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Professor

Faculty of Electronic Engineering,

Department of Control Systems,

University of Ni�s,

Aleksandra Medvedeva 14,

Ni�s 18000, Republic of Serbia

e-mail: dragan.antic@elfak.ni.ac.rs

Miroslav Milovanović
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Modeling of Dynamic Systems
Using Orthogonal Endocrine
Adaptive Neuro-Fuzzy
Inference Systems
This paper presents a new method for designing adaptive neuro-fuzzy inference systems
(ANFIS). Improvements are made by introducing specially developed orthogonal func-
tions into the very structure of ANFIS, specifically, into the layer that imitates Sugeno
stile defuzzification. These functions are specially tailored for analysis and synthesis of
dynamic systems and they also contain an adaptive measure of the variability of the sys-
tems operating in a real environment, which can be implemented inside the ANFIS as
hormonal effect. [DOI: 10.1115/1.4030758]

Keywords: ANFIS, orthogonal functions, endocrine networks, modeling of dynamic
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1 Introduction

Hybrid intelligent systems have been the subject of intense
study in the recent years [1,2]. They combine various intelligent
technologies in order to outline their individual strengths and sup-
press drawbacks. Among the hybrid intelligent systems, important
place belongs to the hybrid neuro-fuzzy systems, which are based
on the natural synergy of neural networks and fuzzy logic [3]. The
neural networks, on one side, have the ability to learn and adapt to
the environmental conditions, and fuzzy logic, on the other, offers

an understandable way of knowledge representation to the
humans. The most popular systems of such are ANFIS, developed
at end of the last century [4]. These systems are basically one type
of neural networks, based on Takagi-Sugeno fuzzy inference, cor-
responding to a set of fuzzy IF-THEN rules.

The main idea behind this paper is to try with improving the
classical, well-known ANFIS, by introducing a specially designed
basis of quasi-orthogonal functions into the last layer of the neural
network, instead of the usual Sugeno-style outputs of fuzzy rules
(constant-singleton or linear). To this end, authors have developed
generalized quasi-orthogonal functions specifically tailored to the
purpose of the analysis and synthesis of dynamic systems, based
on previous work in the field of orthogonal functions [5]. One
more important advantage of these functions is that they can take
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into account the variations of the components of the real systems
due to the changes in environmental conditions, which can con-
veniently be introduced in ANFIS as the hormonal effect. That
effect is motivated by several up-to-date papers where appear so-
called endocrine neural networks that have the ability to adapt to
the environmental conditions [6]. These networks mimic the bio-
logical process of regulating the behavior of the system through
hormone secretion from the gland cell associated to the artificial
neural network. This principle of adding hormones can be applied
to all kinds of regular neural networks [7,8] as well as ANFIS, as
in this paper. The advantage of the method presented in this paper
is that the system after completion of the training has the ability to
adapt to ever changing conditions in which the system operates,
based on the information obtained from the external sensors.

Designed improved ANFIS—orthogonal endocrine ANFIS
(OEANFIS) was tested by a series of experiments on a laboratory
modular servo drive, as a good candidate due to its built-in nonli-
nearities and dependence on working condition variations. New
network has demonstrated improvement in the accuracy of the
obtained model and the modeling time compared to the existing
AutoRegressive model with eXogenous input (ARX) and classical
ANFIS, of course, at the cost of more complex structure.
Improved results originate from the very nature of orthogonal sys-
tems to approximate the real signals in optimal manner as well as
from introduced measure of variations as result of changing condi-
tions of the environment in which the system operates.

2 Generalized Orthogonal Polynomials

The authors of this paper have already explored some new types
of orthogonal functions and their generalizations [5], suitable for
the application in practical engineering [9], especially in the areas
of modeling [10], and control of dynamic systems [11]. The
advantage of orthogonal functions described in the earlier papers
is that they were developed by using certain transformations in the
complex domain, which makes them suitable for use in the analy-
sis and synthesis of continuous systems. In this paper, we are tak-
ing a next step and demonstrate the process of generating
generalized orthogonal polynomials specially designed for use in
endocrine ANFIS. They contain an adaptive measure of the vari-
ability of the system while operating in a real environment, suita-
ble for modeling by the hormonal effect. The extensive math
behind these orthogonal functions and the logic of using these
functions in analysis and synthesis of dynamical systems is given
in cited papers, and here we will present only a short extract, nec-
essary for building our own ANFIS.

