¢ is understood from the context we shall often use the notation d.x or x.d for
@ (d,x) and d;.(d2.x) = (d1d2).x for @ (d, (d2,X)) = @ (d1dz,X).

(iii) Similarly, for H < D and A < X we put HA = {d.a/ deH, a A} for ¢ (H, A).

(iv) FordeD, let gg : X—>X be the continuous function defined by ¢4(X) = ¢ (d, X) = d.x .Thus

Py, Pa, = Pa,q, @nd if Xis D — space with identity then ¢, =y, the identity function of X.

3.4 Proposition: Let X be D —space If A =X, B <D and deD then :

i) dAc dA.

ii\BA = BA = 4B = BA.

iii) If A,B are compact subset of X and D respectively then BA is compact subset of X.

iv) If A,B are a compact subset of X and D respectively then BA is compact subset of X and if
W is a neighborhood of BA then there exist two neighborhoods U and V for A and B
respectively such that VU < W.

Proof:

i) Since gy is continuous function and dA= ¢(d, A)=pu( A )<, (A)=dA.

i)Since ¢ is continuous function then BA = ¢ (BxA) = ¢ (BxA) < ¢(BxA) = BA = BA <
BAcBA cBA thenﬁgm and BA cBAcBA c BA then B_/Tgm.

iii) Since ¢ is continuous function and ¢(BxA)= BA. Thus BA is compact set.

iv) Clear

3.5 Definition: Let (D,X,¢) be a topological transformation d — algebra , and xeX. The set
Du(p)={deD/ ¢(d,x)=x} is called the stabilizer of ¢ at x , and we define the set
D(¢) =N xx Dx(9) as the stabilizer of ¢.

3.6 Example: Let (Z,#T) be topological d — algebra with discrete topology and a binary
operation * where a# = a(a — b)?> for all abeZ. Then (ZR,p) is a topological
transformation d — algebra where (R,U) is usual topology on real number and ¢: ZxR—R
such that ¢(z,r)=r for all zeZ and r eR ,then the stabilizer of ¢ at x is Zx(p)={z €Z/ p(z,x)=x}
=Zthus Z(p) = Nrer Zr(9)=Z

3.7Definition: Let X be a D-space. We called that ¢ is minimal function if ¢ (D,x) is dense in
X for all xeX.

3.8 Example: Let D = {0,a,b,c} and =#is define by the table:

#» |0 |a |b |c
0O [0 |0 |O |0
a |b [0 |b |c
b |c |a [0 |cC
c |a |a |b |0
Table (3)




Then (D, *) is d — algebra and (D, #,7) is Td — algebra where zis discrete topology on D and
let (D, 7)) be indiscrete topological space. The actiong of (D, # 1) on (D, ) such that ¢(a,b)
= b then for every deD, (D, d) = {d} = D.Thus ¢ is minimal function.

3.9 Definition: Let X be a D-space. We called that ¢ is faithful if for any distinct d;, d,e D
there exist x eX such that ¢(d1,X)=@(d2,X) .
3.10 Example:Let D = {0,1,2,3} and = be define by the following table:

« J0 |1 |2 |3

0 |0 [0 |0 |oO

1 |1 |o |1 |1

2 |2 [2 [0 |2

3 |3 (3 [3 |0
Table (4)

Then (D, *) is d — algebra and (D, #17) is Td — algebra where z is discrete topology on D.
(N”, 7) is a topological space where /= {U, / U,={0,1,2,3,n, n+1, ...} C{g}. If g:DxN"—>
D defined by ¢(a,b) = a, then ¢ action of (D, #,7) on (D, 7). Then for any a,b e D then there
neN”such that a= ¢(a,n) = ¢(b,n) = b, then g is faithful.

3.11 Definition: Let D be a Td - algebra , a subset T of D is called right syndetic in D if there
exists a compact subset H of D such that yT=HT=D and T is called left syndetic if there exists
a compact subset H of D such that Ty=TH=D.

3.12 Example: Let X = {1,2,3} and(P(X), — ) be Td — algebra with discrete topology. If T={¢,
X, {1} {2}, {3}} and H ={X, {1,2},{1,3},{2,3}} then yT=HT=P(X) and T is right syndetic in
PX). If T={¢, X,{1},{1,2},{1, 3}} , K={¢, {1} {2}, {3}, {2,3}} then Tx=TK=P(X)and
T is left syndetic in P(X).

Notation :- we note that if a Td — algebra D is finite then every subset of D is right (left)
syndetic in D.

3.13Proposition: Let D be a Td — algebra and T be a subset of D then T is right syndetic in D
if and only if there are compact subsets Hy, Hp, of D such that , T=D and H,T=D.

Proof:

=) let T be right syndetic in D then there exists a compact subset H in D such that 4T =HT =
D by this completes the proof .

