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Abstract




  The purpose of this thesis is studying of some results on differential subordination in univalent and multivalent function theory. It is the study of differential sandwich results for analytic functions. We obtain some results of differential subordination and superordination of a class of univalent functions.We have also studied and introduced some differential sandwich results of p-valent functions. We obtain results on differential subordination and superordination of a class of p-valent functions in the open unit disk. We have dealt with the third-order differential subordination results of meromorphic univalent functions involving integral operator. Also, we give some applications of differential subordination of a class of meromorphic p-valent functions. We obtain some results, such as; coefficient bounds, growth and distortion bounds, closure theorem, radius of convexity, extreme points, convex linear combination and partial sums. 










Introduction
  Geometric Function Theory is a fairly old branch of mathematics, specifically complex analysis catch the attention of several mathematicians and researchers for its geometrical aspects and abundant avenues for research work. The study of univalent and multivalent functions is one of the major branches of Geometric Function Theory and aids in developing the complex analysis. One of the essential dilemmas in the study of univalent functions is whether there exists an univalent mapping from a simply connected domain onto a given simply connected domain. However, in view of Riemann mapping Theorem [16] above problem reduces to a problem of mapping an unit disk to onto a given simply connected domain such as starlike, convex, and close-to-convex etc.                                                                        
  Let A refer to the class of all analytic functions on the open unit disk  normalized by the conditions and , also let S stand for the subclass of A consisting of univalent functions.
  In 1916, Bieberbach [16] studied the second coefficient a2 of a function . He demonstrated that  with equality if and only if f is a rotation of the Koebe function and he also stated  is generally valid. This statement is known as the Bieberbach conjecture. This conjecture was challenge for several mathematicians for many years , it motivated them to develop a variety of new methods in complex analysis. In 1923, Lwner [35] proved the Bieberbach conjecture for n =3, many investigation have been made regarding the Bieberbach conjecture for specific values of n. Eventually, the conjecture was established by Branges [12] in the summer of 1985.                                     Subordination between analytic functions initiated by Littlewood [32,33] and Lindelf [31], where Rogosinski [52,53] introduced the term and established the basic results involving subordination. Lately, investigations to a variety of interesting properties of the generalized hypergeometric function were made by Srivastava and Owa [62] via applying the concept of subordination. 
  Research scholars and mathematicians, internationally recognized, such as,Ruscheweyh, Srivastava,  Miller, Mocano, Duren, Silveman, Owa, Jahangiri et al., have opened new avenues in the field of complex analysis, specifically in Geometric Function Theory.
   The current work unveils differential sandwich, differential subordination and superordination, third- order differential subordination, class of meromorphic p-valent functions and geometric properties. We shall now give the chapters wise breakup. 
  The first chapter introduces a list of all relevant definitions of analytic, univalent, multivalent (p-valent)functions  and some basic results which are needed during chapters for research.
  Chapter two is devoted for to studying some results on differential sandwich of univalent and multivalent functions. This chapter is divided into two sections. The first section deals with the study of differential sandwich results for analytic functions. We obtain some results of differential subordination and superordination for univalent functions. The second section is concerned with some differential sandwich results of p-valent functions. We obtain results on differential subordination and superordination of class of p-valent functions on the open unit disk.
  Chapter three deals with differential subordination results of meromorphic univalent and multivalent functions with its applications. In section one, we have discussed third- order differential subordination results of meromorphic univalent functions involving integral operator.
The second section deals with the applications of differential subordination of a class of meromorphic p-valent functions. We obtain some geometric properties, such as, coefficient inequality, growth and distortion bounds, closure theorem, radius of convexity, extreme points , convex  linear combination and partial sums.




















Chapter One
Definition and Fundamental Results





















Introduction
In this chapter, we have mentioned all the required definitions, some examples, and basic results of analytic functions, univalent and multivalent(p-valent) functions and also subordination and which are needed in subsequent chapters for research. The detailed proofs and further discussions may be found in standard texts such as Duren [14], Goodman [18] and other references.
1.1 Univalent and Multivalent Functions [12]
  Let  be the complex plane and   be the open unit disk in . A function  is analytic at a point  if it is differentiable in some neighborhood of  and it is analytic in a domain   if it is analytic at all points in Domain . An analytic function  is said to be univalent in a domain if it provides a one-to-one mapping onto its image: . Geometrically, if some horizontal line intersects the graph of function more than once, then the function is not one-to-one. But if no horizontal  line intersects the graph of the function more than once, then the function is one-to-one. As examples, the function  is univalent in U while  is not univalent in U. Also  is univalent in U for each positive integer n.
 An analytic function  is locally univalent at a point   if it is univalent in some neighborhood of  .
Remark(1.1.1)[14]: For an analytic function , the condition is equivalent to the local univalence at .(from Rouch’s theorem)
Example(1.1.1)[18]: The function  is a locally univalent at each point, since  for all . But it is not univalent function since  for all .
Definition (1.1.1)[14]: A function  is said to be conformal at a point  if it preserves the angle between oriented curves passing through  in magnitude as well as in sense. Geometrically, images of any two oriented curves taken with their corresponding orientations make the same angle of intersection as the curves at  both in magnitude and direction. 
A function  is said to be conformal in the domain  if it is conformal at each point of the domain. Any analytic univalent function is a conformal mapping because of its angle-preserving property. 
The well-known Riemann mapping theorem states that every simply connected domain (which is not the whole complex plane  ), can be mapped conformally onto the unit disk U.
Theorem (1.1.1)( Riemann Mapping Theorem)[14,p.11]: Let  be a simply connected domain which is a proper subset of the complex plane. Let  be a given point in  . Then there is a unique univalent analytic function   which maps  onto the unit disk U satisfying .
  In view of this theorem, the study of analytic univalent functions on a simply connected domain can be restricted to the open unit disk U.  Let H=H(U) be the class of analytic functions defined on U Let H[a, n] be the subclass of H(U) consisting of functions of the form: 
,
	with H=H[1,1]. Also, let  denote the class of all functions   analytic in the open unit disk U, and normalized by and. 
A function has the Taylor series expansion of the form:
                            
