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Abstract



         The aim of this thesis is to study the asymptotic behaviors of random dynamical systems in two different topological structures ( in a metric space and uniform space), where we  study in the first part of this work the Omega Limit Set and introduced the concepts of  the First Prolongation and the Prolongational Limit Set for Random Dynamical Systems., where some new properties are proved such as the relation among the orbit closure, orbit and omega limit set in RDS; also we prove that the First Prolongation of a closed random set containing this set, the First Prolongation is closed and invariant, also it is connected whenever it is compact provided that the phase space of the RDS is locally compact. Then we study the Prolongational Limit Set for RDS and proved some essential properties of this set. Where we prove that the Prolongational Limit Set for RDS is closed and invariant. Also the relation among the the First Prolongation, the Prolongational Limit Set and the positive trajectory of a random set is given and proved. Also if the phase space of RDS is locally compact then the following statements are true : if the Prolongational Limit Set for RDS is nonempty and compact, then the omega-limit set is non-empty; the Prolongational Limit Set for RDS is nonempty and compact if and only if the the First Prolongation is compact. Finally the Prolongational Limit Set for RDS is connected. The second part of this work the stability theory of RDS is studied when the phase space of the RDS is any metric space. This study orphanage through the study of  the recursiveness , minimal random sets, and the concepts of region of weak attraction, attraction and uniform attraction. The third final part of our work is to study the  the asymptotic behaviors of random dynamical systems in uniform space, i.e., when the phase space of RDS is uniform space. Throught the concepts of uniform RDS and the uniform random set are introduced. Also we study the concepts of  Uniform Transitive, Uniform Sensitivity , Sequence of Maps in a Uniform space, Uniformly Equicontinuous RDS and Proximal  and Distal .
 





















Chapter One
Random Dynamical Systems



Random dynamical systems arise in the modeling of many phenomena in physics, biology, economics, climatology, etc, and the random effects often reflect intrinsic properties of these phenomena rather than just to compensate for the defects in deterministic models. The history of study of random dynamical systems goes back to Ulam and von Neumann in 1945 [33] and it has flourished since the 1980s due to the discovery that the solutions of stochastic ordinary differential equations yield a cocycle over a metric dynamical system which models randomness, i.e. a random dynamical system. This chapter consists of three sections. In section 1 we state the definition of MDS in terms of any locally compact group and give some examples . In section 2  we state the definition of RDS and give some basic properties of RDS .In section 3 we study random set.
1.1 Metric Dynamical Systems ( Definitions and Examples):
In this section the definition of MDS given in [3,11] is stated in terms of locally compact (semi) group with Haar measure and some examples are given. 
Definition 1.1.1:
 The 5-tuple  is called a metric dynamical system ( Shortly MDS) if   is a probability space and 
(i)  is measurable, 
(ii)  , 
(iii)  and
(iv)  , for every  and every  .
Note that we write  either in the form  ( as a function of two variable or in the form . If   is locally compact semigroup, then we say that  is called a semi metric dynamical system ( Shortly SMDS).
From an applied point of sight the use of metric dynamical systems to model external perturbations adopts implicitly that the external influence is fixed in some sense (as we shown in the following examples). That is we do not consider possible transient (random) process in the  environment, i.e. we assume that all these processes are finished before we start to observe the dynamics of our system. This is also the cause why we consider MDS with two-sided time. We note that any one-sided MDS ( with time  ) possesses a natural two-sided extension. Now, we state several  important examples of MDS's.
Example 1.1.2 [11]:
Let  be a probability space with    . is the Borel algebra generated by the compact-open topology of ,  is the Wiener measure on . Define   by  , . Then  is an MDS.
Example 1.1.3[11] (Ordinary Differential Equations):
 MDS can be also generated by ordinary differential equations (ODE). Let us consider a system of ODEs in  :
            , .                                           (1.1.1)
Suppose that the Cauchy problem for this system is well-posed. We define  by  , where  is the solution of (1.1.1) with . Suppose that a nonnegative smooth function  satisfies the stationary Liouville equation
                                 (1.1.2)
and possesses the property  . Then  is a density of a
probability measure on  . By Liouville’s theorem

for any bounded continuous function  on  and so in this site an MDS rises with   ,  and . Here  is the Borel algebra of sets in  . Some times it is also possible to construct an MDS related with the system (1.1.1), when the solution  to (1.1.2) is not integrable but the problem (1.1.1) possesses a first integral (e.g., if (1.1.1) is a Hamiltonian system) with suitable properties.
Example 1.1.4[11] (Stationary Random Process):
Let  be a stationary random process on a probability space , where  is the algebra generated by . Suppose that in the continuous case () the process  possesses the c`adl`ag property: all paths are right-continuous and have limits from the left. Then the shifts  create an MDS. See Arnold [3] and the references therein for details.
Example 1.1.5[11] (Wiener Process):
Let  be a Wiener process with values in  and two-sided time . Let  be the corresponding canonical Wiener space. More specifically, let  be the space of continuous functions  from  into  such that  endowed with the compact-open topology, i.e. with the topology induced by the metric 
, .
Let  be the conforming Borel algebra of , and let P be the Wiener measure on . We suppose  is the subset in  consisting of the functions that have a growth rate less than linear for  and  is the restriction of  to . In this realization  , where , i.e. the elements of  are recognized with the trajectories of the Wiener process. We define an MDS  by . These transformations preserve the Wiener measure and are ergodic. Thus we have an ergodic MDS. The flow  is called the Wiener shift. We note that the algebra  is not complete with respect to  and we cannot use its completion  to construct MDS because  is not a measurable mapping from  into  . This is one of the causes why the completeness of  is not assumed in the basic definitions. See Arnold [3].
1.2 Random Dynamical Systems:
In this section we state the definition of random dynamical system [7] and give some basic properties of such system.
Definition 1.2.1[3] (Random Dynamical System):
A measurable random dynamical  system  on  the measurable space   over  (or covering,  or extending) an MDS  with time   is a mapping    , with the following properties: 
(i) Measurability,  is  measurable. 
(ii) Cocycle property:  The mappings   form a cocycle over , i. e.  they satisfy 
   for all  (if   ),                                           (1.2.1)  
 for all  .             (1.2.2) 
If there is no ambiguity the RDS is denoted by   rather than  .
     Note that axiom (1.2.1) of Definition 1.2.1 is not redundant. However, if the mappings   are known to be invertible, (1.2.2) implies (1.2.1). It is very useful to imagine an RDS move on the (trivial) bundle , as Fig.  2.1 depicts: While  is shifted by the dynamical system  in time  to the point  on the base space , the cocycle  moves the point  in the fiber  over  to the point  in the fiber  over .  The cocycle property is also clearly "visible" on this bundle.
[image: ]
Figure 2.1 A random Dynamical Systems as an action on bundle 



Definition 1.2.3 [3] (continuous (RDS).
 A continuous or topological RDS on the topological space  over the MDS  is a measurable RDS which satisfies in addition the following property: For each  the function ,  , is continuous.
Definition 1.2.4[3] (Smooth RDS):
A  smooth  RDS of class  , or a  RDS, where  ,  on a dimensional () manifold  is a topological RDS which in addition satisfies the following property: For each   the mapping 
             ,  , 
is  (i. e.   times differentiable with respect to x, and the derivatives are continuous with respect to ).  
Definition 1. 2.5[3] (Linear RDS):
A continuous RDS on a (for simplicity) finite-dimensional vector space is called a linear RDS,  if  for each ,  , where  is the space of linear operators of .  
If we endow the vector space   with its natural manifold structure, then . Hence a linear RDS is automatically .
Notations 1.2.6[3]: 
(i) We often omit specifically mentioning the underlying metric DS  (or abbreviate it as ) and speak of an "RDS  "  (over ),  thus identifying an RDS with its cocycle part. Whenever we  speak of a  RDS we assume . 
(ii) We denote by  or  the semigroup or group of continuous mappings or homeomorphisms of a topological space  endowed with its compact-open topology. If   is a  locally compact Hausdorff space, this is a Hausdorff topological semigroup or group, and the evaluation mapping:  is continuous.
(iii) Finally, we denote by  or  the semigroup or group of  mappings or  diffeomorphisms of a manifold , respectively, endowed with its compact-open topology. This is a Polish topological semigroup or group, and the evaluation mapping is  with respect to . In the manifold case also  is a Polish group. 
Remark 1.2.7 [3] 
(i) If   is  discrete, measurability of  is equivalent to measurability of   for  each fixed ,  continuity of   for  each  is  equivalent to continuity of   for  each  fixed   , and  the  smoothness of  is just with respect to  for each fixed . 
(ii) A measurable/continuous/ RDS with continuous time   is also a 
measurable/continuous/ RDS if restricted to discrete time . 
(iii) A measurable/continuous/ RDS with two-sided time  is also a
measurable/continuous/ RDS if restricted to one-sided time .
(iv) We stress that we never allow our exceptional sets in the definition 
of a cocycle to depend on . In fact, it is one of the basic problems of a theory of RDS in an infinite-dimensional space   that 

often  holds only outside a set of measure zero which depends on  and on . 
Example1.2.8: 
      Deterministic DS and DS  in  the sense of ergodic theory are  particular  cases  of RDS.  Indeed,  if   is  independent  of  then  the RDS  decouples  in to a metric DS  and a  deterministic measurable/continuous/  DS    on .In case time   is  a  group,  the underlying metric DS    is  invertible with . Equations (1.2.1)  and (1.2.2) then force  the coeyele to be invertible too. More precisely, we have the following far-reaching consequences of the cocycle property. 
Theorem 1.2.9[3] (Basic Properties of RDS with Two-Sided Time). 
Suppose  is a group  (i. e.  or ).    
(i) Let  be a measurable RDS on a measurable space   over .  Then for all ,   is a bimeasurable bijection of  and 
  for all  ,                 (1.2.3)
or,  equivalently, 
  for all  .                 (1.2.4)
Moreover,  the mapping   is measurable. 
(ii) Let   be  a continuous  RDS on  a topological space . Then  for all 
 we have .  If 
(1) ,or 
(2)  and    is a topological manifold,  or 
(3)  and    is a compact Hausdorff space
then  is  continuous  for all . 
(iii) Let   be  a   RDS on a manifold .  Then for all , . Moreover,    is   with respect to  for all . 
Remark 1.2.10[3]:
(i) It is somewhat surprising that under the assumptions of part (ii) of the above theorem the function 