Let us start with the classical definition of orthogonal polyno-
mials with the form of Pn xð Þ ¼

Pn
k¼0 akxk [12]. If we define the

inner product of two polynomials of this set as

Pm xð Þ;Pn xð Þð Þ ¼
ðb

a

w xð ÞPm xð ÞPn xð Þdx (1)

where w(x) represents the weight function and a and b are the lim-
its of orthogonality interval, then, polynomials are orthogonal if

Pm xð Þ;Pn xð Þð Þ ¼
0; m 6¼ n

Nn 6¼ 0; m ¼ n

(
(2)

On the other side, if the following is valid:

Pm xð Þ;Pn xð Þð Þ ¼
e � 0; m 6¼ n

Nn 6¼ 0; m ¼ n

(
(3)

where e is a constant very close to zero (but not equal to it),
then we can talk about: “almost” or “near” orthogonal poly-
nomials [10].

The relationship between classical and almost orthogonal poly-
nomials [13] is given by the relation

P eð Þ
n xð Þ ¼ Pn xð Þ þ

Xn�1

k¼1

bk eð Þ
Pkk k2

Pk xð Þ (4)

where Pkk k2
is the square of the norm and bk are polynomials of e

bkþ1 eð Þ ¼ bk eð Þ � b2
k eð Þ
Pkk k2

; b0 ¼ e (5)

If we now switch to more convenient constant for further
development d¼ 1þ e � 1 and apply the definition of almost
orthogonality on, for instance, shifted Legendre polynomials
(their definition is most convenient for our research because of
their specific weight function w(x)¼ 1 and interval of orthogonal-
ity (0,1) in their explicit form)

Pn xð Þ ¼ 1

n!

Xn

j¼0

�1ð Þn�j
n

j

 !
nþ jð Þ!

j!
xj (6)

we obtain the sequence of almost orthogonal Legendre
polynomials

P dð Þ
n xð Þ ¼

Xn

i¼0

Ad
n;ix

i (7)

where

Ad
n;i ¼ �1ð Þnþi C ndþ iþ 1ð Þ

C ndþ 1ð Þi! n� ið Þ! (8)

and U is the symbol for the gamma function.
Final generalization of the concept of orthogonality can be

introduced by the following definition of quasi-orthogonality for
the polynomial set Pn(x) [14]:

Pk
n xð Þ;Pk

m xð Þ
� �

¼
ðb

a

w xð ÞPk
n xð ÞPk

m xð Þdx

¼
0; 0 � m � n� k � 1

Nk
n;m 6¼ 0; n� k � m � n

8<
: (9)

where k represents the order of quasi-orthogonality, a and b are
the limits of quasi-orthogonality interval, and w(x) is the weight
function.

If we apply (9) on the almost orthogonal Legendre polynomials
defined by Eqs. (7) and (8), we can obtain generalized quasi-
orthogonal Legendre polynomials over interval (0, 1) with weight
function w xð Þ ¼ 1

P k;dð Þ
n xð Þ ¼

Xn

i¼0

Ak;d
n;i xi (10)

where

A
k;dð Þ

n;i ¼ �1ð Þnþiþk

Yn�k

j¼1

iþ jdð Þ

i! n� ið Þ! (11)

In Eq. (5), k is the order of quasi-orthogonality and d is a constant
very close to one (d�1) [5].

For example, the first few first-order (k¼ 1) generalized quasi-
orthogonal Legendre polynomials of this sequence are
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P
1;dð Þ

1 xð Þ ¼ �xþ 1

P
1;dð Þ

2 xð Þ ¼ � dþ 2ð Þ
2

x2 þ dþ 1ð Þx� d
2

P
1;dð Þ

3 xð Þ ¼ � dþ 3ð Þ 2dþ 3ð Þ
6

x3 þ dþ 1ð Þ dþ 2ð Þx2 � dþ 1ð Þ 2dþ 1ð Þ
2

xþ d2

3

P
1;dð Þ

4 xð Þ ¼ � dþ 2ð Þ dþ 4ð Þ 3dþ 4ð Þ
12

x4 þ dþ 1ð Þ dþ 3ð Þ 2dþ 3ð Þ
2

x3

� dþ 1ð Þ dþ 2ð Þ 3dþ 2ð Þ
2

x2 þ dþ 1ð Þ 2dþ 1ð Þ 3dþ 4ð Þ
6

x� d3

4

…

(12)