Definition(1.1.2)[20]: Let  be a function analytic in the unit disk. If the equation  have never more than p-solutions in U, then  is said to be p-valent in U.
For a fixed  let be the class of all analytic function of the  form:

that are p-valent (multivalent) in the open unit disk , with =.
  The subclass of  consisting of univalent functions is denoted by S. The function  given by

is called the Koebe function, which maps U onto the complex plane except for a slit along the half-line (- and is univalent . It plays a very important role in the study of the class S. The Koebe function and its rotations ( for  and the only extremal functions for various problem in the class S.
Remark(1.1.2)[16]: The Koebe function can be written as . In Figure (1.1), the sequence of mapping used in building the koebe function is shown. The function  maps U univalently onto the right half-plane . Then the function  takes this half-plane onto the entire minus the part of the negative real axis from  to infinity so that the Koebe function  is establishe.
[image: ]
Figure (1.1):The mapping of Koebe function.
 In 1916, Bieberbach[14] conjectured that for  He proved only for the case when n=2.
Theorem (1.1.2) (Bieberbach′s Conjecture)[14]: If  , then  with equality if and only if  is the rotation of the Koebe function.
  For the cases n=3, and n=4 the conjecture was proved by Lwner [32] and Garabedian and Schiffer [15], respectively. Later, Pederson and Schiffer [43] proved the conjecture for n=5, and for n=6, it was proved by Pederson[44]and Ozawa[42 ], independently. In 1985, Louis de Branges [10], proved Bieberbach′s Conjecture for all the coefficients n.



Theorem (1.1.3)(de Branges Theorem or Bieberbach′s Theorem)[10]:
 If  , then
,
with equality if and only if is the Koebe function  or one of its rotations.  Bieberbach′s Theorem has many important properties in univalent function.
These include the well known covering theorem :If  ,then the image of U under   contains a disk of radius 1/4 .
Theorem (1.1.4) ( Koebe One-Quarter Theorem)[14,p.31]: The range of every function  contains the disk { }.
The Distortion theorem, being another  consequence of the Bieberbach theorem gives sharp  upper and lower  bounds for .
Theorem (1.1.5)(Distortion Theorem) [14.p.32]:  For each
                          
The distortion theorem can be used to obtain sharp upper and lower bounds for   which is known the Growth theorem.
Theorem (1.1.6)(Growth Theorem )[14,p.33]: For each 
                          
Another consequence of  the Bieberbach theorem is the Rotation theorem.


Theorem (1.1.7)(Rotation Theorem )[14,p.99]: For each 

where . The bound is sharp.
1.2 Subclasses  of  Univalent  Functions 
  The long  gap  between the Bieberbach's conjecture in 1916 and its proof by de Branges in 1985 motivated researchers to consider classes defined by geometric conditions. Notable among them are the classes of convex functions, starlike functions and close-to-convex functions.
  A set  in the complex plane is called convex if for every pair of points  and  lying in the interior of , the line segment joining  and  also lies in the interior of [14],i.e.
for 
If a function  maps U onto a convex domain, then is a convex function. The class of all convex functions in  is denoted by  [1]. An analytic description of the class  is given by
.
Example(1.2.1)[18]: The Mbius function  is a convex function because it maps  onto a half-plane.
Remark(1.2.1)[16]:  Figure 1.2 describes the image for a convex function.
[image: ]
Figure (1.2) :The image of convexity
Let be an interior point of . A set  in the complex plane is called starlike with respect to  if the line segment joining  to every other point  lies in the interior  of  [14], i.e.
for 
If a function  maps U onto a starlike domain, then  is a starlike function. The class of starlike functions with respect to origin is denoted [16]. Analytically,

Example(1.2.2)[18]: The Koebe function is a starlike function and the domain  is starlike with respect to each 
Remark(1.2.2)[16]:  The image of a starlike function is show in Figure 1.3
[image: ]
Figure 1.3: The image of starlikeness.

In 1936, Robertson [47] introduced the concepts of convex functions of order  and starlike functions of order for . A function  is said to be convex of order  if	                                 
and starlike of order 
                                
These classes are respectively denoted by ( and ().
  Note that = and (0)=. 
Definition(1.2.1)[14]: Radius of convexity of a function  is the largest  for which it is convex in .
Definition(1.2.2)[14]: Radius of starlikeness of a function  is the largest  for which it is starlike in .
An important relationship between convex and starlike functions was first observed by Alexander [8] in 1915 and know later as Alexander’s Theorem.
Theorem (1.2.1) (Alexander’s Theorem)[14.p.43]:  Let  .Then if and only if 
From this, it is easily proven that () if and only if  Another subclass of  that has an important role in the study of univalent functions is the class of close-to-convex  functions introduced by Kaplan [24] in 1952. A function  is close-to-convex in U if there is a convex function  and a real number  such that
                            
The class of all such functions is denoted by . The subclass of ,namely convex , starlike and close-to-convex  functions are related as follows:
                                     