<) let Hy,H, be compact subsets of D such that ,; T=D and H.T=D.

Put H=H;H, then :

HT = mom,T = Unen,um, nT=(Unen, n”T)Y (Unen, nT) = u, I Uy, T

= DUHZT =D and HT =(HiuH )T=H; T UH, T=H; T D =D

Thus T is right syndetic in D




3.14 Proposition: Let D be a Td — algebra and A be a right (left ) syndetic subset in D then 4
is right (left) syndetic subset in D

Proof:-

Since A is a right syndetic subset in D, then there exists a compact subset H of D such that A
=HA=D by proposition (2.7)and Ac 4 then y4 = H4 =D thus 4 is right (left) syndetic.

3.15 Definition: Let (D,X,p)be a topological transformation d- algebra. The point xeX is
called periodic relative tog if Dy (@) is right syndetic in D and ¢ is called periodic if D(¢) is
right syndetic.

3,16 Proposition: Let (D,X,) be topological transformation d- algebra if ¢ is periodic then
any element of X is periodic relative to the function ¢.

Proof :

let ¢ be periodic. Then by Definition (3,13), we get D (¢) is right syndetic . Then there exist a
compact subset H of D such that HD (¢)= uD (¢)=D.

But D (@)= NxxDx(@)and MyxxD x(9) < Dy(@). thus y(Nnhe x D x(@) = H(Nxex D x(¢)) =D,
then H D x(¢)=u D x(¢)=D. hence any element in X is periodic relative to ¢.

3.17 Proposition: Let (D, X ,¢) be a topological transformation d- algebra and let xeX be a
periodic relative to ¢. Then ¢(D,x) is compact and ¢(D,x) = ¢(D,y) for any y ep(D,X) .

Proof :

let x eX such that x is a periodic relative to . Then there exists a compact subset H < D such
that H D (¢) = D=y Dx(¢). First we prove that ¢(D, X)= ¢(H, x). Lety ep(H, X) =7h e H
such that y= ¢ (h,x) . since Hc D , thus y= ¢( h,x) €@(D,x) =¢(H, X) <¢(D,X). Let zegp(D,
X). Then there exists d; € D such that z = ¢(d1,x) . Since H D (¢) = D, then there exist h; e
H such that d; = hid; and d,e Dy(¢), then z= ¢(d1,X)= @(hid2,X)= @(h1 , ¢(d2,X)
=@p(h1,X).=zep(H,Xx) , hence ¢( D x) < ¢ (H)x) thus ¢ (D, x) = ¢(H, x) . Since ¢(H, x) is
compact , then ¢(D, x) is compact. Second let yeg( D ,x) . we prove that ¢( D ,x) =¢( D ,y)
. let zep(D,x) then there exist di,d, €D. Such that y= ¢(d, X) and z =¢(d1, X). Since D= 4D
(@) then there exist hs eH such that hd € D x(¢)[by define of 4 D«(¢)] then ¢(hd, X) = x. Then z
= ¢(d1,x), =2 = ¢(d1, (hd X)) = o(dy, (h, @(d X)) = p(dih, (d X)) = @(d2, @(d2,X))=e(d2
Y)e@(D \y) then (D x)c@(D ,y).Letw ep(D ,x) =Fs3e D such that W= (d; ,y)= w= (ds,
o(d X) = ¢(d3d x) = ¢(ds ,X) €p(D X) =@(D ,y)cp(D X) then ¢(D x)= ¢(D y) V'y ep(D
X).

3.18 Proposition: Let (D, X, ¢) be a topological transformation d- algebra , let X be a T, —
space and the point x e X is periodic point relative to ¢, then ¢ is minimal function if and
only if X = ¢(D,x).

Proof:

=)Suppose that ¢ is minimal. Since X is T, — space and by proposition (3.15) we get that
(D, x) is closed set in X. Thus ¢(D,x) =X (since ¢ is minimal ).

=) let X = (D, x) , by proposition (3.15) we get that ¢(D,y)= ¢(D,x) =X for all y € X. So
@ is minimal.

3.19 Definition:Let X be a D — space . we say that is¢ called topological transitive if for any
two non — empty open subsets U, V <X, there exist d eD such that ¢, U) NV #¢




3.20 Example: Let D = {0, a, b, c} such that = is define by the following table :

» |0 |a |b |c
0O |0 |0 |0 |O
a |a |0 |0 |a
b |[b [b |0 |Db
c |c |c |c |O
Table (5)

then (D, #,7) is Td — algebra where 7 ={¢,D, {b}, {c}, {b,c}, {a,0}, { 0,a,b}, {0,a,c}} and(D,7)
is topological space where 7= { ¢, D, {a} , {a,b} } then D is D —space where ¢(a,b)=b
va,b € D .Thuse is topologically transitive..