After introducing substitution x ¼ e�t to Eq. (4) and applying
Laplace transform, we obtain kth order rational function in the
form of transfer function, suitable for modeling continuous
dynamical systems [15]

W k;dð Þ
n sð Þ ¼

Yn�k

i¼1

s� idð Þ

Yn

i¼0

sþ ið Þ
¼ s� dð Þ s� 2dð Þ � � � s� n� kð Þdð Þ

s sþ 1ð Þ sþ 2ð Þ � � � sþ nð Þ

(13)

Now, let us define the quasi-orthogonality via the following
inner product:

N k;dð Þ
nm ¼

þ
C

W k;dð Þ
n sð Þ �W k;dð Þ

m sð Þw sð Þds (14)

with weight function w(s)¼ 1, where m> n. By using transforma-
tion �s ¼ f sð Þ and the property of symmetry applied on Eq. (13)

�W k;dð Þ
m sð Þ ¼

Ym�k

i¼1

sþ idð Þ

Ym
i¼0

s� ið Þ
¼ sþ dð Þ sþ 2dð Þ � � � sþ m� kð Þdð Þ

s s� 1ð Þ s� 2ð Þ � � � s� mð Þ

(15)

After applying Cauchy theorem for solving contour integral in
Eq. (14)

N k;dð Þ
nm ¼ 2pj

Xm�k

r¼1

Res W k;dð Þ
n sð Þ �W k;dð Þ

m sð Þ
h i

(16)

With inclusion of regulation factor d, we can get a better represen-
tation of the real systems model. This factor can define measure of
the variability of the given system in working conditions of a real
environment suitable for the modeling via the introduced hormo-
nal effect into ANFIS.

3 OEANFIS

Classic ANFIS is basically a neural network that mimics
Sugeno fuzzy model where the set of fuzzy rules is being gener-
ated based on a given set of inputs and outputs of the system. Typ-
ically, Sugeno fuzzy rule has the following form:

IF x1 is A1

AND x2 is A2

..

.

AND xn is An

THEN y ¼ f x1; x2;…; xnð Þ

(17)

where x1, x2,..., xn are input variables, A1, A2,..., An are fuzzy sets,
and y is either a constant or linear function of input variables. In
the case of y being constant, we have a zero-order Sugeno fuzzy
model in which the effects of fuzzy rules are defined by
singletons—fuzzy sets with a membership function equal to unity
at one point of the universe of discourse and zero everywhere
else.

ANFIS is usually feed-forward neural network consisting of
five layers (Fig. 1) [16]. External input signals are passed first to
the fuzzification layer, and, in experiments in this paper, we used
simple bell activation functions specified as

yi ¼
1

1þ xi � ai

ci

� �2bi
(18)

Fig. 1 The structure of OEANFIS with two inputs
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where xi is the input and yi the output of neuron i in layer 1, and
ai, bi, and ci are the parameters of the bell-shaped activation func-
tion for that neuron.

Each neuron in the second (rule) layer corresponds to the single
Sugeno-type fuzzy rule and has the function to calculate the firing
strength of the rule it represents, based on inputs from correspond-
ing fuzzification neurons. Conjunction of rule antecedents is usu-
ally performed by product operator. Normalized firing strength of
a given rule (representing the contribution of a given rule to the
final result) is calculated by the neurons in third (normalization)
layer, based on the inputs from all the neurons in the rule layer.

Next layer is defuzzification layer where each neuron calculates
the weighted consequent value of a given rule as constant or linear
combination of system inputs. This layer is the focal point of this
paper. Main idea is to replace singleton functions in neurons of
this layer by orthogonal functions described by Eqs. (10) and (11),
as the orthogonal basis specially designed for modeling dynamical
systems should provide better approximation with lower training
time (only one parameter to be trained instead of several). The
second change in the regular ANFIS structure is the introduction
of adaptive factor to the neurons of the fourth layer. As already
mentioned, there are several papers published in last few years
dealing with introduction of endocrine component to the neural
systems. Idea is to mimic the process from the nature where the
behavior of the neurons is regulated by hormones secreted by
glands of endocrine system. In contrast to these papers [6–8]
where hormones are usually used to modify weights of neurons in
artificial neural networks, based on external conditions, idea of
this paper is to introduce these stimuli directly to the neurons of
fourth layer, via parameter d in Eq. (11), as reaction to the varia-
tions of nominal components of dynamical system under effect of
changed working conditions, determined by sensors.