is continuous in  although  was assumed to be only measurable in . 
(ii) Let   be a continuous  RDS  with time .  If   is  not locally Euclidean or compact Hausdorff we can in general not conclude that  is continuous. This is due to the appearance of the shift operator  in formula (1.2.3) for the inverse. This ,      is continuous. We still could conclude that  is a  homeomorphism. In fact, this weaker assumption suffices for most things we do with continuous RDS. The reason we stay with the stronger version of a  topological  RDS as given in Definition 1.2.2 is that we automatically obtain such continuous RDS when solving random or stochastic differential equations.
Note 1.2.11
In this thesis we shall discuss the perfection problem for the following setting 
(1) The group  is replaced with a locally compact Hausdorff topological group . Our proof relies on the fact that such group has a Haar measure.
(2) , , is an action of   ( on the left ) on the set .
(3) The cocycle as a family of self-mappings  of some space  is replaced with a group-valued cocycle over .
Definition 1.2.12:
 Let  and  be two RDSs. The order triple

is said to be isomorphism between the two RDS  and  if 
(i)  is bijective and measurable,
(ii)  it topological group isomorphism,
(iii)  for every .
(iv)   is homeomorphism map and
(v) .
If there exists such order triple we say that  and are equivalent  via  and write .
Definition 1.2.13[11]: (Equivalence of RDS)
        Let) and   be two RDS over the same MDS  with phase spaces and  resp. These RDS   and  are said to be (topologically) equivalent (or conjugate) if  there exists a mapping
  :  × →  with the properties:
(i) the mapping   →  (, ) is a homeomorphism from  onto   for
every  ∈ ;
(ii) the mappings   → (, ) and  → (, ) are measurable for every  ∈  and ∈ ;
(iii) the cocycles  and  are cohomologous, i.e.
 (, ,  (, )) =  (, (, , )) for any  ∈ .
 Theorem 1.2.14: 
       For each ,   is a homeomorphism.
Proof. For any  the mapping  is continuous by definition of  RDS. To see that  is one –to-one and onto observe that if , then 
         
                 .
Again, if  . Set   . Then
                               
                                               .
Then  is an onto map.
By definition of RDS the mapping  is continuous. The inverse of   is defined as follows  such that 
               , for all .
Since  is continuous  for all , then so is . This means that  is homeomorphism.
Theorem 1.2.15:
If  and  are RDS's, then so is , where  defined by 
     for all .
Proof:
 It is sufficient to show that   is cocycle over . Since   and  are continuous, then so is . Thus  is continuous. Since  is defined by
                   
form a vector valued function, then it is measurable [7,8]. Also the function  is continuous since
                   and   
are continuous functions and . Now,
.
 
 
                             
                             .
Thus  is RDS.■
Exampl 1.2.16 RDS form Random Differential Equations[ 5 ]:
        Let  and   be a metric DS. We will now establish absically  one-to one correspondence between (local) continuous/ RDS  over  which are absolutely continuous with respect to  and random differential equations  driven by  .The correspondence is given by 
  ,                              (1.2.5)       
Which is valid in the local case for all  an open interval of  containing 0, and in the giobal case for all  .If (1.2.5) holds ,we say   (sometimes called solution in the sense of Caratheodory),or  that the random differential equation generates . Not hat (1.2.5) implies  for all  and  .
If the solution is differentiable with respect to  and satisfies for  
      ,                   (1.2.6)  

It is called a classical solution of   . Non –classical solutions are important since they allow us to consider discontinuous noisc .
Exampl 1.2.17  Random Differential Equations from RDS[3]:
       We now with the inveres problem of when for a given RDS  on  over  with time   there exists  a random differential equation  which generates  .We will also determine the only  possible from in which  is coupled to  , namely 
Example 1.2.18:
      Let   be any MDS and  be any locally compact group. Let  be a map with the property that   is continuous homomorphism for every  ,  is measurable for every ,  and . Then the mapping  defined by  is a cocycle over  and hence  is a URDS.

1.3 Random Sets in Random Dynamical System: 
In this section one of important tools in the study of RDS's which is the random is studied and some new properties of such sets are proved. The origin of the modern concept of a random set goes as far back as the seminal book by A.N. Kolmogorov [22](first published in 1933) where he laid out the foundations of probability theory. In this section  assumed a Polish space. The set

is called the  section of . Let ,  be a function whose values are subsets of . Such a function is uniquely determined by its graph . Conversely,  every subset  defines such a function via .
Definition 1.3.1[3]:
Let  be a measurable space and  be a metric space which is considered a measurable space with Borel  algebra . The set-valued function   , is said to be random set if for each  the function is measurable. If is connected closed (compact) for all , it is called a random connected closed(compact) set.
The algebra   of universally measurable  sets  associated with the measurable space  is defined as  ,where the intersection is  taken over all probability measures  on  and  denotes the completion of  with respect to . 
Proposition 1.3.2[3]:
Let the  set-valued function   take values  in the subspace of closed subsets of a Polish space .  Then:
(i) A is a random closed set if and only if for all open sets    the set  is measurable.
(ii) If  is a random closed set then  .
(iii) Conversely, if  contains the  algebra   of universally measurable sets (in particular', if   is  complete), then  implies that  is  a random closed set. 
	The property of  being a random closed set is  thus slightly stronger than  being measurable and   being closed. 
Example 1.3.3[27](Random Sets Defined from Random Points):
1. The singleton is a random closed set.
2. A ball  with and radius is a random closed set if is a random vector and is a non-negative random variable. If the joint distribution of  depends on a certain parameter, we obtain a parametric family of distributions for random balls.
3. A random triangle obtained as the convex hull of is a random closed set. Similarly, it is possible to consider random polytopes that appear as convex hulls of any (fixed or random) number of points in the Euclidean space.
Example 1.3.4[27](Random Sets Related to Deterministic and Random Functions): 
1. Let be a deterministic function, and let be a random variable. If is continuous, then  is a random set. If is upper semicontinuous, i.e.  for all , then  is closed and so also defines a random closed set. Its distribution is determined by the distribution of and the choice of . In these both case  can be obtained as the inverse image of a random set, e.g. as  or  .
2. Let , be a real-valued stochastic process. If has continuous sample paths, then  is a random closed set. If has almost surely upper semicontinuous sample paths, then the excursion set and the hypograph  are random closed sets.
Example 1.3.5[11] (Random Ball):
Let . Suppose that  is a random variable and  is a random vector from . Then the set-valued function

is a random compact set . Here  is the Euclidean distance in . This fact follows from the formula 

which implies that . It is also clear that  is a random (open) set.
Proposition 1.3.6[27]: 
(i) If  is a random closed  set, then  so is , the closure of  . 
(ii) If  is a random open set, then  is a random closed set.
(iii) If  is a random closed set, then , the interior of , is a random open set.
(iv) If  and  are random compact sets, then so is .
Definition 1.3.7 [3]:
	              Let   be a measurable  RDS and   a set.
(i)  is called forward invariant if for  
                              a.s. 
equivalently 
                               a.s..
(ii)  is called  invariant if for all 
	                  a.s., 
for  two-sided time equivalent to 
                    a.s.
      In the following the definition of invariant set that given in [3] is sated in terms of locally compact group.
Definition 1.3.8[3]:
            Let   be a measurable RDS. A random set   is said to be invariant set if there exists a full measure subset    such that 
                   , for every   .
Proposition 1.3.9 [10]:
(I) Let     be a measurable RDS. Then
(1) arbitrary unions and intersections of invariant sets is invariant;
(2)  is invariant if and only if   is invariant; 
(II) Let   be a continuous RDS. Then
(1) If  is invariant, then so is .
(2) If  is an abelian group, and if  is  invariant, then so is , , and .

Definition 1.3.10[10]: 
         Let  be a family of random closed sets which is closed with respect to inclusions (i.e. if  and a random closed set  possesses the property  for all , then ). Sometimes the collection D is called a universe of sets.
Definition 1.3.11 (Asymptotically Compact RDS)[11]:
     An RDS   is said to be asymptotically compact in the universe , if there exists an attracting random compact set , i.e., for any   and for any  we have 
                    ,               (1.3.1)
where .





















Chapter Two
Prolongation Limit Random Sets in Random Dynamical 
Systems


      In this chapter we recall same basic definition and facts about random dynamical system . This  chapter consists  four sections. In sections 1  prove some measurable properties of the trajectories. In sections 2 we study  random fixed points and periodic random points  for random dynamical system are introduced and proved. Here the time space considered any locally compact space and the phase space is any metric space. Also some new concepts are introduced here such as Topological metric dynamical system,  uniform converge and closed set.  In sections 3 we study   Omega-Limit set. In  sections 4 we generalize the definition of prolongations and prolongational limit sets RDS given in N.P. Bhatia, G.P. Szegö [10]. and  prove some new  properties of the studying of prolongations and prolongational limit sets .
2.1Trajectory :
         In this section we describe some measurable properties of the trajectories of RDS.
Defdinition 2.1.1[11]:
           Let   be a multifunction. We call the multifunction 
      
the tail (from the moment ) of the pull back trajectories emanating from . If  is a single valued function, then  is said to be the (pull back) trajectory ( or orbit) emanating from .
        