3.21 Definition :Let X be D — space we say that X is a topological point transitive if there
exist a point x such that Dx=X and x is called point transitive

3.22 Definition: Let X be a D- space we say that X is densely point transitive if there exist
dense set Y < X of point transitive.

3.23 Proposition :Every densely point transitive D- space is a topologically transitive.

Proof:

Let U and V be two open non-empty subset of X such that and Y be set of point transitive such
that Y =X then Y NV #4¢, so there existy e Y NV. By transitively of y , then there exists d € D
such that U dV=g,hence (D, X, ¢) is topological transitive d — algebra.

4. the orbits and minimal sets in d — algebra

In this section we study the invariant sets, minimal sets, the orbits of element and the
relationship between these concepts, with some specific issues and illustrative examples.
Notation: Let (D,X,¢) be a topological transformation D — algebra, C <D and Y<X then
C(Y) =oCY)={g(c,y), ceC,yeY}.
4.1 Definition: Let (D,X, ¢) be a topological transformation of X .we say that A is invariant
under D if and only if D (A)=A
4.2 Example: Let (R,R, ¢) be a topological transformation d — algebra (where (R,# U) is a
topological D- algebra such that#s define by a#h= a(a-b)? for all a,b € R and U is usual
topology on R and ¢ is define by ¢(ry,r2)= r, for all ry, r,e R . Then any subset of R is
invariant set.
4.3 Proposition: Let (D,X, ) be a topological transformation then :
1) If © is afamily of all invariant subsets under D then U 4¢q Ais invariant set under D and
if @ is one to one the N4 A is an invariant set under D.
2) If A and B are an invariant subsets of X under D then A® and A — B are invariant subsets
of X under D.
3) If ¢ is closed function and A is invariant subset of X under D then A is invariant subset
under D .
4) If ¢ is open function , D is d- algebra with identity e and A is invariant of X under
D - algebra then A “is invariant subset under D.




Proof:

1) Let A €Q Then A is an invariant of X under D , then ¢(DxA) = A for all A €0 .
D(UgenA)= @ (D xUgenA)= @(UgenD X A) = Ugen AThen Uyeq Ais invariant set.

And :

D(Ngend) = ¢ (DxNgenA) = @ (Na co (DXA)) sincee is one to one then ¢ (Na <o (DXA))=
N aco @ (DxA) = Na coAthen Nyeq A) s invariant set.

2) i)Let A be invariant theg(DxA) =A then( ¢(DxA))° =A°. Since ¢ is one to one then
(p(DxA))° = p((DxA)?) = p(DxAS) . Hence ¢(D xA%) =A°thus A® is invariant.

i) let A and B be two invariant subsets of X under D then p(Dx(A N B®)) =A N B ¢, since A
— B =ANB ° then from (1) and (2,i) we get that A-B is invariant.
3)Since ¢ is continuous and closed function. Then 4 =¢p(DxA) = ¢ DxA) = o(DxA) thus 4 is
invariant.

4) Since D is d- algebra with identify e, then A'cp (D x A). Now we prove that (D x A)c
A", Since ¢ is open function and (D x A) =A then (D x A)c (p(Dx A)=A" 0
o(DxA)=A"then A"is invariant.

4.4 Definition: Let (D ,X, ¢) be atopological transformation d- algebra and x € X . The orbit
of x by D is the set {d x / d D} and we denoted by Dx or D (x). The orbit closure of x by D is
Dx.

4.5 Proposition: Let (D X, ¢) be a topological transformation d- algebra such that D is d-
algebra with identity e then :

1) If x eX then Dx is minimal invariant subset of X contain x.

2) If x e X and ¢ is closed then the orbit closure of x by D is minimal invariant closed subset
of X by D and contain x.

Proof:

1) Let xeX , then Dx is orbit of x by D. Since (D, X, ¢) is topological transformation d-
algebra and (D, #) is a d-algebra with identity then D(Dx) = ¢ (Dx Dx) =¢ (Dx¢(D X))
=p(#DxD),x)= ¢(D,x) = Dx.

Then Dx is an invariant under D and contains x. Let A be a subset of X such that A is
invariant under D, xe A and A < Dx . Since D (A) = A then D(A)c D(x) . But D (x) c D(A)
(since x € A) then A=D x . Thus Dx is minimal.

2) Let x e X, then Dx is the orbit closure of x by D, from (1) we get that Dx is an invariant
under D . then by proposition (4.3 ). Dx is an invariant under D . Now we prove that Dx is
minimal sebst of X.

