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Introduction

Variable selection plays a significant role in building a time series model. This technique provides
shrinkage for good estimation parameters, good production and identification of the relevant variables.
The statistical procedures for selecting variables are characterized by the provision of interpretable
models. Variable selection methods such as stepwise and best subset selection may suffer from a lack of
stability. To overcome this problem, Tibshirani (1996) proposed the least absolute shrinkage and selection
operator (lasso). This method provides shrinkage coefficients toward zero and makes some coefficients
exactly zero and thus tries to keep the relevant variables with strong influences. Studies have found that
the lasso estimator is sometimes inefficient and the results of the variables selection are inconsistent (Fan
& Li, 2001; Yuan & Lin, 2007; Zou, 2006). To overcome this problem, Zou (2006) proposed the adaptive
least absolute shrinkage and selection operator (alasso), which penalizes different regression coefficients
by different weights. These penalties reflect the size of the coefficient to define the correct model in the
regression. However, these methods cannot deal with the lag effect, which is a base stone in the time
series models. Recently, alasso has been used in time series (see, for example, Nardi &
Rinaldo,2011;Chen &Chan, 2011;Liu, 2014; Medeiros & Mendes, 2015). However, the alasso in time
series cannot reflect certain properties of a time series model, such as the lag effect. To improve the
accuracy of a time series model, Park & Sakaori (2013) proposed a lag-weighted lasso (Lwlasso). The
Lwlasso imposes different penalties on each coefficient based on weights that reflect not only coefficient
size but also the lag effects. Under the Lwlasso, the regression coefficient vector can be estimated as
follows:
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wherey, is the time series, x; is the vector of explanatory variables, £ is the regression coefficient vector,
A is the tuning parameter and w is a weighted function.

Equation (1) depends on the following three types of weight:
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Unfortunately, the Lwlasso method is sensitive to outliers because it depends on OLS which is not
robust to outliers in the observations. Robust regression such as Huber’s criterion (Lambert & Zwald,
2011), LAD (Wang & Jiang, 2007) and quantile regression (Wu & Liu, 2009) has been used recently in
variable selection. In this paper, we propose a robust lag-weighted lasso method by replacing the

guadratic loss function with a Huber function.

The rest of this paper is divided into six sections. In Section 2, we briefly introduce the general time
series model. In Sections 3 and 4, we propose a new method to deal with outliers in time series. In Section
5 the performance of the proposed method is illustrated by simulations. In Section 6, we demonstrate the

performance of the proposed method by using a real data example. In Section 7, we briefly conclude the

paper.
Time series models

There are several models that can be used to describe time series, such as autoregressive (AR), moving
average (MA) and autoregressive moving average (ARMA). The AR model is the most common model in
time series because most phenomena follow it in practice. Furthermore, the errors in MA models have a
non-linear functions of the parameters, so iterative estimation methods are need to minimize the residual
sum of squares (Chatfield 2004).

Consider the series y;, the model of AR(q) can be written with response lag variables and a disturbance

error term as:
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wherea is the intercept, B, is the [" regression coefficient for [ = 0,1,2, ..., q, e, refers to white noise term
with zero mean, constant variance o2 and cov(e.,y,—;) = 0for all [ # 0 and L represents the lag
operator (i.e L°y, = y,, L'y, = y,_;).Sometimes the past series y,_; cannot describe the present
value y,. To overcome this problem and to improve the forecast accuracy, more explanatory variables
Xje—1(j=1,...,pand 1 =0,...,q;) are added (Pesaran & Shin, 1997). Specifically, Pesaran & Shin
(1997) proposed an autoregressive distributed lag (ADL) model with response lag variables, current and

lagged explanatory variables. The ADL(qq, g1, 42, - - -, qp) Model can be formulated as:

do a1 dp
Ve=a+ ) orllyet ) Bul'tie+ o+ Y il +er. ()
=0 =0 =0
Equivalently:
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ye=a+ Z 2 ﬂj,llej,t + e (7
j=01=0

In the above model, B, = 0 and x, , = y, are assumed. In addition, Equation 3 satisfies the following
assumptions: (Park & Sakaori (2013))
L E(elye-1,Ye-2,-- X160 X161+ s Xp =1, Xp t-2,---) = 0.
2. (Ye»X1,t,---, Xp,¢) are stationary.
3. The correlation coefficients between(yt, X1 "'xp,t) and  (Ve-1, X1,¢—1,-++, Xp - ) decline as [

increase.
Penalized robust methods for time series

Outliers in time series are more complex than in the regression, due to the presence of time effects in
the data. There are different types of outliers in time series, such as isolated outliers, patchy outliers and

level shifts in mean (Marona et al., 2006). Another classification was made for outliers, divided into



outliers and structure changes: (additive outlier (AO) and innovational outlier (10)). The presence of
these extraordinary values affects the time series analysis and their results.