In the deterministic case   is a one-point set and  is a semigroup of continuous mappings. Therefore in this case the tail  has the form  .
Definition 2.1.2:
          Let  and     and  be the mappings form  in to  defined as follows
 (1)   
(2) 
(3)  
For every , the sets , , and  are respectively called the trajectory, the forward semi-trajectory and backward semi-trajectory.
Definition 2.1.3: 
           Let  and     and  be the mappings form  in to  defined as follows
 (1)   
(2)    
(3)  
For every, the sets , , and  are respectively called the trajectory, the forward semi-trajectory and backward semi-trajectory of  .
Proposition 2.1.4:
         For and , the sets , , and  are invariant random sets.
Proof. Let . To show that  is an invariant. Let   and . Then there exists   such that  . Now 
 
                               
                              
                             ,where 
                            
                           , .
                           . 
Thus for every  and , we have
                        . 
 This means that the set  is an invariant. In a similar way we can show that , and  are invariant random sets. 
2.2 Random Fixed Points and Random Periodic Points :
In general one cannot expect that one point  is fixed by (almost) all mappings . However, there is an appropriate generalization of the notion of a fixed point. In this section some new properties of random fixed point and random periodic point for RDS's are studied. In the following simple modification on the definition of random fixed point given in [3,11] is made.
Definition 2.2.1[19]:
 A measurable function  is said to be a random fixed point (some time called random invariant point or stationary solution) for the RDS  if  for all .
Remark 2.2.2:
If  consists of a single point, then an RDS over  is just a dynamical system generated by the single homeomorphism . In this case the notation of a random fixed point coincide with that of a deterministic fixed point.
Example 2.2.3[19]:
Let ,  be the  algebra of Lebesgue measurable sets and  be the Lebesgue measurer on . Then the triple  form a probability space. Let  and . Define  by  and . Also define  by   and . Clearly that   is RDS and  the random variable   defined by  is a fixed point of .■
 
    
Hence  
.
.
Hence  
Example 2.2.4[19]:
 Let  be any non-trivial MDS and let   be any injective random variable. Define a cocycle   over  by  
. Then  is RDS. This RDS has no random fixed point.■
Lemma 2.2.5:
          If   and  for some , then  for all integer  .
Proof. If , for some .  Then 
  
Then . Thus we need to prove the result for positive integers only. This follows from induction.  If , then by hypothesis we have 
      for some .
 Now, suppose that the statement is true for . i.e.,
         , for some . 
To show that this statement true for . Let
                 . 
Let .
     
                                     
                                       
                                      ,   
                                         
Thus 
    .
Theorem 2.2.6 ;
         Let . Then the following are equivalent:
1.  is random fixed point,
2. ,
3. ,
4.,
Proof.(1)  (2): Suppose(1) holds, then
  , 
where ,
   . Conversely, suppose (2) holds, then 
 . But  , then 
 , then 
  That is  and , 
. Thus 
. Set  .Then for every   
and. Consequently  is an R.F.P.
(2)(3). Suppose (2) holds. Since , we conclude that . Conversely, suppose (3) holds. Then . That is, . Then , where . Thus 
           (2)  (4). As in (2) (3). This end the proof. ■
Theorem 2.2.7:
         Let  be an RDS with  considered as a topological MDS.     is continuous, then the following are equivalent:
1.  is random fixed point,
2. There is a sequence  ,  ,  with .
Proof . To prove (1)(2). Assume (1). Since  is random fixed point, then  
           for all .
Thus we can say that there exists a sequence  ,  ,  with .
Conversely, assume (2), let . If   for some integers  and , then by Lemma (2.2.5) . If , then for every , there exists  such that   and moreover an integer  with 
                   . 
Thus clearly the so constructed sequence  has the property that   . Now since   is continuous for every  , then  , for every  . 
Since  for every   then 
                  , for every  .
Again, since   and   is continuous for every  , then  , and since  is continuous, then  for every  . Thus  for every  . This means that  for all .
Note. The implication  (1)(2) is true when   is any MDS. ■
Definition 2.2.8 :
           The set   is said to be distinguishable if for every , there exist two random open sets  and  in   and  such that , and for every  we have   ,   and . 
   The set  is said to be distinguish set. 
Lemma 2.2.9:
          Let  is distinguishable with distinguish set   . If  is not random fixed point, then there exist two random open sets   and    such that for every  with   and  we have  and .
Proof. Note that if   is random open set in , then for every ,  is random open set in , since  is homeomorphism. Since  is distinguishable with distinguish set , then there exist two random open sets  and  in  such that for every  we have  and   and  for every  . Since  for every  , then  for every . Set 
                  . 
Then , for every . Set
                     . 
Then , for every . Clearly that  and  for every .  But  for every , this implies that , for every . ■


Theorem 2.2.10:
         Let   is distinguishable with distinguish set . Then  is random fixed point if and only if every random neighborhood of , contains the set   , .
Proof Suppose that  is random fixed point, then  so that  contained in every random neighborhood of . Conversely, suppose that every random neighborhood of  contains semi-trajectory. Assume contrary that  is not random fixed point, then there exists , for every   with , 
                     ,   for some  .
By  Lemma (2.2.9) there exist two random open sets   and    such that for every  with   and  we have  and . Since for each ,  we have , , then , . But this is a contradiction.
Notation   the set of all random fixed point
Theorem 2.2.11:
         Let  is distinguishable with distinguish set .The set of all random  fixed point is  closed.
Proof. Let  the set of all random fixed point. If  , then the prove is end. If  . Assume contrary that  is not  closed.  If the set of random fixed points is not closed, then there is a sequence  in   with  is uniform converge to   and  . Thus there is  with . By Lemma( 2.2.9) there exist two random open balls   and    such that for every  with   and  we have  and . Since  is  uniform converge to  , then and we have  for all sufficiently large . Then  for the   above   and in particular   . But 's are random fixed points and therefore  and . This contradiction proves the theorem.
Theorem 2.2.12:
         Let   is distinguishable with distinguish set  .If  and , for every  as  ( or  ). Then  is random fixed point.
 Proof. Let  be a random neighborhood of . Since      , for every  as , there exists       such that ,   for every , for all . Hence for all  we have  . Then for all ,   . Or for all , . Or for all , , where  and  . That is  contains semi-trajectory , consequently, by Theorem 2.2.10   is R.F.P. ■
Proposition 2.2.13:
            Let   be a random fixed point. If   with , then . 
Proof. Suppose that  is a random fixed point. Let   with . Assume contrary that  
                        .
Then   .
Since  is bijective, then  .
So .Contradiction. ■
Definition 2.2.14: 
          A random variable  is said to be random periodic point of a RDS   if there exists  such that 
                     .
Remark 2.2.15
            In any RDS every random fixed point is random  periodic point.
In the following assertion gives another description of  random  periodic point.
Proposition 2.2.16:   
        A random variable  is random periodic point if and only if  there exists  such that 
  , for every 
Proof. Suppose that   is random periodic point. Then there exists  such that 
                     .
If and only if 
   , 
If and only if 
       , .
This complete the proof. ■
Theorem 2.2.17; 
           Let  be an RDS with  be a stable TMDS and let    be a random periodic point and continuous   but not R.F.P. Then there exists   such that  is the smallest positive period of  .Further, if   is any other positive period  of , then  for some integer .
Proof. Consider the set . If   period of  , then  .Let   , then . Since, then . Now, set  
. To show that 
, : 
 . Hence . Since either  or  is positive, then the set  is nonempty. Now, set . We calem that . Indeed , and if , then there exists a sequence  in  with . Since    for each , then by Theorem( 2.2.7)  is random fixed point which contradicts our hypothesis. Thus . Since , then  there is a sequence  in  with . Since   is continuous for every , then for every ,    .So for every ,  .
Since   is continous for every , then  for every . Again, since  is continuous, then  for every . But , i.e., there exists a full measure subset   of  such that   for every . Hence , .On the other hand, , for every . Since  is metric space, then from the uniqenss of the limit we have   . That is, . It follows that . By definition of   it is also  the smallest positive period of  . Finally, let   be a positive periodic. If  , for any integer, then there is an integer  with . Then by Lemma( 2.2.9) we have 
                   .
Since the TMDS  is satble, then     .
Therefore by Lemma( 2.2.9 )we have . So.Thus                
 
            
where . Then  satisfy (2.2.9). Since  , we get a contradiction to the fact that   was the smallest positive period of  period of  . This complete the prove. ■
In the following we need to show that the set of random periodic point for random dynamical system (under certain conditions) is closed. To this end the following  notations are  introduced.


Definition 2.2.18:
           Let  be a probability space with  considered as a topological space and  be any metric space. A sequence  in   is said to be uniform converge in  if there exist   and  such that  converge uniformly (shortly u.c.) to  for every . That is for every  , there is a positive integer  such that   , for every  and for every  .
Definition 2.2.19:
          Let  be a probability space with  considered as a topological space and  be any topological space. A subset of   is said to be  closed if any sequence  in   is  uniform converge in .
Lemma 2.2.20:
          Let  be an RDS with  is be a TMDS.  If   be a sequence of continous random periodic point in  with positive periodic , and uniform converge in , then  is random fixed point.
Proof. For a given , there are integers  such that  . Since , we have . Since   is uniform converge to , then . Let , 
then   But  is continuous for every , then for every ,     . 
Since    is continuous for every , then  for every . Therefore   for every . 
Since , for every , then  for every . Since  is random periodic point for every , then 
         
Set . Then . So , for every  .  , for every . Then, 
, for every  .Since  for every , it follwos that   , for every . Since ,then  is random fixed point. 
Theorem 2.2.21:
          Let  be an RDS with  is be a TMDS .Given any , the set of all  such that  is (continuous) random periodic point with positive period  is closed.
Proof. Let  be a set of all random periodic point with positive period . Suppose that   be uniform converge sequence in . Then for every ,   is random  periodic point with periods  and    then  . Set  , 
then . Since , then , where .Also for every  , . 
Since , either  in which case  is random fixed point by Lemma 2.2.20 and hence random periodic, or there is a subsequence , , then by the continuity axiom for every   and also for every ,  Since  is continuous, then  for every . Also we have  is continuous  for every , then , for every .Therefore  . for every . Consequently  , for every 
. Since .,then  is random periodic point. ■
2.3 Omega-Limit set :
          In this section we study concept in RDS called Omega-Limit set and give some  properties of such systems.