The well known Noshiro-Warschawski theorem  states that a function  with positive derivative in U is univalent.
Theorem(1.2.2)[40,64]: For some real ,if a function  is analytic in a convex domain  and 
                                               
then  is univalent in .
Kaplan[24] applied Noshiro- Warschawski theorem to prove that every  close-to-convex  function is univalent.
The class of mreomorphic functions is yet another subclass of univalent functions.Let  denote the class of normalized mreomorphic functions  of the form:
                                   
that are analytic in the punctured unit disk   except for a simple pole at  .
 Definition(1.2.3)[20]: Let  be a function analytic in the punctured unit disk  If the equation  has never more than p-solution in , then  is said to be p-valent in . The class of all p-valent meromorphic functions is denoted by, and expressed by the form: 

Definition (1.2.4)[49]: The convolution (or Hadamard product) of functions and  denoted byis defined as following for the functions in  and  respectively:
(i)If then 
                            (ii)If then 
                              
Definition (1.2.5)[34]: Let  be a subset of X .A point  is called an extreme point of  if it has no representation of the form  as a proper convex combination of two distinct points y and z in .

Theorem (1.2.3)[15]: Assume that  is analytic and not constant in a domain  of the complex z-plane. For any point  for which ,this mapping is conformal, that is, it preserves the angle between two differentiable arcs. 
Theorem(1.2.4)[14]: (Maximum Modulus Theorem): Suppose that a function is continuous on a boundary of  ( any disk or region). Then, the maximum value of  on  occurs on  and never in the interior (i.e; only on if  is not constant) .
1.3 Differential Subordination:
  A function   is said to be a Schwarz function, if for all  , then where "capital  " is defined as follows:
Let   and  be any two sequences and ≥  for all 𝑛. If there exists a constant number 𝜂 >  such that  ≤ 𝜂 (for all 𝑛), then, we write [14]
A function  is said to be subordinate to   in U, written , if there exists a schwars function , analytic in U with  ()= and  such that  (z)= ((z)). If the function   is univalent in U , then  if  and .[36]
Ma and Minda [33]have given a unified treatment of various subclasses consisting of starlike and convex functions by replasing the superordinate function  by a more general analytic function .For this purpose,they considered an analytic  function  with positive real part on U with ()=1, and  maps the unit disk U onto a region starlike with respect to 1, symmetric with respect to the real axis. The class of  Ma – Minda starlike functions denoted by  consists of  functions  satisfying

and similarly the class of Ma-Minda convex functions denoted by  consists of functions satisfying the subordination
respectively.
The basic definitions and theorems in the theory of subordination and certain applications subordination were developed by Miller and Mocanu [36].
Definition (1.3.1) [36]:  Let     and   be univalent in f   is analytic in  and satisfies the second–order differential subordination:

then     is  called  a  solution  of  the  differential  subordination      An univalent function  is called a dominant of the solutions of the  differential subordination ,  more over simply dominant, if     for all    satisfying  A univalent dominant   that satisfies    for  all dominants  of  is said to be the best  dominant of 
Definition (1.3.2) [37]:  Let  and the function  be analytic in.  If  the functions     and    are univalent in   and if  satisfies the second–order differential superordination:     

then   is  called  a solution  of the  differential  superordination  An  analytic function  is called a subordinant of the solutions of the differential superordination  or more simply a  subordinant, if   for all   satisfying   An univalent subordinant  that satisfies  for all subordinants  of is said to be the best subordinant.                                                                                                     
Definition (1.3.3) [36]:  Let   the set of  all functions    that are analytic and injective on ,where
and
                                   , 
and are such that  for . Futher, let the subclass of  for which  be denoted by  , and 
Lemma (1.3.1) [36] : Let q be univalent in the unit disk U and let θ and  be analytic in a domain  containing q(U) with  when  Set  
Suppose that
(i) is starlike univalent in ,		
(i) (ii)Re  for .
If  is  analytic in  withand 			
            (1.3)
then  and  is the best dominant of (1.3).
Lemma (1.3.2) [37]: Let q be convex univalent in function in U and let  with 
                       
If  is analytic in , and
                            (1.4)
then 	and  is the best dominant of (1.4).
Lemma (1.3.3) [37]: Let q be convex univalent in U and let  , further assume that Re  . If  Q and  is univalent in U, then 
                           (1.5)
which implies that   and q is the best subordinant of (1.5).
Lemma (1.3.4) [12]: Let q be convex univalent in the unit disk U and let   be analytic in domain  containing q . Suppose that 
(i) (i)Re 
(ii) (ii)Q.
If 
is univalent in U and
,             (1.6)
then 	and  is the best subordination of  (1.6).
Lemma (1.3.5)[50]: The function  is univalent in unit disc U if and only if  or  

Theorem (1.3.6)[6]: Let  and let  and satisfy the following conditions
,
where . if Ω a set in 
( ,
then 
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Introduction:
  In [35] Miller and Mocanu extended the study of differential inequalities of real-valued functions to complex –valued functions defined in the unit disk.Following Miller and Mocanu [36,37], Bulboac [11]and others [7,9,38,39,54] studied different classes of analytic functions,  be means of differential subordination and superordination.
  In this chapter, we concentrate in particular on the study of applications of differential sandwich of univalent and multivalent functions.
[bookmark: page15]  This chapter consists of two sections. Section one deals with the study of differential sandwich results for analytic functions. Here, we obtain some results,such as,let q be convex univalent function in U with q()=1, ,z and suppose that q satisfies:
Re  . If  satisfies the subordination

then

and q is the best dominant.
Section two, is devoted  to a study of some differential sandwich results of p-valent functions. We obtain results on differential subordination and superordination of a class of p-valent functions in the open disk, such as, let q be univalent function in U, with q()=1, and suppose that
     Re (1+  )     max {0; – Re (}     z  U, where  0 , 1 , 
                                       (z)   q(z) + ( ) z q(z),
(z) = (1-)  + ,
then
             q(z) ,
and q is the best dominant.