The main objective of penalized robust methods is to provide accurate results rather than penalized least
squares methods in the presence of outliers. To reach this goal, deleting the outliers, limiting the influence
of outliers by the robust method of reducing the weight of outliers, changing the value of outliers, and
penalized robust estimation techniques are used. The general formulation of the penalized robust methods

in the time series is as follows: (Fan & Li (2001))

p 4
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where p(.) is the Huber loss function (Huber, 1981) defined by:
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and p5(|B;4|) is the penalty function and k is the tuning constant. Here, R refers to the robust proposed

penalty.

The efficiency properties, as well as the breakdown point (BP),are used as a measure to determine the
effectiveness of penalized robust methods. The BP is a measure of the resistance of an estimator when the
data have a large ratio of contamination. The least squares estimator has BP as low as 1/n, meaning that
even a single outlying observation can turn out an estimator of OLS to be useless. In contrast, there are

some estimators that have a high BP of approximately 50%.
M-lag weighted lasso (Mlwlasso) method

The least squares method with penalty function in Lwlasso is unprotected because is affected by the
abnormal values. Therefore, in this paper, we replace the loss function in Lwlasso with the M robust loss

function (have about a BP of 0.5), then we replace the penalty function in Lwlasso with the M robust



penalty function, to obtain the Mlwlasso method, which is defined as: (Park & Sakaori 2013, Maronna el

al 2006 )
n
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where s is robustly found, according to the following formula:
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* T 06745 0.6745 ’ (12)
and p5 (|B;.]) is the Miwlasso penalty function with the following form:
p 4
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7=01=0

as the three weight types, (2), (3), and (4), reported in Park & Sakaori (2013) are not robust, we propose

the following robust weights:

1
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where ,B;?lis the (j, D" element in ﬁR which can be estimated as follows:
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To summarize, the proposed Mlwlasso estimators are listed in Table 1.

Table 1 summaries the proposed Mlwlasso estimators using robust technique

Weight Miwlasso estimator
wkl n p 4 p 4
%) — : l ~R1
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t=1 j=01=0 j=01=0
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In practice, the choice of tuning parameters is important. K-fold cross validation is used widely in
selecting the tuning parameters (Bengio & Grandvalet, 2004; Rodriguez et al., 2010). Here, we find
optimal tuning parameters (a,y,A) by 10-fold cross validation. Then, we compare the forecast accuracy
of each method based on the weight’s relative prediction error (RPEY):

RPE™ = E[(§: -y!')?1/(6™)%, (18)
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where h(.) is the Huber function defined by:
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we can summarize the algorithm of proposed methods by the following steps:
Stepl: Compute ﬁR as in Equation (17).

Step2: Depending on the BR we find the weights /3", w%? and w/3>.

Step3: Define x},_; = %
j,l



Step4: Solve the problem for all A as in Equation (11).

*

Step5: Output B ,—; = %
Jil
Step6: Compute RPEY as in Equation (18)

Simulation study

To compare the Mlwlasso, Madlasso and Mlasso methods with Lwlasso, lasso and alasso, we consider

the following ADL (5,3,3) model:

5 3 3
yVe=a+ Z ﬂo,lLl}’t + Z ﬂ1,1le1,t + Z [)’z,llez,t + e
=0 =0 =0

(19)

We generate a time series with 100 observations when ¢ = 1, 3,5 in each situation. Table 2 shows the

true model settings for the simulation study.
Case 1

Table 2 True parameters for the simulation study case 1

Yi-1 X1,t-1 X2t-1
80.1 B0,2 B0,3 B0,4» B0,5 B1,0 B1,1 B1,2 B1,3 B2,0 B2,1 B2,2 B2,3
0.3 -0.2 0.1 0 0 0.9 0.7 0.5 0 1 -0.7 0.5 0

In this study, we select the optimal set of tuning parameters (a,y, ) by 10-foldcross validation. We

compute the median (RPEY) for each method with 1000 replications.