Definition 2.3.1[11] :
             Let    be multifunction. We call the multifunctions 
    is said to be omega limit of the trajectories emanating from .Also the 
  
are said to be the omega (alpha) -limit  set of the trajectories emanating from    respectively.
If  , the we have 

 .  
The following assertion gives another description of omega-limit sets.
Theorem 2.3.2[11]:
         Let   be the omega-limit set of the trajectories emanating from  . Then     .
Proof. Suppose that , the for any  there exists  in  and  in  such that . Hence . Thus  
  .Therefore , for all . Thus    . 
To prove the converse inclusion, let  , then  for all  . In particular, 
        for all   .
Therefore there exists a sequence  in   such that  . Thus   and  , . It follows that there exists  and   such that . That is  . Consequently, . 
In the following we show omega-limit set is random closed set .
Theorem 2.3.3:
          is random closed set.
Indirect Proof. By above theorem we have
                   .
Since  is closed an invariant, then so is .
Direct proof. Let . Then there exists   in be a sequence in   such that  . We wish to show that . Indeed for each positive integer , there is a sequence  in   and  in   with  and      . We assume without loss of generality that    
and  for . Consider now the sequence  in  with    and a sequence  in   with  . Then  and we claim that   .To see this observe that 
 
                                        .
Since  and  tend to zero we conclude that 
                  
Consequently  and . Thus , i.e.,  is closed. 
Theorem 2.3.4:
         Let  be any metric space and . Then 
         
Proof.  To prove   .Let   .Then  
                        
                       ,where . Thus we have    . Then 
Then  .Now letThen there issuch that.Then  By continuity  ,     ,
   .Thus we have   .Then  .Then    
Theorem 2.3.5:
         If  is continuous, then .  
Proof. First, note that    .By  Theorem (2.3.2) we have . Therefore . To prove the converse inclusion, let . then there exists a sequence  in  such that  . Now , then there exists a sequence   with  for every  and  in such that  . We have two cases:
  Case I: The sequence  has the property that , in which case .
Case II: There is a subsequence   in  such that  (as  is closed). But then   (since  is continuous). Since  , then from the uniqueness of the limit we have . 
From Case I and Case II, we have  . Hence
                        .
Therefore . 
Corollary 2.3.6:
        For any  and  .
Proof. By the definition we have .To show that ,let .Then there is a sequence { in such that  . Since     in     .Then     for a  in .Either the sequence { has the property that ,in which case or there is a subsequence (as  is closed).But then , and since also  we have   .Thus .Thus .
2.4The First Prolongation and the  Prolongational   Limit Set:
           The concepts of first prolongations and prolongational limit sets are played an essential role. In the deterministic dynamical system the formal definition of prolongation is due to T. Ura [34] and the concept of prolongational limit set is due to N.P. Bhatia, G.P. Szegö [10]. In this section we study The First Prolongation and the  Prolongational   Limit Set of RDS .We press the notions of The First Prolongation and the  Prolongational  Limit Set of RDS and ready their base properties.
Definition2.4.1: 
          Let    be multifunction.The multifunction , where 
 , is said to be to be first positive prolongation of . If the set  replaced by  in above we get the notation of first negative prolongation of  and shall denoted by .
If  , the we have  
}.
The following result show that the The First Prolongation is closed and invariant .
Theorem 2.4.2:  
 is closed.
Proof. To show that  is closed. Let  , then there exists sequence   in  such that  . Since  for every . Then by definition of  there exists sequences  and   such that  and . We assume by taking subsequences if necessarily that   ,  and  for . Now consider the sequences ,  . Clearly  and . Note that
   
                                          .
Since  and  tend to zero, then , then . This means  and so  is closed. 

Theorem 2.4.3: 
           If   is invariant, then so is  .
Proof. We need to show that  .
Let , then there exists   such that
                                     .
To show that  .Since , there exist sequences  in  and  in  with  and 
    . Since   is continuous, then 
     , then 
      ,where a sequences  in  and  in  with  
Then we have . then . To prove the converse inclusion, let  by definition, there exist sequences  in  and  in  with  and  so  for all . Since  is an invariant   , then , then there exists  such that  , then . Now,  . 
Then  for all . 
Then there exists  such that  for all . Since , i.e. 
       , or   .
Hence   , with   .              (2.4.1)
From (1.3.1) we have that  as . Since is compact, there exist   and  such that  as . Moreover by Def. . From (2.4.1) we obtain that  . Therefore  for all  and . Thus  is invariant. 
We now discuss about the connectedness of  the First Prolongation  set .
Theorem 2.4.4: 
          Let   be locally compact. Then   is connected whenever it is compact.
Proof Let  be compact but disconnected. Then there are two compact non- empty sets  and   such that and   .Since  and   are compact ,.Thus there is  such that ,are compact and disjoint .Now  or  .Let   .Then there is a sequence  in  and a sequence  in such that and      .We may assume  and  .Then the trajectory segments   intersect ,and therefor is a sequence ,  such that   .Since  is compact we may assume that .Then  ,but  as  .Thus contradiction shows that  is connected. 
Definition 2.4.5: 
      Let    be multifunction.The multifunction , where
 , is said to be to be first positive prolongational limit set  of . If the set  replaced by  in above we get the notation of first negative prolongational limit set of  and shall denoted by .
If  , then the definition of   becomes 

 The following theorem showing the prolongational limit set is closed and invariant .
Theorem2.4.6: 
               is closed.
Proof. To show that  is closed. Let  , then there exists sequence   in  such that  . Since  for every . Then by definition of  there exists sequences  and   such that ,  and . We assume by taking subsequences if necessarily that   ,  and  for . Now consider the sequences ,  . Clearly  and . Note that
   
                                          .
Since  and  tend to zero, then , then . This means  and so  is closed. 
Theorem 2.4.7: 
         If   is invariant, then so is  .
Proof. We need to show that  .
Let , then there exists   such that .
To show that  .Since , there exist sequences  in  and  in  with ,  and     . Since   is continuous, then 
                       . 
By the cocycle property, we have
              
       ,where  and  in  with . Then by Definition
, then . To prove the converse inclusion, let 
. by Def. there exist sequences  in  and  in  with ,  and     . By the cocycle  property  we have    
    , with   .                        (2.4.2)
From (1.3.1) we have that  as . Since is compact, there exist   and  such that  as . Moreover by definition  . From (2.4.2) we obtain that  . Therefore  for all  and . Thus  is invariant. 
Theorem 2.4.8: 
        .
Proof.  . To prove the converse inclusion. Let    by Def. there exist sequences  in  and  in  with  and     . We may assume that either   or  , if necessarily by taking subsequences. In the first case  (since  is continuous for every ). By uniqueness of the limit we have  . In the second case  by Def. of . Thus  . Hence . 
Corollary 2.4.9:  
            .
Proof.  By definitions   . To prove the converse inclusion. Let    by definition there exist a sequences  in  and a sequences  with  such that  . We may assume that either   or  , if necessarily by taking subsequences. In the first case  (since  is continuous for every ). By uniqueness of the limit we have  . In the second case  by Definition of . Thus  . Hence 
 
 Theorem  2.4.10:
      Let
. Then    if and only if  .
Proof. Suppose that . Then there exist sequences  in  and  in  with ,  and  . Set  and  . Then  is a sequence in  with   and     is a sequence in  and  .      
Finlay we need to show that .
  
,                                          
Then we have  .Thus .
Similarly we can prove the converse.                        
Theorem 2.4.11:
           =   
Proof.   To prove     .Let . Then  there is a sequence   in  with  and a sequence  in  with  such that ,   
                 
                    ,where 
Thus we have   . Then  
 then     . To prove  the     converse  inclusion 
 Let  . Then  there is  with   and a sequence   in  with  and a sequence  in  with  such that  . By the continuity of ,                                           
    , where  ,.  
Thus      ,we have      . 
Then   = 
The following result show that the  omega-limit set is non-empty .
Theorem 2.4.12:
            If   is locally  compact.Then   whenever  is non-empty and compact.                    .
Proof .If possible let .Then we claim that  is closed and disjoint with.That is closed follows from  = as  ,That  follows from the fact that if  ,then by invariance of  , Since  is compact ,we will  have   and compact(remember that any sequence{}in a compact set Q has a convergent subsequence ). This again contradicts the assumption = .Thus is closed and  .Since  is non-empty and compact we have        . Thus there is a         such that       is compact and disjoint  with          . Now   choose any  of   .   There is a sequence {    in  and a sequence     { in    such that     and     and, .We may assume that          ,        for all n    .Then the trajectory segments     with 0    ,  intersect   and therefor there is a sequence   { ,  0 ,such that   .Since  is compacte we may assume  that      .By taking subsequences we may assume that either       or     .  if ,  then by the continuity axiom     ,i.e,             which  contradicts     .If       ,then  ,but this contradicts     as   = .                                                       
Theorem 2.4.13:
          Let be locally compact. Then          is non –empty 
and compact if and only if       is   compact.
Proof .  Let      be non –empty and compact .Then      is non empty and compact .But then     is compact( is closed with  be locally compact).Hence   =  is compact .Now if     is compact . Since    .Then  is compact.
Theorem 2. 4.14:
           If  is locally compact. Then   is connected.
Proof  Let  be compact . If  = there is nothing to prove. So let  .If  is disconnected ,then there are non-empty compact sets  such that  and  .Since  is non- empty and compact ,hence connected ,we have  or  .Let  .Since =     as and    is compact. Then  is compact. Now let    ,then .But  must be invariant .Thus will show that ,aconradiction .Then  is compact and disjoint from  ,= .since  and  are disjoint compact sets we have  is disconnected. Thus is  a contradiction  . Then   is connected. 



















Chapter Three
Stability of Random Dynamical Systems







              
           Throughout this chapter we study  three concepts .In section 1 we defin Recursive concepts poisson stable , non-wandering point and reucurrent .In section 2 we give definition of minimal random set and prove some properties of minimal RDS’s . In section 3 we study the weakly attracted, attracted,  uniformly attracted  and stability of RDS . 
3.1 Recursive concepts: 
            In   this  section  we study those concepts wich are conncted with the concept of recursiveness  defined  a down . these are concepts of poisson stable , non-wandering point ,and reucurrent .      
Definition (Recursiveness) 3.1 .1:
              A random set   is said to be positively recursive with respect to a random set   if for each   there is a  and an  such that .Negative recursiveness may be defined by using the inequality . We will say that a set  is self positively recursive whenever it is positively recursive with respect itself.
Example 3.1.2:
           The set   , where   is a random periodic point for  is self recursive.
Solution. Since  is a random periodic point for , then there exists  is a random periodic point for  such that 
Now   
                                                              
This means that  is self recursive.