2.1 On Differential Sandwich Results For Analytic Functions
  Let H=H(U) be the class of analytic functions in the open unit disk For n a positive integer and Let H[a, n] be the subclass of H consisting of functions of the form: 
	(a ).                 (2.1)


Also, let A be the subclass of H consisting of functions of the form:
	                                                                (2.2)


Let :  If p and are univalent functions in U and if p satisfies the second-order differential superordination.
	                             (2.3)


then p is called a solution of the differential superordination of(2.3).( If  is subordinate to , then  is superordinate to  ). An analytic function q is called a subordinant of (2.3), if  for all the functions p satisfying (2.3). 
An univalent subordinant  that satisfies  for all the subordinants q of (2.3) is called the best subordinant. Miller and Mocanu [36] have obtained conditions on the functions and  for which the following implication holds :
	                  (2.4)


For  ,Al-shaqsi [5]  defined the following integral operator:

 (2.5)
We also note that the operator    defined by (2.5) can be expressed by the series expansion as follows :
	                     .                               (2.6)


Moreover, from (2.6), it follows that
                                   (2.7)
Ali et al.[2] obtained sufficient conditions for certain normalized analytic functions to satisfy

where and are given univalent functions in U with . Also, Tuneski [62] obtained  sufficient conditions for starlikeness of in terms of the quantity . Recently, Shanmugam et al.[54,55], Goyal et al.[19] also obtained sandwich results for certain classes of analytic functions. 
The main object here to find sufficient conditions for certain normalized analytic functions  to satisfy: 
,
and 
,
where q1 and q2 are given univalent functions in U with q1()= q2( 1.
Theorem (2.1.1): Let q be convex univalent function in U with 
Re  .                  (2.8)
If   the subordination
                                                                                                    (2..9)
then 
                                     (2.10)
and  is the best dominant of (2.9).
Proof :  Define the function p by
                                     (2.11)
Differentiating (2.11) with respect to z logarithmically, we get
                             (2.12)
Now, in view of (2.7), we obtain the following subordination 

therefore ,

The subordination (2.9) from the hypothesis becomes 

An application of Lemma(1.3.2) with  and 
Putting  in Theorem( 2.1.1) ,we obtain the following 
Corollary (2.1.1): Let 
Re .
If satisfies the subordination

then

and  is the best dominant.
Theorem (2.1.2): Let q be convex univalent in U with  and assume that q satisfies 
Re  ,                                  (2.13)
where  and .
Suppose that -is starlike univalent in U, if  satisfies:
 ,                       (2.14)
where
,                 (2.15)
then 
,                               (2.16)
and q(z)is the best dominant of (2.14).
Proof: Define the function p by 
,                                 (2.17)
by setting : 
 .
We see thatis analytic in  and that . Also, we get

and  

It is clear that is starlike univalent in U,

By a straightforword computation,we obtain
,                             (2.18)
where  is given by (2.15).
From (2.14) and (2.18), we have 
.                             (2.19)
Therefore by Lemma (1.3.1), we get . By using (2.17), we obtain the result .
Putting  (-1 ) in Theorem (2.1.2), we obtain the following Corollary:
Corollary (2.1.2): Let -1  and 

where  and  if  satisfies 
  and  is given by (2.15),

and is the best dominant.
Theorem (2.1.3): Let q be convex univalent in U with 
,
 and ,
be univalent in U. If 
,           (2.20)  
then 
                                                                                (2.21)
and q is the best subordinant of (2.20).
Proof: Define the function p by
.                                    (2.22)
Differentiating (2.22) with respect to z logarithmically, we get 
                                (2.23)
After some computations and using (2.7), from (2.23), we obtain

=
and now, by using Lemma(1.3.3), we obtain the desired result .
Putting   in Theorem (2.1.3), we obtain the following Corollary :
Corollary (2.1.3): Let  and Re 

and 
,
be univalent in U. If 
,
then

and 
 is the best subordinant.

Theorem (2.1.4): Let q be convex univalent in U with and assume that q satisfies
                                        (2.24)
where  z.
Suppose that  is starlike univalent in U, let 
,
and where  is given by (2.15). If

then 

and q is the best subordinant of 
Proof: Define the function p by 
,                                 (2.27)
by setting 
 and    
we see that   is analytic in . Also we get 
.
It is clear that is starlike univalent in U,

By a straightforword computation, we obtain 
                                                  (2.28)
where is given by (2.15).
From (2.25) and (2.28), we have 
                           .
Therefore, by Lemma (1.3.4), we get . By using (2.27), we obtain the result.
Concluding the results of differential subordination and superordination we arrive at the following ''sandwich result''. 
Theorem (2.1.5): Let q1 be convex univalent in U with q1(1,  Re{} and let q2 be univalent in U, q2(1,z and , let 
 ,
and

be univalent in U. If 
,


and are respectively, the best subordinant and the best dominant.
 Theorem (2.1.6): Let q1 be convex  univalent in U with q1(,  and satisfies (2.24), let q2 be univalent in U q2(1,z satisfies (2.13), let 