Table 3 RPEY for methods wheno = 1

Outlier rate Dist. lwlasso Ilwlasso lwlasso lasso alasso Mlwlasso Mlwlasso Mlwlasso Mlasso Malasso
withw! withw? withw? with Wk with w*?  with w?®

0% 3.981 3.433 3.549 4,004  4.005 3.207 3.109 3.262 3.507 3.979
N(0,6) 3.959 3.858 3.920 3.991 3.948 3.194 3.131 3.137 3.332 3.256

5% N(0,10) 4,014 3.873 3.948 4.043 3.971 3.242 3.134 3.276 3.266 3.237
t(1) 3.998 3.916 3.980 4,024  3.998 3.215 3.180 3.315 3.230 3.254

t(5) 3.982 3.937 4,014 4.011 4.029 3.218 3.149 3.284 3.243 3.231

10% N(0,6) 4501 4.380 4473 4535 4974 3.349 3.278 3.339 3.379 3.353
N(0,10) 4.549 4,514 4,593 4,581 4,619 3.279 3.208 3.350 3.305 3.275

t(1) 4,084 4,010 4,082 4109  4.102 3.136 3.053 3.248 3.159 3.127

t(5) 3.930 3.851 3.920 3.962 3.937 3.137 3.086 3.220 3.162 3.147

15% N(0,6) 4.987 4,918 4,993 5.322 5.308 3.303 3.209 3.301 3.323 3.296
N(0,10) 5.090 5.050 5.134 5.113 5.154 3.309 3.240 3.470 3.324 3.324

t(1) 4.393 4.353 4421 4.422 4.449 3.153 3.091 3.325 3.183 3.169

t(5) 3.899 3.808 3.876 3.929  3.900 3.117 3.035 3.197 3.142 3.127

20% N(0,6) 5.166 5.107 5.187 5.184 5.204 3.665 3.582 3.647 3.945 3.736
N(0,10) 5.639 5.577 5.671 5.670 5.700 3.358 3.352 3.541 3.373 3.425

t(1) 4.612 4.580 4.647 4,635  4.675 3.122 3.045 3.323 3.155 3.125

t(5) 3.837 3.724 3.807 3.873  3.833 3.050 2.957 3.100 3.075 3.053




Table 4 RPEYfor methods when ¢ = 3

Outlier rate Dist. lwlasso lwlasso lwlasso lasso alasso Mlwlasso Mlwlasso Mlwlasso Mlasso Malasso
withw! withw? withw? with W*'  withw??*  with wR®

0% 3.923 3.870 3.882 4.033 4.975 3.236 3.129 3.230 3.628 3.658
N(0,6) 3.942 3.884 3.969 3.983 3.979 3.161 3.109 3.167 3.474 3.970

5% N(0,10) 3.961 3.886 3.959 3.998 3.969 3.163 3.118 3.264 3.187 3.189
t(1) 3.989 3.871 3.965 4.016 3.997 3.216 3.125 3.280 3.248 3.217

t(5) 3.969 3.853 3.921 4.000 3.944 3.180 3.096 3.240 3.201 3.193

10% N(0,6) 5.779 5.765 5.822 5.811 5.856 3.350 3.230 3.237 3.393 3.380
N(0,10) 6.416 6.408 6.476 6.443 6.502 3.224 3.147 3.435 3.244 3.219

t(1) 8.888 8.905 8.982 8.925 8.994 3.206 3.146 3.537 3.230 3.220

t(5) 4.047 3.952 4.030 4.078 4.047 3.180 3.160 3.292 3.209 3.219

15% N(0,6) 10.694 10.765 10.811 10.740 10.837 3.291 3.232 3.276 3.946 3.939
N(0,10) 14.274 14.389 14.372 14.279  14.375 3.259 3.184 3.783 3.276 3.265

t(1) 5.568 5.610 5.694 5.617 5.747 3.189 3.118 3.487 3.215 3.208

t(5) 4.085 3.983 4.069 4117 4.089 3.257 3.182 3.290 3.279 3.256

20% N(0,6) 17.134 17.217 17.290 17.163  17.288 3.397 3.306 3.321 3.422 3.463
N(0,10) 20.008 20.022 20.042 20.026  20.055 3.246 3.187 3.853 3.270 3.260

t(1) 8.067 8.172 8.206 8.088 8.216 3.242 3.166 3.704 3.266 3.254

t(5) 4.126 3.996 4.077 4.156 4.103 3.207 3.131 3.301 3.231 3.210

Table 5 RPEY for methods when o =5

Outlier rate Dist. lwlasso lwlasso Iwlasso lasso alasso Mlwlasso Mlwlasso Mlwlasso Mlasso  Malasso
with w! with w?  with w? with wi! with wk? with wR3