Definition 3.1.3:
            A point  is said to be positively Poisson stable if every random  neighborhood of  is positively recursive with respect to .
Theorem 3.1.4:
            Let . Then the following are equivalent.
(1)  is positively Poisson stable
(2) given a random neighborhood  of  and , 
            for some ,
(3) for every random variable   there is  such that 
               .
Proof.(1) iff (2): 
(1) implies (2):Suppose that  is positively Poisson stable. Let   be a  random neighborhood of  and . By hypothesis  is positively recursive with respect to , i.e.,  there is  such that
                                .
(2) implies (1): Let  be a random neighborhood of . Let . If , then by hypothesis there exists  such that
                   .
If   . Then , and by hypothesis 
                  for some .
 (2) iff (3): Suppose (2). Let  be a random variable. Then  be a random open ball centered with . By (2) for every   we have    for some .
Suppose (3). Let  be a random neighborhood of  and . Then there exists a random variable   such that  .By hypothesis we have     for some .
Then   , for some .
Theorem3.1.5:If  . Then for every random variable   there is  such that 
               .
 
Proof.  Suppose that . Let  be a random variable.
The there is a sequence  in  with  and   for all . Then eventually in every neighborhood of . Thus for every random variable   there exist  such that 
      , for all .

Theorem 3.1.6:
          Let  be a complete metric space. Let   be a positively Poisson stable. Then the set   is dense in .
Proof. Since  is positively Poisson, we have . To see that  . Let   there is a monotone increasing sequence  , , such that . Choose  such that  . then  (otherwise  will be random periodic point). Hence . Set 
.
Then  
and .
Having defined  and , choose   such that
                    
(possible because of  positive Poisson of ). Then define 
       
where . note that  as the motion is not periodic. Clearly 
     ,
and .
The sequence   has the property that 
   
for  .  is, therefore,  a Cauchy sequence which converges to a point  as the space  is complete. Since  and , we have . Further , so that . Notice further that . For, otherwise, if , we will have . But there is an  such that , so that . However, 
                 
and by construction , i.e., . This contradiction proves that  and the theorem is proved.                                     

Definition 3.1.7:
        A point  is said to be non-wandering if every neighborhood  of  is self positively recursive.
Theorem 3.1.8:
        For any  , the following are equivalent.
(1)  is non-wandering,
(2) ,
(3) every neighborhood of  is self negatively recursive,
(4)
Proof. Assume (1). Consider a null sequence  of random variables, , , and a sequence  in  with . Since each  is self positively recursive, we have an  and a  with . Since  we have  and  and since  we conclude . Thus (2) holds. Now suppose (2). Then there exists a sequence    in  and a sequence  in  with  and  such that . Now for any random neighborhood  of  and  there is  such that   for  and  for every   and  for  and for every . Thus  is self positively recursive. Consequently   is non-wandering and (1) holds.
(3) iff (4). Is proved in the same way.
(2) iff (4): by theorem (2.4.10).
Definition 3.1.9:
       The MDS   is said to be stable if for each sequence  with the property that , we have  .
The following result show that the point which reside in the limit sets are non-wandering .
Theorem 3.1.10:
          Let . Every  is non-wandering.
Proof. We have to show that if , for some , then . indeed  there is a sequence  with . Since , we may assume, if necessary by taking a subsequence  for each , then . Setting  we have  . Now 
  
                        
                       
                        
                      
                      
                     
                     
Thus  . By Theorem ( 3.1.8 )   is non-wandering.
Theorem 3.1.11:
         Let   be a random set in  be such that every  is either positively or negatively Poisson stable. Then every  is non-wandering.
Proof. Let . Then there exists  such that . We must prove that . Indeed for each  we have either   or . Thus by taking a subsequence, we may assume that  for all  or  for all . Assume  for all . For each  there is  with . Then 
      
                                         .
This shows that  and consequently . In the second case similar consideration show that . Thus Theorem(3.1.8   )  is non-wandering.
3.2 Minimal Random Sets: 
Minimal systems are natural generalizations of periodic orbits, and they are analogues of ergodic measures in topological dynamics. They were defined by G. D. Birkhof in 1912. The basic fact discovered by G. D. Birkhof is that in any compact system there are minimal sets. This follows immediately from the Zorn's lemma.
Definition 3.2.1:
        Let  be a random dynamical system.  A random subset  is said to be minimal set if 
1.  is nonempty random closed set.
2.  is invariant;
3.  does not contains any nonempty proper random subset invariant under . That is, if  satisfy (1) and (2), then . 
Theorem 3.2.2: 
        Let  be a non-empty random set in . Then the following statement are equivalent:
(i)   is minimal in ;
(ii)  for every  .
(iii)  is closed an invariant and for every non-empty random open subset  of , either
         
Or   .
Proof. (i)(ii).Suppose (i). Then for each ,then  and   as  is closed and invariant. Since  is closed and invariant set we must have , for otherwise  will be a non-empty proper subset of , a contradiction to minimality of .
(ii)(iii). Suppose (ii). Then  is closed and invariant. Let  be a non-empty random open subset of  such that . If  , by (ii) Since  is homeomorphism for every   and for every  , then  is open for every  and for every  . Since   , then there exists  and ,for every  and . Hence there exists sequence   in   such that  and , for every  and . Therefore there exists  such that  , for every  ,  and . Then , for every ,   and . This means that  for every  and . Then there exists   and   for every  and . Thus there exists  such that  and . Then         
  
     
        ,
      .
Then . Consequently, 
              .
(iii) (i).Suppose (iii). Let  be closed and invariant subset of  such that . Then  is nonempty open random set (since if  , then ). By (iii) 
         
or      .
If , then 
     
    
     
    
    . 
If , then . Then , then . Consequently,  is minimal.
Theorem 3.2.3:
       is minimal if and only if .
Proof. Suppose that  is minimal. Let . If , then by Theorem (3.2.2) ( , so . Conversely, suppose that . To show that   is minimal. We have  is non-empty closed invariant random set. Suppose that     be a nonempty closed invariant subset of  . If  , then  and by hypothesis  . Since  is closed and invariant, then , so  .Then . By a similar argument we have   but . Thus we have . This means that  is minimal.
Theorem 3.2.4: 
         Let  be a compact minimal random set. Then for every non-empty random open subset  of , either   or  for some finite subset  of .
Proof. Then  is closed and invariant. Let  be a non-empty random open subset of  such that . Then . So .Since  is invariant, then  or . Since   is minimal then by Theorem(3.2.2) we have  .Since  and  is homeomorphism for every   and for every  , then  is open for every  and for every  . Then . But  is compact, then . Set , then 
      . 
Theorem 3.2.5:
      Let  be a non-empty and compact random set. Then the following are equivalent. (   )
(1)  is minimal,
(2)  for every  ,
 (3)  for every  ,
Proof. (1)  (2). Theorem ( 3.2.2  )
     (1)  (3): Suppose (1). Let  . Let   , then there exists a sequence  in  with  such that   Set . Since , then  . So that  ( because  is an invariant.) Then  be a sequence in  with . But  is closed. Thus . Then . Since  is minimal and   is a non-empty invariant closed subset of  . Thus we must have .
Theorem 3.2.6::
        If  is minimal and  , then  is open.
Proof. To prove that  is open we must show that every point of   is an interior point of  . Let . Since   is minimal, then by Theorem (3.2.2)  . Since , then there exists    such that  .Then . That is  is a limit point of  . Thus  . Then there exists  . Then   and . So there exists  such that . Then  or               . Since  is open subset of  , then  is an interior point of  . Therefore  is open.
The following theorem shows that the minimal random sets in RDS's are disjoint. 
  Theorem 3.2.7:
Any two minimal random sets must have empty intersection.
Proof:
Suppose that  and  are two distinct minimal sets, and . Then  is closed random set.  By hypothesis we have  and  for all .  Then 
     
                             
                             
                             
                             .
Thus  is invariant. But then  is proper subset of both  and   which is closed invariant nonempty random set, contradicting the fact that  and   are minimal.■
Theorem 3.2.8:
Let  with  is isometric. If  is minimal in , then  is minimal in . 
Proof. Suppose that   is minimal in . To show that is minimal in . By hypothesis  is a nonempty random closed set and invariant under . Since  is an isometric and homeomorphism, then  is nonempty random closed set and invariant under . Now, let    be a non-empty invariant closed random subset of . Then  is non-empty random closed and invariant under . By hypothesis either  or . Then either  or . ■
3.3Stability of random dynamical system:
         This chapter is devoted to the study of stability and attraction. will denote a non- empty compact subset of 
Definition 3.3.1:
     With the given  we associate the sets
1. ,
2. ,
3..
The sets  , , and  are respectively called region of weak attraction, attraction, and uniform attraction of the set .
Moreover, any point   in  , , or  may respectively be said to be weakly attracted, attracted, or uniformly attracted.
Definition 3.3.2:
      With the given  we associate the sets
1. ,
2. ,
3..
The sets  , , and  are respectively called region of weak attraction, attraction, and uniform attraction of the set .
Moreover, any random set   in  , , or  may respectively be said to be weakly attracted, attracted, or uniformly attracted.
Proposition 3.3.3:
          Given , a point  is 
1.weakly attracted to  if and only if there is a sequence  in  with  and ,
2.attracted to  if and only if   as ,
3. uniformly attracted to  if and only if for every neighborhood  of  there is a neighborhood  of  and a  with , .
Proof. Let . Then  and . Then There is ,, then there is  in  with  such that  ,, or  ,. Now , since 
    ,  
                                    ,.
That is , .
Conversely, Suppose that there is a sequence  in  with  and . Then there is  such that  . But by definition of   we have . Then we have . Consequently .
2. Let . Then  and . Then there is . Then there is  in  with  such that , or ,. Since , then 
3- First assume that for an  , . Then ().Assume now that there is a neighborhood  of ,  such that for every neighborhood   of  and  there is  with  . By (2) there is a  such  that for   .This show that there exist sequences  and  in , ,  and a sequence  in ,  such that  ,but . Since  may be assume compact (the space is locally compact) we conclude that there is sequence ,,and a sequence ,  with  .Then  but  .This is a contradiction. Now assume the converse requirement that for every neighborhood  of  there is a neighborhood   of  and a  with  for     . Then indeed . This shows indeed that  for    and since we may take to be compact, we have  consequently  . Clearly ,  for every neighborhood   of  and every  .Hence  for every neighborhood  of  . Thus 
     .
This proves the proposition.
Theorem 3.3.4: 
          For any random set   
 Proof  Let   Then  . Then by  theorem(2.4.13)     .Thus  .Then  Then  .Then .
Definition 3.3.5: 
        A random set  is said to be
(1) a weak attractor if  is neighborhood of ,
(2) a attractor if  is neighborhood of .
(3) a uniform attractor if  is neighborhood of .
(4) if every for any , there is a random open set   of the form  with the following properties:
 (ii)  ,
(iii) for every  , we have 
           

