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Abstract: In this paper ,we obtain some subordination and superordination results involving the integral operator .Also,we get Differential sandwich results for classes of univalent functions in the unit disk.

Keywords:Analytic function, univalent function, differential subordination , superordination.
 2018 Mathematics Subject Classification : 30C45.



1-Introduction :
Let H=H(U) be the class of analytic functions in the open unit disk For n a positive integer and Let H[a, n] be the subclass of H consisting of functions of the form: 
	(a ).                 (1.1)


Also, let A be the subclass of H consisting of functions of the form:
	                                                              (1.2)


Let  . The function  is said to be subordinate to , or  is said to be subordinate to , if there exists a Schwarz function w analytic in U with and |w(z)| < 1 ( ), such that , In such a case we write . If  is univalent in , then if and only if and 
[bookmark: _GoBack]Let :  If p and are univalent functions in U and if p satisfies the second-order differential superordination.
	                           (1.3)


then p is called a solution of the differential superordination (1.3).    ( If f is subordinate to , then  is superordinate to f ) . An analytic function q is called a subordinant of (1.3) , if  for all the functions p satisfying (1.3). 
An univalent subordinant  that satisfies  for all the subordinants q of (1.3) is called the best subordinant. Miller and Mocanu [5] have obtained conditions on the functions and  for which the following implication holds :
	             (1.4)


For  ,Al-shaqsi [2]  defined the following integral operator:

 (1.5)
We also note that the operator    defined by (1.5) can be expressed by the series expansion as follows :
	.                                (1.6)


Moreover, from (1.6), it follows that
                       (1.7)
Ali et al.[1] obtained sufficient conditions for certain normalized analytic functions to satisfy

where and are given univalent functions in U with . Also, Tuneski [9] obtained  sufficient conditions for starlikeness of in terms of the quantity    .Recently, Shanmugam et al.[7,8], Goyal et al .[4] also obtained sandwich results for certain classes of analytic functions. 
The main object of the present paper is to find sufficient conditions for certain normalized analytic functions f to satisfy: 
,
and 
,
where q1 and q2 are given univalent functions in U with q1(0)= q2(0)= 1.
2-Preliminaries :
In order to prove our subordination and superordination result , we need the following definition and lemmas.
Definition 2.1 [5] : Denote by Q the set of all functions  that are analytic and injective on  where
                     (2.1)
and are such that (ξ) ≠0 for ξ	∈∂U \ E(f).
Lemma 2.1 [5] : Let q be univalent in the unit disk U and let θ and be analytic in a domain D containing q(U) with  when  Set  
Suppose that
(i)  is starlike univalent in ,		
(ii)  Re  for .		
If  is  analytic in  withand 			
(2.2)
then  and  is the best dominant of (2.2).

Lemma 2.2 [6]: Let q be convex univalent in function in U and let  with 

If  is analytic in , and
                         (2.3)
then 	and  is the best dominant of (2.3).
Lemma 2.3 [6]: Let q be convex univalent in U and let  , further assume that Re  . If  Q and  is univalent in U, then 
                         (2.4)
which implies that   and q is the best subordinant of (2.4).
Lemma 2.4 [3]: Let q be convex univalent in the unit disk U and let   be analytic in domain D containing q . Suppose that 
(i) Re 
(ii) Q.
If 
is univalent in U and
,             (2.5)
then 	and  is the best subordination of  (2.5).



3- Subordination Results :
Theorem 3.1 : Let q be convex univalent in U with 
Re  .                  (3.1)
If   the subordination 
                (3.2)
then 
                                     (3.3)
and  is the best dominant of (3.2).
Proof :  Define the function p by
                                     (3.4)
Differentiating (3.4) with respect to z logarithmically, we get
                             (3.5)
Now , in veiw of (1.7), we obtain the following subordination 

therefore ,

The subordination (3.2) from the hypothesis becomes 

An application of Lemma 2.2 with  and 
Putting  in Theorem 3.1 ,we obtain the following 
Corollary 3.1 : Let 
Re .
If satisfies the subordination

then

and  is the best dominant.
Theorem 3.2 : Let q be convex univalent in U with  and assume that q satisfies 
Re  ,                                  (3.6)
where  and .
Suppose that -is starlike univalent in U, if  satisfies:
 ,                       (3.7)
where
,                 (3.8)
then 
,                               (3.9)
and q(z)is the best dominant of (3.7).
Proof: Define the function p by 
,                                 (3.10)
by setting : 
 .
We see that is analytic in is analytic in  and that   .
Also, we get

and  

It is clear that is starlike univalent in U ,

By a straightforword computation , we obtain
,                             (3.11)
where  is given by (3.8).
From (3.7) and (3.11), we have 
.                             (3.12)
Therefore , by Lemma 2.1, we get . By using (3.10) , we obtain the result .
Putting  (-1 ) in Theorem 3.2 , we obtain the following corollary :
Corollary3.2 : Let -1  and 

where  and  if  satisfies 
  
and  is given by (3.8),

and is the best dominant.
4-Superordination results :
Theorem 4.1: Let q be convex univalent in U with 
,
 and ,
be univalent in U . If 
,         (4.1)  
then 
                                    (4.2)
and q is the best subordinant of (4.1).
Proof: Define the function p by
.                                    (4.3)
Differentiating (4.3) with respect to z logarithmically , we get 
                                (4.4)
After some computations and using (1.7) , from (4.4), we obtain

=
and now , by using Lemma 2.3, we get the desired result .
Putting   in Theorem 4.1 , we obtain the following corollary :
Corollary 4.1: Let  and Re 

and 
,
be univalent in U . If 
 ,
then


and 
 is the best subordinant.
Theorem 4.2: Let q be convex univalent in U with 
                                        (4.5)
where  z .
Suppose that  is starlike univalent in U , let 
,
and where  is given by (3.8). If

then 

and q is the best subordinant of 
Proof: Define the function p by 
,                                 (4.8)
by setting 
 and     
we see that   is analytic in    is analytic in  and that      w . Also we get 
.
It is clear that is starlike univalent in U ,

By a straightforword computation ,we obtain 
                                                    (4.9)
where is given by (3.8).
From (4.6) and (4.9) , we have 
                 .                            (4.10)
Therefore , by Lemma 2.4, we get . By using (4.8), we obtain the result .

5-Sandwich Results :
Concluding the results of differential subordination and superordination we arrive at the following ''sandwich result''. 
Theorem 5.1 : Let q1 be convex univalent in U with q1(0)=1,Re {} and let q2 be univalent in U ,q2(0)=1 and , let 
 ,
and

be univalent in U . If 
,


and are respectively , the best subordinant and the best dominant .
Theorem 5.2: Let q1 be convex  univalent in U with q1(0)=1,  and satisfies (4.5), let q2 be univalent in U q2(0)=1,  satisfies (3.6), let 

And  is univalent in U . Where is given by (3.8) . If  
then 

And are respectively , the best subordinant and the best dominant .
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