0% 3.910 3.362 3.400 4.032 3.977 3.194 3.105 3.152 3.953 3.859
N(0,6) 3.983 3.874 3.952 4.006 4,974 3.214 3.139 3.211 3.238 3.209

5% N(0,10) 4,023 3.940 4.013 4.046 4,039 3.236 3.184 3.350 3.262 3.257
t(1) 3.949 3.847 3.910 3.981 3.934 3.218 3.111 3.229 3.240 3.201

t(5) 3.995 3.921 3.973 4.019 3.985 3.227 3.143 3.279 3.252 3.231

10% N(0,6) 4.002 3.904 3.969 4.038 4.993 3.213 3.107 3.211 3.238 3.299
N(0,10) 4,199 4.107 4,181 4.229 4.209 3.250 3.209 3.364 3.277 3.296

t(1) 4.091 3.986 4.059 4,114 4.079 3.156 3.131 3.284 3.179 3.194

t(5) 3.948 3.812 3.876 3.972 3.903 3.157 3.051 3.195 3.181 3.139

15% N(0,6) 4.062 3.985 4.060 4.660 4.849 3.272 3.194 3.237 3.296 3.276
N(0,10) 4.323 4.235 4.301 4.348 4.323 3.283 3.205 3.366 3.308 3.287

t(2) 4,173 4.098 4.164 4.197 4,181 3.098 3.030 3.211 3.118 3.102

t(5) 3.893 3.808 3.861 3.923 3.882 3.080 2.981 3.126 3.096 3.056

20% N(0,6) 4.139 4.058 4,137 4171 4,158 3.305 3.228 3.300 3.321 3.322
N(0,10) 4,507 4.457 4533 4527 4551 3.392 3.341 3.472 3.412 3.406

t(1) 4.186 4,118 4,181 4.212 4.200 3.062 2.996 3.179 3.082 3.069

t(5) 3.794 3.715 3.777 3.831 3.804 2.988 2.901 3.046 3.008 2.977

Tables3, 4, and 5 show that the results of the ordinary methods are very close to our proposed robust
methods when ¢ = 1, 3, 5. However, when contaminating the data at different rates and distributions
(normal and t), our proposed methods are more stable than the ordinary methods, based on the values of
RPE"Y across deferent error distributions.

Case 2
Table 6 True parameters for the simulation study case 2

Yi-1 X1¢-1 X2 -1

BO,l B0,2 Bo,s l30,4 BO,S l31,0 l31,1 B1,2 B13 B2,0 BZ,I B2,2 Bz,s

)

0.3 0 0 0 0 0.9 0 0 0 1 0 0 0




In this study, we select the optimal set of tuning parameters (a,y, A) by 10-fold cross validation. We

compute the median (RPEY) for each method with 1000 replications.