Let A be closed subset of X and it is invariant under D such that x € A. Then Dx <D (A),
then Dx <D (A) = A4 then Dx = A (since A is closed ) then Dx is minimal set.
4.6 Definition: Let (D, X, ¢) be topological transformation d- algebra , A be a subset of X and
S be a subset of D. Then the set A is called minimal set by the set S if A is orbit closure by the
set S and if B <A such that B is any orbit closure by S then B=A. The set A is called closure
minimal orbitif S=D
4.7 Remark :Let (D, X, ¢) be a topological transformation. Then X is a closure minimal orbit
if and only if Dx =X for all x eX




Proof

=)Let X be closure orbit minimal then Dx = X for some x € X . lety € X since Dy < X. Then
by Definition (4.6) we have Dy=X.

4.8 proposition: Let (D, X, ¢) be a topological transformation d- algebra with identity e such
that ¢ is closed function .Then the following are equivalent :-

i) Ais closure minimal orbit by D

ii) A is a closure non — empty and invariant under D and it is smaller set satisfy this property.
iii) Ais close non—empty set and A = DU for all closed non empty set U of A.

Proof (i) — (ii) let A be closure minimal orbit by D . Then A = Dx for some x X, thus A is
non-empty and closed . Then A is invariant under D (by proposition (4.5)). Now, let B#¢ and
it is invariant under D and closed such that B < A . Since A = Dx and Dx is smaller
invariant under D. Hence A =B .

ii)—(iii) let U+ ¢and U is closed set of Athen D U < DA =A = DU c A and since DU =
p(DxU)= p(DxU)= ¢ (DxU)= Du = Du is closed and since D(DU)= ¢(Dxp(DxU))=
o(#D,D) , U)= ¢(D, U)= DU. Then Du is closed and invariant by D. Since A is smaller and
satisfy this property, the set A <DU the A = DU.

(iii) —(i ) let A be closed non —empty set and A = DU for all closed set U of A then there exist
xeA ={x} is closed set of A (by X is T, — space ), then A = D {x} = Dx =Dx = 4=A. Then A
is closure orbit. Let y € A such that Dyc A . Since {y} is closed set of A then Dy = A
=Dy =AthusA is closure minimal orbit by D.

4.9 Remark: Let X be a compact D — space than every closure orbit by D is compact.

4.10 Definition: Let (D, X, ¢) be a topological transformation d- algebra withleft identity .
we say that X is D — periodic space if any point x in X is periodic point .

4.11 Example: Let (D, #7) a topological with left identity 0 where D={0, 1, 2, 3} ,z is
discrete topology on D and = is binary operation which define by the following table:

#10(11]2]3
0|0|0|0|O
1/1/0(3 |2
212(3]|0]|1
313(2]1]|0
Table (6)

And (R, U) is usual topological space then (D, R, ¢) is a topological transformation
d — algebra with left identity o where ¢(d,r)=r for all (d,r) € DxR then Dy=D for all xeR and
0 e D such that D= 0D =D then (D, R,¢) is D- periodic space.

4.12 Proposition: Let X be D- periodic space where D is d- algebra with left identity then the
collection Q2 of all orbits by D is partition for X.

Proof:

Let 2 = { Dx / Dx is orbit of x by D} now we want to prove that Dx NDy = ¢ for all x,y e X
such that Dx # Dy. Suppose that Dx N Dy # ¢ = there exist z € X such that z eDx and z €Dy
then Dx = Dz and Dy= Dz = Dx= Dy= Dz by proposition(3.17). Since e € D then x e Dx
for all x eX, Dx < X, thus U Dx = X, then Qs partial for X.




4.13 Proposition: Let X be D- periodic space with left identity e then relation P= {(x,y)
XxXI'y €D x} is equivalent relation on X
Proof:
1) Sincee € D and ¢(e,x) = ex = x then (x,x) eD.
ii) Let (x,y) € P, theny e Dx = Dy = Dx and by proposition (2.17) we get x eDy=x(y,x) eP.
iii) Let (x,y)and (y,z) € P then ye Dx and z e Dy. Thus Dx = Dy = Dz(by proposition (2.17))
= z e Dx =>(x, z) €P then P is equivalent relation on X.
4.14 Proposition: Let X be D — periodic T, — space then Dx is closed and minimal set for all x
eX.
Proof:
Let x e X, then x is periodic point (since X is D- periodic space). Theng (D,x) = DX is
compact by proposition (2.17). Since X is T, then Dx is closed then Dx = Dx for all x e X.
Thus Dx is closure orbit , lety eDx . Since Dy = Dy = Dx = Dy < Dx . then Dx is minimal
set.
4.15 Proposition: Let X be a D-periodic — T, — space where D is d- algebra with left identity e
and A < X, then A is invariant set under D if and only i f DycAforally cA.
Proof:
=) Lety € A, then Dyc D (A) = A. Since y is periodic point, thus Dy closed by proposition
(4.14) , then Dy = DycA.
<) Since ee D, then A < D(A) and since Dy cAforally €A, then LyaDy < A thus D(A)
=Dy =A.Hence D(A) = A, thus A is invariant set by D.
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