and  is univalent in U, where is given by (2.15). If  
then 

and are respectively. The best subordinant and the best dominant.
2.2  Some Differential Sandwich Results of                          p-valent Functions
  Let H(U) denote the class of analytic functions in the open unit disc U = {z : z ∈  : |z| < 1} and let H[a, p] denote the subclass of the functions  ∈ H(U) of the form:
(a) . 
Also, let A(p) be the subclass of the functions  ∈ H(U) of the form:
               (p∈N),                                      (2.29)
 and set A ≡ A(1). For functions (z) ∈ A(p),  given by (2.29), and  given by
                 (p∈N),                                      (2.30)
 the Hadamard product (or convolution) of   (z) and  is defined by 
             (z∈U;p∈N). (2.31)
 Supposing that p and k are two analytic functions in U, let :  If h and  are univalent functions in U and if p satisfies the second-order superordination
                       k(z)≺,                             (2.32)
 then h is called to be a solution of the differential superordination (1.4). A function q ∈ H(U) is called a subordinant of (2.32),  if q(z) ≺ p(z) for all the functions p satisfying (2.32). A univalent subordinant  that satisfies q(z) ≺ (z) for all of the subordinants q of (2.32), is said to be the best subordinant.
 Recently, Miller and Mocanu [37] obtained sufficient conditions on the functions k, q and ϕ for which the following implication holds:
k(z) ≺  ⇒ q(z) ≺ p(z).
 Using these results, Bulboaca [11] considered certain classes of first-order differential superordinations, as well as superordination-preserving integral operators [25]. Ali et al. [2], using the results from [11], obtained sufficient conditions for certain normalized analytic functions to satisfy
 ≺  ≺ ,
 where  and  are given univalent normalized functions in U. Very recently, Shanmugam et al. [55-57] obtained the sandwich results for certain classes of analytic functions. Further subordination results can be found in [41-63]. 
We now define the linear operator  is defined by:
   (2.33)                                               
For 
It is easily verified from (2.33) that
z=.
(2.34)
Differentiating (2.34) j-times with respect to z we get
.                                                                (2.35)
Note that linear operator  unifies many other operators considered earlier.In particular:
(1) (see Cho et al.[13]).
(2) 
(3)  (see Srivastava and Aouf [59]).
(4) (see Hohlov [21]).
(5) (a,c) (see Saitoh [52]).
(6) (see Liu and Noor [31]).
The main object this idea  is to find sufficient conditions for certain normalized analytic function to satisfy:
,
and

where  and  are given p-valent functions with 

Theorem (2.2.1): Let q be univalent function in U, with  q()=1, ,and suppose that 
     Re (1+  )     max {; – Re (} z  U,                            (2.36)
where    , 1 , 
                              (z)   q(z) + ( ) z q(z) .                             (2.37)
where
(z)=(1-)
,                               (2.38)
then
                                             q(z) ,                                  (2.39)
and  q  is the best dominant of  (2.37) .
 proof : If we consider the analytic function
                                                                   (2.40)
by differentiating (2.40)  logarithmically with respect to  z , we deduce that
                                                              (2.41)
From (2.41), by using the identity (2.34) , we have
(1-) +=
hence the subordination (2.37) is equivalent to
                         (2.42)
An application of Lemma 1.3.2,with α=1 and  leads to (2.39) .
Taking      in Theorem   (2.2.1), where    -1the condition (2.36) becomes
               Re
It is easy to check that the function  is convex in U, and Since   a convex domain symmetric with respect to the real  axis ,hence
                     inf{ Re (                              (2.44)
Then the inequality  (2.43) is equivalent to 

hence we obtain the following result .
Corollary  (2.2.1). Let   
max 
If   ,satisfies the subordinution                        
then

and   q(z)=       is the best dominant of  (2.45) .
Taking  A=1  and  B= -1     in Corollary  (2.2.1),we obtain the following Corollary.
Corollary (2.2.2): Let   is given by (2.38) , satisfies the subordination :
                               ,                                          (2.46)
then

and   q(z)=   is the best dominant of (2.46) .
Theorem (2.2.2): Let  q(z)  be univalent in U ,with  q()=1  and  q(z)  for all zU,let  ,n,m    with  n+m. Let  and suppose that   and   satisfy the next conditions :

and	
                                                 (2,48)
If 
– p )   (2.49)
then

and  q is the best dominant of    (2.49) .
Proof : According to (2.47),we consider the analytic function
S(z)=,         (zU).                        (2.50)
By logarithmically differentiating of  (2.50) yields
 – p ) .
In order to prove our result we will use Lemma 1.3.1. In this Lemma consider
                               ()=              and    ()= ,
then  is analytic in  and () is analytic in .Also ,if we let
(z)=z q(z) (q(z)) = ,
and
h(z)=(q(z))+(z) = + ,               (zU) .
from the assumption (2.48),we see that (z)  starlike function in U,and also have :
Re( = Re (1+)   (zU) .
Now,by Lemma 1.3.1, we derive the subordination (2.49), implies  S(z)q(z), and the function  q(z)  is the best dominant of  (2.49) .
Taking  n=, m=1 ,  =1  and q(z)= 	in Theorem  (2.2.2),it is easy to cheek that assumption (2.48) holds wherever  -1AB1,hence we obtain the next result.
Corollary (2.2.3): Let  -1AB1  and   ,let and suppose that