(5) asymptotically stable if it is stable and is an attractor ,
(6) unstable ,if it not stable.
 The following  theorem provide as the characterization of the stable. 
Theorem 3.3.6: 
          A random set  is stable if and only if 
Proof  Let  and suppose if possible is not stable.  Then there is  ,a sequence } and sequence }with  , and .We may assume without loos of generality that  has been chosen so small that  and hence  is compact. Further we may assume that .We can now choose a sequence } ,such that  Since is compact, we may assume that  .Then clearly ,but .This contradiction show that  is stable. Now assume that is stable. Then if every for any , there is a random open set   of the form  with the following properties:
 (ii)  ,
(iii) for every  , we have 
           
Since for any  ,   for any neighborhood   of . For, let  , then there exist sequence , and sequence  with  such that . Since  then there is  such that   for every . Then  for every . Then . But, , so .  Then .  Hence . Thus  for any neighborhood  of  . Hence
          as   is compact. Now to show that  .Let , then for every sequence  in  and every  in   with such that . Since  is stable, then there is a sequence  in . But  is compact, so . 
The following theorem shows the relation between the uniform attractor
and stable .
Theorem 3.3.7:
         If  and  is a uniform attractor ,then is  stable . 
Proof .Since   uniform attractor. Then   is neighborhood  .Thus  .Thus in particular ,. Since   .Since  as . Then  and by Theorem(3.3.6)   is satble.
Corollary 3.3.8:
           If  and  is a uniform attractor, then  is asymptotically stable.
Proof. The proof follows immediately from above theorem and Def.
Theorem 3.3.9:
        A set   is stable if and only if every component of  is stable.
Proof  . Not that if  is compact ,then every component of  is compact. further if  is positively invariant ,so is every one of its component. Now  let   where  is an index set, and  are components of  . Let each  be stable ,i.e., .Then  ,i.e., is stable . Let  is stable .Then .since  is compact. Then  is compact and connected set and  Since   is component  of  we have  ,then  as  .Thus  is stable.
Theorem 3.3.10:
          Let  be minimal and asymptotically stable. Then for every   is asymptotically stable with   .
Proof .Since  is  minimal and asymptotically stable. Then by theorem(3.2.2)   ,   and  is  of  .Thus 
         .
Then  is stable. Now since  is  of   for  .Then   is  of  .Thus  is  of   for  .Thus  is asymptotically stable .














Chapter four
Asymptotic Behaviour of the Uniform Random Dynamical System



       
          In this chapter we state the definition of uniform random set in a uniform random dynamical system and give some properties of such sets. this chapter consists of six sections . In section 1we definition of uniform random dynamical system and definition of uniform random set and give some properties of such that. In section 2 we study  transitive of URDS . In section 3 we study sensitive of URDS .In section 4 we study sequence of maps in a uniform space . In section 5 we study  uniformly  equicontinuous  RDS . In section 6 we prove some properties of proximal  and distal of  URDS.
4.1 Uniform Random Set: 
          Concepts and results including random sets performed in probabilistic and statistical literature long time ago. The origin of the modern concept of a random set goes as far back as the seminal book by A.N. Kolmogorov [22] where he laid out the foundations of probability theory. 
Definition 4.1.1:
      A uniform random dynamical system URDS on a uniform space  over the MDS   is a measurable RDS which satisfies in addition the following properties: 
(i)  For each ,  is uniformly continuous with respect
    to the uniformity  on .                                                            (4.1.1)
 (ii) For every , there exists  so that    implies   for all ; i.e.,
                implies                    (4.1.2)
The cocycle  is called uniform cocycle.


Definition 4.1.2[ 20]: 
       If  and  are cocycles where   is a locally compact group , then a map of cocycles, or cocycle map,  is a map  satisfies 
(i)  is measurable for all ;
(ii)  is uniform continuous for all ;
(iii)       for all .
Definition 4.1.3:
       Let  be a uniform space and  be a measurable space.
The collection  of set-valued maps is said to be random uniformity if it is satisfy the following conditions:
[RU1]   for every ;
[RU2]If  , then ,
 [RU3] For every  , there exists  such that ,
[RU4] For every  , there exists  such that ,
[RU5] If   and  , then ,
[RU6] If  , then .
The members of  are called uniform random sets. We say that  is closed (open, compact) uniform random set if it is closed (resp. open, compact) in the product  (with the product of the uniform topology).
Proposition 4.1.4:
        [RU3] and [RU4] is equivalent to the following statements
    For every  , there exists  such that .
Proof. Suppose that [RU3] and [RU4]  are  satisfied. Let  . By [RU3], there exists  such that . By [RU4], there exists    such that  . Let , then . Then the condition above holds. 
  Conversely, suppose that the condition above holds. Let  , there exists  such that . Then  easily, and if  , then   and   . Thus [RU3] and [RU4] hold.
Definition 4.1.5[20]: 
       For   and  , we define 
Thus if   is URS, then we define  .
Remarks 4.1.6:
 (1) If  , then .
(2) The set-valued map   defined by  is uniform random set. In fact it is closed URS.
(3) The empty set and   are URS.
(4) The closure of a URS is (closed) URS.
(5) If  , then . For, if , then by  hypothesis . If  , then . Thus . If  
Theorem 4.1.7: 
         Let  where  are compact spaces and . If the set-valued map   is uniform random set then so is the set-valued map   defined by
                     for every .
Proof. First, we need to show that . Since  is uniform isomorphism on a compact space  , then it is homeomorphism and consequently it is bimeasurable. Thus  is bimeasurable. Therefore  . Now, to show
                for every .
Let . Since  is uniform isomorphism, then there exists  such that . Now
     
                                
                                .
Thus . Since  is surjective, then there exists  such that . Since  is uniform random set, then 
         .
Since  is bimeasurable, then 
   .
Thus . Therefore  is uniform random set and this complete the proof.
Theorem 4.1.8:
      If   be a sequence of uniform random closed set, then so are  and . 
Proof  Let  be a uniform space and  be a measurable space. If , then 
         . 
This means that  is uniform random closed set. To show that  is uniform random closed set observe that
                           ,
for every  (in fact for any set  ) so that 
    .
Corollary 4.1.9: 
       If   and  are two uniform random closed sets, then so are  and .
Theorem 4.1.10[ 20]: 
     Let   be a measurable spaces and ,  be uniform spaces. If   is uniform random set in , and   is  uniform random set in , then  is uniform random set in .
Theorem 4.1.11[20]: 
       Let  be a uniform space  be a continuous function and  be a random variable. If the set  is nonempty for all , then it is uniform random closed set.
4.2 Uniform Transitive : 
   In this section we universal the concept of transitive uniform random dynamical system and give some things of such systems .
Definition 4.2.1:
       A URDS  is said to be uniform transitive at    and the point  is said to be uniform transitive point under  if  for every URS , there exists  such that 
                               . 
Definition 4.2.2:
       A URDS  is said to be uniform transitive if  for every URS  and , there exists  such that 
                               . 
Notation For  we define a subset  of    by
               . 
Remark 4.2.3: 
    The URDS  is UT if and only if  , for every URS's  and .
Definition 4.2.4: 
        A uniform dynamical system  is said to be uniform mixing (UM) if  for every URS's , there exists  such that 
                               .
Notation 4.2.5:
       For  we define a subset  of    by
               . 
Remark 4.2.6:
     The URDS  is UM if and only if  , URS's  and .
Proposition 4.2.7:
        The following statements are equivalents for every  .
(i)  is transitive at .
(ii) If   is URS's, then  .
(iii) If  is URS's, then  , for some .
Proof. (i)(ii): Suppose (i). Let  be a URS's, there exists  such that . Thus 

(ii)(iii): Suppose (ii). Let  be a URS's. By hypothesis                      . 
Then there exists   such that  . Hence
                . 
i.e. (iii) holds.
(iii)(i): Suppose (iii). By hypothesis there exists   such that 
             . 
Then
          , i.e., (i) holds.
Proposition 4.2.8:
      The following statements are equivalent:
(i)  is transitive.
(ii) For every URS's,  .
Proof (i)(ii): Suppose (i). Let   and  be URS's. By hypothesis there exists  such that . Hence
                 . 
Therefore 
    .
(ii)(i): Suppose (ii). Let   and  be URS's. Then 
         .
Then there exists  and . Hence there exist  and  such that . But . Therefore there exists  such that   and . That is for some , 
, i.e. (i) holds.
Theorem 4.2.9: 
      If the set of all transitive point is non-empty, then  is transitive.
Proof. Suppose that   be the set of all transitive point and . Let  . By hypothesis  there exists   and   such that
                     
, and . 
Then   
and   
Therefore
  

 Then  ,    
where   and    
and   
That is, . Or, 

 This implies that  is transitive.
Theorem 4.2.10: 
        Let . If  is transitive then so is . 
Proof. Suppose that  with  is transitive. To show that  is transitive. Let   and  be two URS's in   . Since  is uniform continuous , then by Theorem   be two URS's in . By hypothesis there exists  such that 
                        .
That is,
      
                  
Then 
     
Therefore 
                       .
 Consequently  is uniform transitive.
Proposition 4.2.11: 
      Let  be a URDS and . Then the following statements are satisfying 
(1) .
(2) If , then  and  .
Proof. (1) If , then there is nothing to be proved. Assume that  , then  and . So . This implies that  .
(2) First, note that since , then  and . Therefore  and . To show that . Let  , then  . But 
 .Then . This means that  and consequently . To show that . Let  , then
. 
Thus   
 .
                                              
 This means that  and consequently .■
Corollary 4.2.12
      If a URDS   is mixing, then it is transitive.
Proof . Let  be URS's. Since  is mixing .Then there exist   such that   .Thus  .Then  is transitive.
Definition 4.2.13:
     The URDS   is said to be attracting if  
                    
for every URS's   and every .


