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Abstract - The paper presents the combination of generalized minimum 
variance control and discrete time quasi-sliding control applied to con-
trol a DC-DC boost converter that provides stable output voltage. The 
control algorithm is realized by measuring only sensed output voltage 
and comparing it with the reference voltage in order to achieve zero 
error signal. The shortcomings of generalized minimum variance con-
trol are significantly alleviate, while the implementation of quasi-sliding 
control based on input/output plant model results in high output voltage 
accuracy in the presence of parameters perturbations. The proposed 
control concept is verified by digital simulation. 

Key words: boost converter, quasi-sliding mode (QSM) control, general-
ized minimum variance (GMV) control, pulse width modula-
tion (PWM). 

I. INTRODUCTION 

DC–DC converters are widespread applications that 
convert one level of DC voltage into another, using switch-
ing action. They can be used in personal computers, bat-
tery charging, DC motor drive and welding machine due to 
their efficiency and reliable operation. The switching ac-
tion is achieved by using appropriate controller. The main 
task of the controller is to drive the main switching device 
with a duty cycle, such that the dc component of the output 
voltage is equal to its reference input.  

Sliding mode (SM) control is a nonlinear control meth-
od that alters the dynamics of a nonlinear system by apply-
ing a discontinuous control signal that forces the system to 
"slide" along a predefined hyper-surface [1]. A system 
motion with SM control has two main modes: reaching 
mode and sliding mode. In reaching mode, the system 
phase trajectory, starting from anywhere in the phase space 
moves toward a sliding hyper-surface and reaches it in 
finite time. This is followed by sliding mode in which the 
phase trajectory asymptotically tends to the origin (equilib-
rium) of the phase space. The sliding hyper-surface deter-
mines the closed loop dynamics of the system [1]-[3]. The 
main advantage of SM control is its insensitivity to param-
eter variations, external disturbances and modeling errors 
[6], [7]. With the advent of digital computers and its wide-
spread use in control systems, considerable efforts have 
been made in the study of discrete-time quasi-sliding mode 
(QSM) control techniques [3]-[5]. 

On the other hand, the application of minimum variance 
(MV) control techniques in the design of QSM control 
enables expanding the idea of synthesis of control systems 

with output feedback to the variable structure control sys-
tems, which are mainly based on the use of plant model in 
state-space [8], [9]. On the other hand, the control methods 
based on the theory of variable structure control systems 
significantly increases the accuracy and robustness of MV 
control in the presence of external disturbances and pa-
rameters variations. In addition, MV control allows us to 
design QSM control using input-output plant model, and 
has the role of the so-called digital equivalent control ueq 
replacement. It is obvious that these two control concepts 
complement each other, which results in giving an effec-
tive QSM based MV control. 

One of the drawbacks of MV control implementation in 
designing of QSM control is the shortening of plant zeros. 
Another drawback is the saturation of the control signal at 
low values of sampling time T, when control signal as-
sumes a high value. The implementation of generalized 
minimum variance (GMV) control principles in the syn-
thesis of QSM control, instead of the concept based on MV 
control, can overcome this problem [9], [12]. 

This paper considers the design of DC-DC boost con-
verter with QSM based GMV control. The controller de-
sign procedure is presented in details and the proposed 
control algorithm is implemented on the concrete convert-
er. A digital simulation is performed then, and the ob-
tained results are presented. 

II. PROBLEM FORMULATION 

System modeling is probably the most important phase 
in any form of system control design and the choice of a 
circuit model depends on the objectives of the simulation. 
The state-space description of the converter model in terms 
of the desired control variables (i.e., voltage and/or cur-
rent) is the first step in the QSM controller design. 

Based on Fig.1, representing DC-DC boost converter 
with QSM based GMV control, the continuous-time model 
of converter in state-space is: 
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where x(t)Rn is a state-space vector, ( )u t   R is an input, 
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Fig.1.DC-DC boost converter with QSM based GMV controller. 

Here C, L, RL denote the capacitance, inductance, and 
instantaneous load resistance of the converter, respectively; 
ic ,iL, ir are the instantaneous capacitor, inductor, and load 
currents, respectively; Vref, Vi, Vo represent the reference, 
instantaneous input, and instantaneous output voltages, 
respectively; β denotes sensor gain;   is the inverse logic 
of u, u(t) is 0 or 1, representing the switching state of pow-
er switch Sw. 