If
                             (2.51)
then

and   is the best dominant of (2.51) . (The power is the principal one) .
Putting  n=0 , m=p =1 , α= , v=  (a,band  in Theorem (2.2.2) ,then combining this to gather  with  Lemma 1.3.5  we obtain the next result due to Obradovis et al .[44,Theorem (2.2.1)] .
Corollary (2.2.4)[41]:Let  a,b  such that let   and suppose that for all   If 
                                                          (2.52)
then

and   is the best dominant (2.52) . (The power is the principal one) .
Again setting  n=0,  m=p =α =1  , and   in Theorem (2.2.2) . and using  Lemma 1.3.2 we obtain the next result .
Corollary (2.2.5):Let  -1  A  B  1  with B0 , and suppose that  Let  such that  for all  z  U  and let  . If

then
                                                 ,                      (2.53)
and    is the best dominant of (2.53) . (The power is the principal one) .
: Let  q  be univalent in  U , with  q(0)=1,let  ,  and let  n,m    with  n+m  . Let   and suppose that   and  q  satisfy the next two conditions :
                            (2.54)
and
                    Re(1+(z.                 (2.55)
If
 
,                               (2.56)
and
                                                                  (2.57)
then

and  q(z)  is the best dominant of (2.57).
Proof :  If  we consider the function   r(z) by 
       
Differentiating  (2.58) logarithmically with respect to  z, we obtain

and

In order to prove our result we will use Lemma 1.3.1. In this Lemma consider

then    is analytic in  and   is analytic in  ,also if we let

and

from (2.55),we see that (z) is starlike function in  U. we also have

by applying Lemma 1.3.1, the proof is completed .
Taking  q(z)=  in Theorem  (2.2.3), where  -1  and with reference to (2.44),the condition (2.55) becomes 

Thus, for the particular case   we obtain the following result.
Corollary (2.2.6) : Let -1  and   with 

Let   and impose that 

and let  If
 (2.59)
then

and    is the best dominant of (2.59).
Taking   and q(z)=in Theorem (2.2.3), we  obtain the following result.
Corollary( 2.2.7): Let   such that  If
                                             (2.60)
then

and    is the best dominant of (2.60).
Here, too,we are trying to create  sufficient conditions:
,
and

where   are given   p – valent functions in  U  with  
Theorem (2.2.4) : Let  q  be convex in  U  with  q(0)=1, with  Re( . Let   and suppose that  If the function
,
is univalent in the unit disc  U  , and                          
     
where

then

and  q  is the best subordinant of (2.61) .
Proof : We know the function  p(z)  by 

From the supposition of  Theorem  2.2.4,the function  p(z) is analytic in  U. Differentiating (2.62) logarithmically with respect to  z , we obtain

After several accounts , and using the identity (2.34) from (2.63) , we get


and now , by using  Lemma  1.3.3 , we get the wanted result .
Taking   in Theorem (2.2.4) , we obtain the following Corollary .
Corollary  (2.2.8). Let  q  be convex in  U  with  q(0)=1, let  , with    Re(. Let   and suppose that  If the function
           (2.64)
is univalent in  U, and

where 

then

and   is the best subordinant of  (2.64).
Using  like cases to those  of  the  proof  of  Theorem (2.2. 3), and then by applying Lemma  1.3.4, we obtain  the following  result .
Theorem (2.2.5): Let  q  be convex in  U  with  q()=1, let  and let    with  n+m  and   and suppose that  f  satisfies the next conditions :

and

If the function   X(z)  given by (2.39) is univalent in  U , and

then

and  q(z)  is the best subordinant of  (2.65).Combining Theorem  (.2.2.2 ) with Theorem  (2.2.3)  and Theorem  (2.2.4)  with Theorem  (2.2.5),we obtain , respectively ,the following two sandwich results.
Theorem (2.2.6): Let    be two convex function in  U  with  with    Re(.Let   and suppose that  If the function

is univalent in the unit disc  U , and

         (2.66)
then

and   are respectively, the best subordinant and the best dominant of (2.66).
Theorem  (2.2.7) : Let    be two convex function in  U  with let    and  let    with  n+m0  and   and suppose that    satisfies the next conditions :
    
and

If the function   X(z)  given by (3.24) is univalent in  U, and

then

and    are respectively, the best subordinant and the best dominant of (2.67).






Chapter Three

On Differential Subordination Results  For Meromorphic Univalent and Multivalent Functions with is Applications













Introduction
  This chapter is completely devoted to a study of differential subordination results for meromorphic univalent and multivalent functions with its applications, having Laurent series expansion containing positive and negative terms .Actually a differential subordination in the complex plane is the generalization of a differential inequality on the real line. The concept of differential subordination plays a very important role in functions of real variable.  This concept  also enables us to study the range of original function.  In the theory of complex –valued  function there are several differential applications in which a characterization of a function is determined from a differential condition. Miller and Mocanu [36] have contributed number of papers on differential subordination. The study of differential subordination stems out from textbooks by Duren[14], Goodman [18] and Pommerenke [45].                                                                                                         
  This chapter is divided into two sections. The first section is concerned with third-order differential subordination results of meromorphic univalent functions involving integral operator, such as, let   if the functions  satisfy the following  condition:    

and
.
Then 

  The second section  deals with the applications of differential  subordination of a class of meromorphic p-valent functions. We obtain some geometric properties, such as, coefficient inequality, growth and  distortion bounds, closure theorem, radius of convexity, extreme points, convex  linear combination and partial sums .













3.1 On Third-order Differential Subordination Results of Meromorphic Univalent Functions Involving Integral Operator
  Let H(U) be in the class of functions which are analytic in the open unit disk. 
For  and  let 
          ,
and also let =[1,1]. Let W denote the class of the functions of the form
                           
which are analytic and meromorphic univalent in the punctured unit disk:

A.Y. Lashin[27] introduced and investigated the integral operator which is defined as follows:
 
For given by (3.1) , we have
 
from (3.3) we note that 
 
 In recent years, several authors obtained many interesting results for the theory of second-order differential subordination and superordination for example ([3,4,7,26,56]), thus the aim of this idea to investigate extension to the third -order differential subordination. The first authors investigated the third order, Ponnusamy[46] published in 1992. In 2011, Antonio and Miller [6] extended the theory of the second-order differential subordination in the open unit disk introduced by Miller and Mocanu [36] to the third-order case. The determined properties of the function  that satisfy the following third –order differential subordination.