Proposition 4.2.14:
       Let    be a URDS and  be URS's . If   denotes translation by  on , then for all  we have 
(1) .
(2) .
Proof. Let , then there exists  such that . Thus  .
 
 
           .
This means that
 .
(2) Let ), then there exists  such that . Thus .
 
 
.
This means that
 . 
Corollary 4.2.15:
      Let    be a URDS and  be URS's. If   is an attracting  and  denotes translation by  on , then for all  we have 
(1) .
(2) .

Proposition 4.2.16:
       Let   and   be two equivalent URDS via . If   and , then 
(1) .
(2)  .
Proof: First, note that by   and.
1. Let   
         

        
        .   
This means that  .
1.  Let  
         
         
        (
        . 
This means that.■
Definition 4.2.17: 
       Let   be a URDS. A uniform closed subset    of   is called a uniform transitive if for any choice of uniform subset  of  and uniform random open subset of    we have .
Theorem 4.2.18:
      Let  be a URDS  be a uniform closed subset of . Then the following are equivalent.
(i)  is uniform transitive.
(ii) If   is a uniform open subset of  and  is a uniform random open subset of   we have    for some .
Proof (i) implies (ii): Let  be a uniform transitive. Then for any uniform random open subset  of  and any open subset  of   , we have  . Thus there exists  such that            
                        .
 Hence  ,
. 
  
, where .
 (ii) implies (i): Let   be any uniform random open subset of  and  be a uniform open subset of , . By (ii) there exists   such that    , which implies  .
. Consequently  ; i.e.,  is uniform transitive.
Theorem 4.2.19: 
        Let . If  is closed and transitive subset of , then   is transitive subset of . 
Proof. Suppose that  is transitive subset of . Since  is homeomorphism, then is uniform random closed set. Let  be a uniform subset of   and  be a uniform open subset of   with . Then  is a uniform open subset of  and  is a uniform open subset of  with  . By hypothesis ; i.e, there exists   such that 
 
Hence . That is 
   . Then   . Thus   is transitive subset of .■
4.3 Sensitivity of URDS:
        In this section we introduce the concept of  Sensitive of URDS  and study some new properties of such system that analogues to that in deterministic dynamical systems.
Definition 4.3.1:
         The URDS  is said to be  uniform sensitive on , if for all  and every neighborhood  (with respect to the uniform topology generated by ) of , there exist  ,a point , and a URS's with  such that
                         .
Such a uniform random set is then called a sensitive random set for the uniform  dynamical system .
Examples 4.3.2:
       (i) Let  be a uniform dynamical system with , then  is not uniform sensitive. Note that   generates the indiscrete topology on .
(ii) Let  be a uniform dynamical system with   , then  is not uniform sensitive. Note that   generates the discrete topology on .
Theorem 4.3.3: 
       Let  and  be two equivariant uniform dynamical systems  via . If  is sensitive on , then so is  .
Proof. Suppose that  is sensitive on . To show that  is sensitive. Let  and  neighborhood of  .Since  is uniform conjugacy then  is an open set in  containing . By hypothesis there exist ,  and a URS's with  such that
.
  
 
)
          )
           where
=) .Since  , then . 


Theorem 4.3.4: 
        Let ,  be two uniform random dynamical systems are sensitive, then so is their product.
Proof. Let    and let  neighborhood of . Then  and  neighborhood of in and  in   such that  . Since   is  sensitive then there exists 	  , and  a URS  with     of   such that. Similarly, since is  sensitive then there exists  ,  and a URS  with    of   such that.  Now, let  ,  and  we have 
  
Since   and    then  .Thus   .
This means that the product of  and   is sensitive.
Theorem 4.3.5: 
         Let   and  be two URDS and ,  be equivariant topologically conjugate via. (,   is uniform sensitive, if and only if  is uniform  sensitive.
Proof. Let  is uniform sensitive. Let   and neighborhood  of  .Since  is bijective. Then  there exists    such that  and this implies that  . Put   is neighborhood  of   .Since  is uniform sensitive .Then there exist  ,a point , and a URS  with  such that
                       ( .
Since   .Then   , .Since  .Then  . ,where 
 ( .
This implies that
        ( .
( .
This mean that  is uniform sensitive. The converse also follows analogously.
 4.4 (Sequence of Maps in a Uniform space):  
         Let  be a uniform space.   For any sequence   of uniform random operator , define map    for any  by
                           ,
 for all  and  for any.
Definition 4.4.1:
        Let  be a uniform random  dynamical system and  ,, be a sequence of maps then  is said to have uniform sensitive dependence on initial conditions in the iterative way if there exists an URS set   such that for any  and any neighborhood  of , there exists a point  and a positive integer  such that
                     , 


Definition 4.4.2:
       Let  be a uniform  dynamical system and  ,, be a sequence of maps then  is said to have uniform sensitive dependence on initial conditions in the successive way if there exists an URS   such that for any  and any neighborhood  of , there exists a point  and a positive integer  ,n such that
                    
Remark 4.4.3: 
      Under trivial action of   on , Definition and Definition are  coincide.
Theorem 4.4.4: 
       Let ,  be two uniform random dynamical systems and ,  be two sequences of maps on  respectively. If there exists an equivariant uniform isomorphism   such that  and  are conjugate, then  is uniform sensitive on  in the successive) way if and only if  is uniform sensitive on .
Proof. Suppose  has uniform sensitive on  in the iterative way. There exists a uniform random set  such that for any  and any neighborhood  of , there exists a point  , a positive integer  syndetic subset  of  and uniform  set   such that
                                , 
Since  is uniform continuous therefore there exists a uniform random set   such that for any   with 
                 , ,
where  . Hence for any , we have 
                                  .         (4.4.1)
Observe that for any  and any neighborhood  of  ,  is a neighborhood of . We therefore have  with  and a positive integer  such that
                                , 
Now we use (4.4.1) and observe that for all  
               
Since , and  is equivariant, we have 
                 
and hence 
                             
for all    and  . This establishes  has  uniform sensitive dependence on initial conditions in the iterative way. The converse statement can be proved similarly. The case of uniform sensitive dependence on initial conditions in the successive way also follows analogusly
4.5 Uniformly Equicontinuous RDS:
         In this  section we study concept in URDS called Equicontinuous  URDS 
Notation 4.5.1:
      If    and  uniform random set, then we define
          
Definition 4.5.2:
      A URDS  is said to be equicontinuos  if for every  and every URS  and there exist an nhd  of  , and syndetic subset  of  such that 
        , for every .
Definition 4.5.3:
        A URDS  is said to be uniformly equicontinuos  if for every URS  and there exists URS , and syndetic subset  of  such that 
        , for positive integer  for every .
Theorem 4.5.4:
      A URDS  is uniformly equicontinuos  if and only if for every URS  ,there exist a URS , and syndetic subset  of  such that
   implies  , 
for every positive integer .
Proof. Suppose that  is uniformly equicontinuos. Let  be URS. By hypothesis there exists URS , and syndetic subset  of  such that 
        . 
Let  . Then .
     
                              .
  . 
Let . Since  , for every ,  then  , for every  so  , for every . Therefore 
. 
Conversely, Let  be URS. By hypothesis there exists URS , and syndetic subset  of  such that   implies 
             , for every positive integer .
Let  , then there exists  with  such that  . By hypothesis 
               ,
or equivalently 
 . So . 
Therefore 
                  .
This complete the proof.
The following theorem provide as the characterization of the uniformly equicontinuos  . 
Theorem  4.5.5:
        A URDS  is uniformly equicontinuos  if and only if for every URS   there exists a URS  such that 
                             
Proof. Suppose that  is uniformly equicontinuous. Let   be a URS. By hypothesis there exists a URS  such that 
  implies   .
Let  
                                       
Thus  for some . But by assumption 
6    or   .
This means that 
Conversely, let   be a URS, then by hypotheses there exists a URS  such that  .Let  . Since  , and , then  . Thus  is uniformly equicontinuous.
Definition 4.5.6:
      If the collection of all random set generate the uniform topology, then the uniform topology is called uniform random topology.
Theorem 4.5.7: 
         If  is equicontinuous, then 
               .
Proof. Suppose that   is equicontinuous. Let  and , we want to show that . So consider a URS   and let  be an nhd of  such that , for every integer .
Since  , then  is a limit point of  . Thus . Then there is  so  and . Then there is   such that . so , then  and . Then , where .
Definition 4.5.8: 
        A URDS   is said to be uniformly almost periodic if 
    :  is syndetic and
                .
Notation 4.5.9:
      For , put 
            .
Lemma 4.5.10:
      If   is any URS in a URDS , then .
Proof. Let  , then there exists  such that . Now  if and only if  such that
     , 
if and only if   if and only if 

if and only if 

if and only if 

if and only if 
, 
if and only if 
if and only if  . Therefore .
Proposition 4.5.11:
         If   is any URS in a URDS  and , then   if and only if 
Proof.  if and only if  if and only if   if and only if   (by above lemma).
Proposition 4.5.12:
         If   is any URS in a URDS  and , then
(1)  if and only if   such that 
      .
(2)  if and only if   such that 

Proof.(1) Suppose that . Let , then . There exist  and   such that .Now  if and only if   and . So
              , then 
         
     
      . 
Conversely, suppose that   such that 
      .
We have  . To prove the converse inclusion. Let  , by hypothesis there exists  such that 
    .
if and only if 
     , where 
if and only if 
            
if and only if 
             
if and only if 
      .
This means that . Thus  or . Therefore , so .
(2)Suppose that . Let , then . There exist  and   such that .by (1) we have 
      . 
          . 