Table 7 RPEY for methods wheno = 1

Outlier rate Dist. lwlasso lwlasso lwlasso lasso alasso Mlwlasso Mlwlasso Mlwlasso Mlasso Malasso
withw! withw? withw? with W*!'  withw??*  with wR®
0% 0.483 0.625 0.357 0.365 0.979 0.304 0.264 0.269 0.349 0.406
N(0,6) 1.322 1.324 1.325 1.360 1.980 0.267 0.265 0.266 1.048 0.972
5% N(0,10) 3.478 3.621 3.354 3.364  3.983 0.300 0.263 0.266 0.343 0.407
t(1) 1.486 1.617 1.356 1.366 1.979 0.299 0.263 0.267 0.343 0.407
t(5) 0.854 0.621 0.553 0.633 0.978 0.299 0.264 0.265 0.344 0.409
10% N(0,6) 1.718 1.772 1.688 1.611 1.985 0.298 0.201 0.269 1.047 0.977
N(0,10) 4.869 3.881 4.757 4,764  4.000 0.336 0.297 0.301 0.383 0.439
t(1) 2.587 2.699 2.448 2484  2.987 0.314 0.276 0.279 0.360 0.417
t(5) 0.914 0.628 0.643 0.733 0.984 0.305 0.266 0.268 0.349 0.407
15% N(0,6) 2.827 2.849 2.779 2.722 2.992 0.332 0.323 0.329 1.048 0.973
N(0,10) 4.952 4.951 4.860 4.860 5.011 0.375 0.333 0.338 0.422 0.469
t(1) 3.707 3.774 3.579 3.636  4.004 0.330 0.289 0.291 0.377 0.427
t(5) 1.000 0.932 0.968 0.980 0.983 0.308 0.269 0.271 0.350 0.411
20% N(0,6) 3.887 3.899 3.835 3.784  4.000 0.365 0.360 0.361 1.047 0.968
N(0,10) 6.983 6.979 6.902 7.899 7.021 0.427 0.374 0.379 0.475 0.516
t(1) 5.825 5.849 5.698 5.753 7.004 0.341 0.300 0.303 0.387 0.438
t(5) 0.504 0.632 0.678 0.689 0.982 0.313 0.274 0.275 0.355 0.414
Table 8 RPEY for methods when ¢ = 3
Ouitlier rate Dist. lwlasso lwlasso lwlasso lasso alasso Mlwlasso Mlwlasso Mlwlasso Mlasso Malasso
withw! withw? withw? with w*!'  with wR’?*  with w®®
0% 0.483 0.318 0.356 0.365 0.976 0.302 0.264 0.266 0.344 0.407
N(0,6) 0.646 0.679 0.600 0.852 0.979 0.308 0.305 0.307 1.048 0.967
5% N(0,10) 1.584 1.718 1.754 1.764 1.978 0.298 0.262 0.265 0.344 0.405
t(1) 0.682 0.620 0.653 0.636  0.979 0.300 0.265 0.268 0.344 0.408
t(5) 0.480 0.617 0. 540 0520 0.981 0.303 0.266 0.269 0.344 0.406
10% N(0,6) 1.514 1.648 1.515 1.396 1.983 0.277 0.204 0.275 1.047 0.974
N(0,10) 1.701 1.789 1.868 1.961 1.983 0.327 0.286 0.291 0.371 0.423
t(2) 0.502 0.639 0.370 0.388  0.983 0.297 0.261 0.265 0.340 0.405
t(5) 0.473 0.618 0.468 0956  0.977 0.292 0.252 0.255 0.337 0.399
15% N(0,6) 1.947 1.693 1.741 1.943 2.978 0.297 0.293 0.295 1.047 0.970
N(0,10) 2.644 2.735 2.953 2.543 2.984 0.354 0.312 0.316 0.401 0.461
t(1) 0.526 0.655 0.934 0916  0.984 0.292 0.255 0.258 0.334 0.400
t(5) 0.465 0.610 0.522 0.643  0.981 0.276 0.243 0.246 0.319 0.384
20% N(0,6) 2.656 2.742 2.633 2.548 2.982 0.373 0.353 0.369 1.049 0.971
N(0,10) 2.899 2.889 2.550 3.475 2.998 0.519 0.229 0.242 0.744 0.701
t(1) 1.900 1.895 1.526 1526  0.997 0.475 0.183 0.198 0.728 0.681
t(5) 1.877 1.884 1.481 1.387 1.992 0.470 0.167 0.182 0.729 0.692
Table 9 RPEY for methods when ¢ =5
Outlier Dist. Ilwlasso lwlasso lwlasso lasso alasso Mlwlasso Mlwlasso Mlwlasso Mlasso Malasso
rate withw! withw? with w3 with W&t with W**  with wR3
0% 0.903 0.888 0.494 0.988 1.028 0.500 0.188 0.203 0.752 0.679
N(0,6) 0.790 0.618 0.784 1.362 0.979 0.263 0.259 0.263 1.047 0.972
5% N(0,10) 0.901 0.876 0.951 1.425 1.029 0.494 0.188 0.205 0.742 0.661
t(1) 0.902 0.882 0.909 1.429 1.034 0.488 0.193 0.207 0.731 0.656
t(5) 0.906 0.880 0.892 1.420 1.032 0.480 0.188 0.201 0.746 0.663
10% N(0,6) 0.875 0.7331 0.977 1.368  0.993 0.471 0.200 0.206 0.702 0.697
N(0,10) 0.991 0.896 0.571 1.425 1.029 0.494 0.188 0.205 0.742 0.661
t(1) 0.992 0.892 0.585 1.429 1.034 0.488 0.193 0.207 0.731 0.656
t(5) 0.996 0.900 0.592 1.420 1.032 0.480 0.188 0.201 0.746 0.663
15% N(0,6) 0.864 0.762 0.984 1.377 0.990 0.275 0.175 0.272 1.047 0.967
N(0,10) 0.900 0.889 1.093 1.449 1.025 0.505 0.202 0.218 0.746 0.672
t(1) 0.912 0.890 1.022 1.452 1.038 0.482 0.184 0.198 0.752 0.666
t(5) 0.894 0.873 0.485 1.409 1.021 0.475 0.180 0.196 0.727 0.654
20% N(0,6) 0.851 0.764 0.852 1403 0.984 0.217 0.215 0.216 0.747 0.673
N(0,10) 0.904 0.886 0.953 1.467 1.027 0.501 0.214 0.229 0.751 0.670