Recently, the only a few of authors discussed the third -order differential subordination and  superordination for analytic functions in  U for example   ([1,9,22,60,61]). We will now recall the basic concept in the theory of the third -order differential subordination due to Antonio and Miller [5], which are required in our next investigations.
Definition (3.1.1).[6,p.440]: Let and the function h(z) be univalent in U. If the function  (z) is analytic in U and satisfies the following  third -order differential subordination
                       
then  (z) is called the solution of the differential subordination. A univalent function q(z) is called the a dominant of the solutions of the differential subordination or more simply a dominant if  for all p(z) satisfying (3.6). A dominant  that satisfies  for all dominates q(z) of (3.6) is said to be the best dominant.
Definition (3.1.2)[6,p.441]: Let  denote the set of the function q that are analytic and univalent on the set  , where , is such that min  for . Further let the subclass of  for which q(0)=a be denoted by (a) and (1)=Q1.
Definition (3.1.3)[6,p.449]. Let Ω be a set in  , The class of admissible functions  consists of these functions  that satisfy the following admissibility condition. 

whenever ,
and where 
We first define the following class of allowable functions, which are wanted in proving the differential subordination theorem involving the integral operator  Defined by (3.3).
Definition (3.1.4): Let Ω be a set in . The class of admissible functions  consists of those functions that satisfy the following admissibility condition,
wherever 

and  
  
where 
Theorem (3.1.1): Let , if the functions  satisfy the following  condition : 
                                        
and
 .                     (3.8)
Then 

Proof: Define the analytic function in U by

The differentiating (3.9) with respect to z using (3.3), we have

further computations show that 

and  

Define the transformation from  4 to  by 
,
and 
.
Let   
.                                                            
The proof will make use of Theorem (1.3.6), using equations (3.9) to (3.12) and from (3.13) we obtain

Hence (3.9) becomes 

Note that 

and
.
Thus, the admissibility condition for  in Definition 3.1.4 is equivalent to the admissibility condition for   as given in Definition 3.1.3, with n = 2. Therefore, by using (3.7) and Theorem 1.3.6.
We have,       

The following result is an extension of  Theorem 3.1.1 to the case, where the behavior of q(z) on  is not known.
Theorem (3.1.2): Let the set  and let the function q be univalent U with q() = 1. Let  for some  where. If the function  and satisfy the following conditions:

and 
,
then 

Proof: By using Theorem 3.1.1, yields 

This outcome follows easily from the subordination property .
If  is a simply connected domin, then  for some conformal mapping h(z) of U on  Ω. In this case, the class  is written as   the following two results are immediate consequence of Theorem 3.1.1  and Theorem 3.1.2.
 Corollary (3.1.1): Let [h,q] . If the function  and  satisfy the condition (3.7) and:
 
then  

Corollary (3.1.2): Let  and let the function q be univalent in U with q() = 1. Suppose also that  for some . If the function  and  satisfy the condition:

And
 
then

The following results yields the best dominant of the differential subordination (3.16).
Theorem (3.1.3): Let  the function h be univalent in unit open disk U. Also, let the function  and  be given by (3.13). Suppose that the differential equation 
                          
has a solution q(z) with q()= 1, which satisfies the condition (3.7). If the function   satisfies the condition (3.16) and the function:

 is analytic in U 

and q(z) is the best dominant.
Proof: In view of Theorem 3.1.1, we deduce that q is a dominant of (3.16). Since q satisfies (3.18), it is also a solution of (3.16) and therefore q will be dominated by all dominates. Hence q is the best dominant.
In view of  Definition 3.1.4 in the special case  the class of a dimissble function  . denoted by  is expressed as follows :
Definition (3.1.5):  Let Ω be a set in  and . The class of a dimissble functions  consists of these functions  such that 


wherever 
Corollary (3.1.3): Let ], if the function  is satisfies

 and

then
.
Specially if  then we denote  by  Corollary 3.1.3. can now be written as below.
Corollary (3.1.4): Let  if the function  is satisfies the following condition

and 

then
.
Corollary (3.1.5): Let . If the function  is satisfies
,
and 

then

Proof: Let where .To apply Corollary 3.1.3, we must show that  that is, that (3.19) is satisfied. In fact it follows easily , because of 

,
whenever . The required result now follows the Corollary 3.1.3.
Definition (3.1.6) : Let  Ω  be a set in , > , and  . The class of admissible function  [Ω , q] consists of those function  that satisfy the following  admissibility condition :

whenever


and


where  { z U , 
Theorem  (3.1.4) : Let  If the function  and  satisfy the following conditions :

And


then

Proof . Let

Then, from (3.3) and (3.23) , we get

After a simple computation, we have

and

Define the transformation from    by :


and

Let

The proof will make use of Theorem 1.3.6 . using equations (3.22) to (3.25)and from (3.26) , we obtain

Hence (3.21) becomes

Note that

and

Thus, the admissibility condition for   in Definition  3.1.6 is equivalent to the admissibility condition for   as given in Definition 3.1.3, with  n=2. Therefore,by using (3.20) and Theorem 1.2.7,we have 

If    is asimply connected domain , then Ω=h(U) for some conformal mapping  h(z) of  U  on to  Ω				q`. In this case , the class   is written as   The following results is an immediate consequence of Theorem 3.1.4. 
Theorem (3.1.5) : Let  . If the function   and   satisfy condition :

and
                              (3.27)
then

In the special case, when  q(z)=1+Mz,M > 0 ,and in view of Definition 3.1.6  the class of admissible functions   is denoted by   is described below.
Definition  (3.1.7) : Let Ω be a set in  The class of admissible function  consists of those functions  such that

  
whenever  ,for all  and 
Corollary (3.1.6) : Let   If the function    satisfies

and

then

In the special case, when Ω=q(U)={:the class  is simply denoted and Corollary 3.1.6  has the following form  
Corollary  (3.1.7) : Let  If the function    satisfies the following condition :

and

then

Corollary (3.1.8): Let . If the function    satisfies 

and

then

Proof . By taking

and  Ω=h(U),where

Using Corollary 3.1.6, we need to show that  Since






whenever   for all   The proof is complete .