Conversely, suppose that   such that 
      .
We have  . To prove the converse inclusion. Let  , by hypothesis there exists  such that 
    .
if and only if 
     , where 
if and only if 
            
if and only if 
             
if and only if 
      .
This means that . Thus  or . Therefore , so .
Theorem 4.5.13: 
         A URDS   is  uniformly almost periodic if  and only if   is syndetic subset of T for every .
Proof. Suppose that  is uniformly almost periodic, then   :  is syndetic and
                . 
Then 
   
 
Then  is syndetic. Conversely, suppose that  is syndetic, then  is syndetic. Now 
            
       . 
Set 
    . 
Then  is syndetic, so . This means that  is uniformly almost periodic.
Definition 4.5.14: 
       A URDS  is said to be totally bounded if for every   there is a finite subset  of  such that 
  
Hypothesis 4.5.15:
              Let,  and  be topological spaces, let  be a continuous mapping and let  and  be compact subsets of  and , respectively. If the topology of  generated by a uniformity . Then 
, 
for all .
We shall prove the following theorem with above hypothesis
Theorem 4.5.16:
        Let  is be totally bounded with  be compact Hasudorff space. Then  is uniformly equicontinuous if and only if  it is uniform almost periodic.
Proof. Suppose that  is uniformly equicontinuous. To show that  it is sufficient to show that for every for every . By hypothesis 
  , then 
 
 , then 
   , then , but , so . Set , then  is compact set. Hence . So  is syndetic. By above theorem  is uniform almost periodic. Conversely, let . There exists  with  and by uniform almost periodicity, there is a compact subset  such that . Since  is continuous, for every , there exists a nbd  such that for all :
   , for all  .           (4.5.1)
Now for arbitrary   write   with  and  . Then  so by (4.5.1) we have 
 
It follows that
  
 for .
Theorem 4.5.18:
        Let  be two uniform random dynamical systems and ,  are two uniform random operators equiv-ariant topologically conjugate via . If  is equicontinuous, then so is  .
Proof. Suppose that  is equicontinuous. Let  be a uniform random subset of  and . Since  is uniform isomorphism, then there exists a uniform random subset   of  such that  
            implies   .               (4.5.2)
Since  is equicontinuous, then there exist a uniform set , and syndetic subset  of  such that 
  implies                   (4.5.3) 
for all  . Since  is uniform continuous, there exists a uniform subset    of  such that 
                  implies   .       (4.5.4)
By (4.5.3) we have 
                        
By (4.5.2) we have  .
Since  ,   be equivariant topologically conjugate via , then 
            ,.
Thus     
This means that   is uniformly equicontinuous.
Definition 4.5.19:[20]
       The URDS  be a uniform random dynamical system  is said to be expansive if
   , there exists a uniform random set such that
Such  is called an expansivity characteristic. 
Theorem 4.5.20: 
       Let  be a uniform space and . If  is uniformly equicontinuous map, then its uniformly expansive.
Proof. Suppose that  is uniformly equicontinuous. Let   with . Let  be a non-symmetric  uniform random set. By hypothesis there exists a uniform random set  a syndetic subset  of  such that for every integer  we have 
         implies   , for all  . 
Since  is non- symmetric and  uniform random set, then
             , for all  .
This means that  is expansive.
4.6 Proximality  and Distality of URDS: 
       In this section we shall introduce the notation of  proximality  and distality in  URDS case .
Definition 4.6.1: 
      A pair of points   is said to be proximal (and the points  and  in  are said to be proximal to each other) whenever  for every URS  there exists   such that 
                    .
The cocycle   (and also the URDS) is called proximal whenever all pairs of points are proximal.

Definition 4.6.2: 
       A pair of points   is said to be distal (and the points  and  in  are said to be distal to each other) whenever  or  is not proximal pair. So if   then  is distal pair if   there exists URS  such that for all 
                    .
(here  usually depends on  ).  The cocycle   (and also the URDS) is called distal whenever all pairs of points are distal.
Notation 4.6.3:
       Let  be a URDS and let (. Set .
Proposition 4.6.4:
        A pair of points   is  proximal if and only if  for all URS  such that 
Proof  Let  be a proximal and  be a URS Then there exists   such that 
     . If and only if 

Proposition 4.6.5: 
       A pair of points   is  proximal if and only if
   for all URS .
Proof Let  and be a URS. Then
          , hence 
            
                               .
        , for some 


, this means that 
   . Consequently
                      
 .Then   is a  proximal. Conversely, suppose that  is a  proximal and URS .Then 
 
Since  iff 
   , iff  there exists   such that 
           
iff  
       


Then 
                           
Theorem 4.6.6:  
         Let  be a compact  and let ( Then 
1. ( is a proximal pair then   .
2. If   such that every URS containing , then ( is a proximal pair.
Proof 1.Suppose that ( is a proximal pair.  Assume contrary that   Then . Since  is closed set in  for every  , then  is open set in  for every . Since , for every  , then , for every   and every . Thus for every   we have , this means that  is an open uniform random set containing . Then  . Hence ( is not  proximal, but this is a contradiction. 
2. Suppose that   such that every URS containing . To show that  is a proximal. There exists . Then every URS   is a neighborhood of   and . So , i.e.  is a proximal.
Theorem 4.6.7: 
      Let  be a compact  and let ( Then   ( is a distal pair iff   or .
Proof. Let  ( is a distal pair.  Then (is not a proximal or  ,by (1)   or .Now let (  and  or  .by (1) (is not a proximal or .Hence ( is a distal pair.
Theorem 4.6.8: 
     Let  be a compact.  (is  a proximal iff there are a net  in and  a point  such that   for  .
Proof .Let (is  a proximal. Then  .Thus ( Then there is net  such that  .Since  .Then , , Then       for    . Conversely let ( and there are a net  in and  a point  such that   for .Thus .Then  .Then   Hence (  is  a proximal.
Theorem  4.6.9:
       A pair point (is  a proximal if and only if : .
Proof . Let (is  a proximal    .Then  therer  exists   .Then there a seqaunes ,) in  such that  ,),there is such that 

           for  . Then for every nbhd  of y ,such that   for .Then  .Hence , . Conversely let ( and : .Thus there is  for .Then and  thus .Then    for is nbhd of  .Thus   .Hence (is  a proximal.
The following Proposition show the relative between the distal and uniformly equicontinuous.
Proposition 4.6.10:
       Every uniformly equicontinuous is distal.
Proof  . Let  is uniformly equicontinuous and (.There exists URS U with ( ,and by uniformly equicontinuous ,there exists URS V such that . So ( , impels  .
, where  .. Hence ( is not a proximal pair. Then ( is distal.
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المستخلص







   الهدف من هذه الرسالة هو دراسة السلوك المحاذي للنظم الديناميكية العشوائية في بنيتين تبولوجيتين مختلفتين هما الفضاءات التبولوجية و الفضاءات المتسقة, حيث درسنا في الجزء الاول من هذه الرسالة مجموعة الغاية من النمط اوميكا و قدمنا مفهوم الاستطالة الاولى ومجموعات الغاية المستطيلة للنظم الديناميكية العشوائية حيث تم برهان بعض الخواص الجديدة مثل العلاقة بين اغلاق المسار و المسار و مجموعة الغاية من النمط اوميكا بالنسبة للنظم الديناميكية العشوائية, وكذلك برهنا بان الاستطالة الاولى لمجموعة عشوائية مغلقة تحتوي تلك المجموعة وان الاستطالة الاولى لمجموعة تكون مغلقة  وغير متغايرة بشرط ان تلك المجموعة غير متغايرة, وكذلك تكون مجموعة مترابطة عندما تكون متراصة بشرط ان فضاء الطور للنظام الديناميكي العشوائي متراص محليا. ومن ثم درسنا مجموعة الغاية المستطيلة للنظم الديناميكية العشوائية و برهنا بعض الخواص الاساسية, حيث برهنا ان مجموعة الغاية العشوائية المستطيلة تكون مغلقة و غير متغايرة. كذلك برهنا العلاقة بين الاستطالة الاولى و مجموعة الغاية المستطيلة و المسار الموجب لمجموعة عشوائية. وكذلك عندما يكون فضاء الطور لنظام ديناميكي عشوائي متراص محليا فتكون العبارات الاتية صحيحة اذا كانت مجموعة الغاية المستطيلة لنظام ديناميكي عشوائي غير خالية و متراصة, فان مجموعة الغاية من النمط اوميكا تكون غير خالية, ان مجموعة الغاية المستطيلة لنظام ديناميكي عشوائي تكون غير خالية و متراصة اذا و فقط اذا كانت الاستطالة الاولى متراصة. اخيرا مجموعة الغاية المستطيلة تكون مترابطة. خصص الجزء الثاني من هذا العمل لدراسة نظرية الاستقرارية للنظم الديناميكية العشوائية عندما يكون فضاء الطور لنظام ديناميكي هو اي فضاء متري. تمت هذه الدراسة من خلال دراسة, التكرار, المجموعات العشوائية الصغرى, مفهوم منطقة الجذب الضعيف, الجذب, والجذب المتسق. خصص الجزء الثالث و الاخير من هذا العمل لدراسة السلوك المحاذي للنظم الديناميكية العشوائية المتسقة, هذا يعني ان فضاء الطور للنظام الديناميكي العشوائي يكون فضاء متسق. خلال هذا الجزء تم تقديم و دراسة مفهوم النظام الديناميكي العشوائية المتسق, المجموعات العشوائية المتسقة. وكذلك قدمنا مفاهيم التعدي المتسق, الحساسية المتسقة, النظام الديتاميكي العشوائي متساوية الاستمرارية بشكل متسق, و النظم الديناميكية العشوائية المتدانية و المتقاصية.
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