t(1) 0.902 0.879 0.951 1459  1.030 0.475 0.180 0.196 0.722 0.654
t(5) 0.896 0.882 0.923 1414  1.029 0.475 0.172 0.189 0.725 0.664

Tables7, 8, and 9 show that the results of the ordinary methods are very close to our proposed robust
methods when ¢ = 1, 3, 5. However, when contaminating the data at different rates and distributions
(normal and t), our proposed methods are more stable than the ordinary methods, based on the values of
RPE"Y across deferent error distributions. However, when polluting the data with different pollutant rates,
the RPE values for the ordinary methods increase the percentage of pollution and are greatly affected by
the increased variance of polluted data when polluting by natural distribution or The higher the degree of
freedom when polluting the t distribution, while the penalized robust methods remain resistant to the
outlier, the greater the percentage of pollution. The Mlwlasso method with w? is the best in most
experiments, followed by the preference of the Mlwlasso with w3 and Mlwlasso with w! Rahtin being

the lowest value for do yield (RPE).
Lung cancer data

In this section, the performance methods are illustrated using lung cancer data. These data were
collected from an Iragi medical center in Diwaniyah city, Iraq. They, represent monthly numbers of
people with lung cancer in Diwaniyah city, from April 2004 to September 2015.These data consist of one
response variable (lung cancer) and 6chemical water pollutants (Temp, Turb, PH, EC, AIK, TH), as
shown in Table 10.

Table 10 chemical water pollutants
Variables
xy Temperature(Temp)
x, Turbidity (Turb)
x3 Power of hydrogen (PH)
x4 Electric conductivity (EC)
x5 Alkility (Alk)
x¢ Total hardness (TH)

Table 11 shows the relative prediction error (RPEY) for the proposed methods and the other methods in

comparison.



Table 11 RPEY for the methods

Iwlasso Iwlasso lwlasso lasso alasso Mlwlasso Mlwlasso Mlwlasso Mlasso Malasso
with w1 with w? with w3 with wR!  with wR?  with wR3
1.055 0.998 0.872 1.184 1.135 0.673 0.565 0.407 0.843 0.727

From Tablell, we find that the ordinary methods are significantly affected, while the results of the
proposed robust methods are stable. It is clear that the proposed robust methods with w=3 give the best
results because they have the least RPE.Figure 1 graphically shows the values of RPEY for the methods.

We can clearly see that the proposed methods have the smallest values of RPEY compared with the other

methods.
. I I I I
wl w2 w3 lasso  alasso Rwl Rw2 Rw3  Mlasso Malasso
Figure 1 RPE" values for the real data.
Conclusions

In this paper, we proposed M-lag weighted lasso to deal with contamination data. The proposed
methods were illustrated using a simulation study and a real data example. The results show that the
proposed methods are more stable than the other methods in the comparison. Consequently, these
proposed methods are capable to dealing with outlier. In particular, the method Mlwlasso with w?? and
wh3 weights gave the best results compared with the others. The proposed methods can be extended to

other methods such as, robust lag-weighted elastic net, robust lag-weighted group lasso, robust lag-



weighted fused lasso, robust lag-weighted graphical lasso, and so on. Furthermore, the proposed methods

can be used not only for a fixed lag effect but also with varying lag effects across time.
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