3.2 Applications of Differential Subordination of a Class of Meromorphic p-valent Functions
Let denote the class of functions of the form
                                     (3.28)
which are analytic and p-valent in the punctured unit disk Jun-Kim Srivastara [23] defined an integral operator  for   as follows
                                    (3.29)
If is of the form (3.28), then

In particular, when p=1 we have:
.
Definition(3.2.1): A function is said to be in the classof functions of the form (3.28) which satisfies the condition

where non zero complex number
We can re-write the condition (3.32) as 
                                 .                 (3.32)
In the following theorem, we give a sufficient and necessary condition to be the function in the class 
Theorem (3.2.1): Let  be given by (3.28). Then  if and only if

The results is sharp for the function  given by (3.34)
Proof: Assuming that the inequality (3.34) holds  true  and  Then, we have

=
 
= , by hypothesis.
Hence, by the Maximum Modulus Theorem, we have 
Conversely, suppose that  Then from (3.32), we have 
 

Since Re(z) for all z(zwe have
Re(.
We choose the value of z  on the real axis and z  , we get 

. Sharpness of the result follows by setting
 
Corollary (3.2.1): Let . Then
 ,.

In the following theorems, we obtain the growth and the distortion  theorems for the functions in the class 
Theorem (3.2.2): If the function defined by (3.28) is in the class then for , we have:

where equality holds true for the function

Proof: Since Then from (3.33)
  
we conclude that 
                              
Thus for

or  
and 
or 
On using (3.38) and (3.39) inequality (3.35) follows.
Theorem (3.2.3): If  (then

The result is sharp for the function   is given by (3.36).
Proof: The proof is similar to that of Theorem (3.2.2).
In the next theorem, we obtain extreme points  for the class 
Theorem (3.2.4): Let ,             (3.40)
for . Then  if and only if it can be expressed in the form: 

Proof : Let 

Then 



Using Theorem (3.2.1), we easily get  . 
Conversely, let . From Theorem (3.2.1), we have 
for
Setting
for

Then
 
This completes the proof. 
In the following theorem, we obtain the radius of convexity  for the class 
Theorem (3.2.5): Let the function  (z) defined by (3.28) in the class  Then is meromorphically p-valent convex of order  in the disk  where 
,       (3.42)
The result is sharp for the function  given by (3.34).
Proof: A function  meromorphic p-valent convex of order  if

We must show that
                              for                          (3.43)
We have  .
Thus, (3.43) will be satisfied if 
                                                                       (3.44)
Since  we have 

Hence, (3.44) will be true if
,
or equivalently

which follows the result.
Theorem (3.2.6): The class  is closed under convex linear combinations.
Proof: Let  and  be the arbitrary elements of . Then for every t  and . we show that . Thus we have
.
Hence
 .

This completes the proof.
Theorem (3.2.7): Let the functions defined by 
,
be in the class  for every k = (1,2,3,…). Then the function  defined by

also belong to the class   where =  proof: Since , it follows the Theorem (3.2.1) that 
    ,
for every k = 1,2,3,…,. Hence

                                    
Then  .
Theorem (3.2.8): Let be given by(3.28). We define the partial sums as follows :

 Also suppose that

Then, we have

and

Each of the bounds in and is the best possible for .
Proof: We can see from (3.46) that 
Therefore, we have:

By setting 

and applying  we find that 
	
which readily yields the assertion (3.47) if , we take 

Then which shows that the bound in (3,47) is the best possible for 
Similarly, if we put
 

and make use of (3.52), we have

which leads us to the assertion (3.48). The bound(3.49) is sharp for each  with the function given by (3.52). The proof of the theorem is complete.
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المستخلص




الغرض من هذه الرسالة هو دراسة بعض النتائج حول التبعية التفاضلية في نظرية الدالة احادية التكافؤ والمتعددة التكافؤ, بما تضمنته من نتائج حول الساندوج التفاضلية للدوال التحليلية،و نتائج التبعية والتبعية العليا لصنف من الدوال احادية التكافؤ. حصلنا على نتائج مرتبطة بالتبعية والتبعية العليا لصنف من الدوال متعددة التكافؤ في قرص الوحدة المفتوح. تعاملنا ايضاً مع نتائج التبعية التفاضلية من الرتبة الثالثة لدوال احادية التكافؤ الميرومورفية والمعرفة بواسطة مؤثر تكاملي. اعطينا أيضا بعض تطبيقات التبعية التفاضلية لصنف من الدوال متعددة التكافؤ الميرومورفية حيث حصلنا على بعض النتائج ،مثل، حدود المعامل ، حدود التشوية والنمو، مبرهنة الإنغلاق ، نصف قطر التحدب ، النقاط المتطرفة ، التركيب الخطي المحدب، والمجاميع الجزئية .                                                                
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