The transfer function of DC-DC boost converter can be 
written from (1) and (2) as: 
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where 01( ) ( ) ( )Y s X s V s  . Under the assumption that 

control signal is a constant during the sampling period T, 
u(t)=u(kT), kT<t<(k+1)T, the discrete-time model of DC-
DC boost converter in state-space is given by: 
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The input-output model of DC-DC boost converter in z-
domain can be directly derived from (4) and it is given by: 
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where z-1 is the unit delay i.e. z-1=e-pT, p - denotes a com-
plex variable and: 
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The main aim of design is to maintain the sensed output 
voltage y(k)=βVo(k) stable, constant and equal to some 
reference voltage Vr(k)=Vref , despite the variations of load 
resistance RL . 

III. CONTROLLER DESIGN 

In order to achieve the design task, QSM based GMV 
control algorithm is used [10], [12] in control of DC-DC 
boost converter. It is defined by: 
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under an assumption that the reference input signal in 
subsequent time points (Vr(k+1), Vr(k+2),…) is known. 
s(k) represents the switching function given by: 

  1 1( 1) ( ) ( 1) ( 1) ( ) ( )rs k C z y k V k Q z u k       ,(13) 

with: 

 1 1 2
0 1 2( )C z c c z c z     , (14) 

 1 2 1 2( ) (1 )cf TC z e z    , (15) 

where fc is a cut-off frequency. C(z-1) is a polynomial with 
all zeros inside the unit disk of z-plane, while the polyno-
mial Q(z-1) must satisfy the following equality in the steady 
state: 

 (1) 0Q  , (16) 

The polynomials E(z-1) and F(z-1) are the solutions of so-
called Diophantine equation: 

 1 1 1 1 1( ) ( ) ( ) ( )C z E z A z z F z      , (17) 
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and in our case: 

 1
0 0 0( )E z e c a   , (18) 
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Notice that s(k)=0 is an equation of sliding hyper-surface 
in general case. Substituting (12) in (6), taking into ac-
count (13) and (17), one gets: 

 ( 1) ( ) sgn( ( ))s k s k T s k   , (20) 

that determines the dynamics of switching function. If 
0  , a quasi-sliding motion is established in ∆-vicinity 

of s(k)=0, i.e. |s(k)|≤∆ is always satisfied, where ∆ is a 
function of T . 

When QSM is reached, the system over all stability de-
pends on the roots of equation: 

 1 1 1 1( ) ( ) ( ) ( ) 0B z C z A z Q z   , (21) 

which have to be inside the unit disk in the z-plane, 
whereas the pairs (B(z-1), Q(z-1)),(C(z-1), A(z-1)) and (C(z-

1), Q(z-1)) do not have a common zero outside this disk. 

IV. SIMULATION RESULTS  

The values of DC-DC boost converter parameters are 
given in Table I. A digital simulation was performed to 
validate the use of QSM based GMV control in design of 
this converter. The load changes are also applied to test the 
functionalities of such system. The following controller 
parameters were set: T=50µs, α=10, β=0.166 and Vref=8V. 

The figures, given below, show the sensed output volt-
age waveform with the variation of load resistance RL: Fig. 
2 with load resistance equal to 24 Ω, Fig. 3 with 240 Ω 
and Fig. 4 with 132 Ω. We notice that when RL has its 
maximum value 240 Ω, the proposed QSM voltage con-
troller provides robust boost converter output voltage re-
sponse as in the case of nominal load. Unfortunately, ex-
treme minimal value of RL (24 Ω), corresponding to the 
maximal load, causes significant output oscillation around 
the reference input, but still gives the desired output value. 

TABLE I 

Boost Converter Parameter Values 

Input Voltage Vi 24V 

Capacitance C 230µF 

Inductance L 300µH 

Switching frequency fs 200KHz 

Inductor resistance rL 0.14Ω 

Capacitance ESR rC 69mΩ 

Average Load resistance RL 132.5Ω 

Minimum Load resistance RL_min 24Ω 

Desired Output Voltage Vo 48V 

Maximum Load resistance RL_max 240Ω 

 
Fig.2. Sensed voltage at the output with load resistance 

RLmin  

Fig3. Sensed voltage at the output with load resistance RLmax 

 
Fig.4. Sensed Voltage at the output with load resistance RL 

V. CONCLUSION 

The proposed control strategy is based on measuring the 
output voltage signal and its comparison with the reference 
voltage to adopt zero error signal. Using the discrete-time 
quasi-sliding mode controller to control DC-DC boost 
converter has proved to be adequate for digitally controlled 
power converter and for getting the desired system re-
quirements during parameter variations, gaining high 
output voltage accuracy in the presence of parameters 
perturbations. Another goal is achieved by filtering the 
switching control component using the discrete-time inte-
grator which reduces the chattering phenomenon. In addi-
tion to significant changes in the parameters of the system 
under control, the digital quasi-sliding mode control using 
generalized minimum variance method, based on the in-
put-output signal measurements, enables a high accuracy 
of the system under the condition that the range of the 
change of these parameters is known in advance. 
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