Fifth and the final layer has a single summation neuron that cal-
culates the sum of outputs of all defuzzification neurons in order
to produce the overall ANFIS output. So, the whole neural net-
work structure actually mimics the functionality of Sugeno fuzzy
model with one important advantage—ANFIS has the ability to
learn the parameters and tune membership functions by itself dur-
ing the training process. Suggested default learning algorithm for
training FIS membership function parameters to emulate a given
training data set is a combination of least-squares estimator and
gradient descent method [4]. In the training algorithm, each epoch
has a forward pass and a backward pass. During the forward pass,
input vector is presented to the ANFIS and neuron outputs are
calculated layer-by-layer. During backward pass, the back-
propagation algorithm is applied. Errors are being propagated
back and antecedent parameters are updated according to training
rules. Default training algorithm [17] implies optimization of both
sets of parameters, consequent in forward and antecedent in back-
ward pass. The ability of ANFIS to generalize and converge
rapidly is very important in online learning and numerous applica-
tions, especially in adaptive control [18].

4 Modeling Servo System Using OEANFIS

Modular servo drive shown in Fig. 2 was considered as case
study for modeling of dynamic systems using OEANFIS. This
servo system [19,20], beside hardware, includes open-architecture
software that extends the MATLAB environment for real-time con-
trol experiments. The servo system setup consists of several mod-
ules (direct current motor, brass inertia, backlash, encoder,
magnetic brake, gearbox with the output disk, tachogenerator, and
potentiometer) arranged in the chain, mounted at the metal rail
and coupled with the small clutches. The rotation angle of the
shaft is measured via incremental encoder. RTDAC/USB acquisi-
tion board with A/D converters is used for all the measurements
whereby all the functions of the board can be accessed from the
Modular Servo Toolbox, part of the MATLAB/SIMULINK environ-
ment. There are a few incorporated nonlinearities (saturation, hys-
teresis) inside the servo drive, emerging from elements like

backlash, amplifiers, and actuators. It should be also considered
that parameters of the servo drive, while operating in the real-
world conditions, depend on the various environment factors like
temperature, moisture, presence of the nearby fields. In this paper,
we will consider only variations in nominal value of components
based on changes in temperature, detected by temperature sensors.

In order to validate the proposed structure of OEANFIS, we
conducted a series of experiments of modeling described servo
drive and compared the results with those obtained by using default
ARX and ANFIS neural network. As training sets, we used data for
input (applied voltage) and output (angular velocity) for 180 s given
in Fig. 3. Applied input voltage was changed randomly every 4 s,
between �1.5 V and 1.5 V. Input and output signals were sampled
every 10 ms, so resulting vectors had 18,000 samples each. First
half was used as training and second as checking data.

ARX [21] assumes a linear system model of the form

y kð Þ þ a1y k � 1ð Þ þ � � � þ amy k � mð Þ ¼ b1u k � dð Þ þ � � �
þ bnu k � d � nþ 1ð Þ (19)

where ARX structure is specified by three preset parameters [m, n,
d] and, on the other side, ai (i¼ 1 to m) and bj (j¼ 1 to n), as the
parameters to be determined. In order not to make to complex and
computationally demanding models, we have chosen for all our
models to use the last three samples of input signal and two last
samples of output signal, meaning [m, n, d]¼ [2, 3, 0]. Best set of
parameters ai and bj was obtained by using MATLAB built in func-
tion “arx” that automatically determines best parameters ai and bj

based on least-squares method.
The ARX model, as a basically linear model, has important

advantage that it can perform fast identification of the model struc-
ture and parameter values. However, if a better modeling accuracy
is desired, we should use some nonlinear model like ANFIS.

ANFIS model was made by using MATLAB embedded function
“genfis1” with effect of generating an initial Sugeno-type fuzzy
inference system for ANFIS training using a grid partition. This
function has the following syntax with four input arguments: gen-
fis1 (data, nummfs, inputmf, outputmf), where “data” represents
set of input and output vectors, “nummfs” is the number of mem-
bership functions per neural network input (we kept the default
value of two membership functions per each of five inputs),
“inputmf” represents the type of membership function for each
input (we kept the default value—bell activation function
described with (18)), and “outputmf”—output membership func-
tion type (we used constant functions). Training of the neural net-
work was performed by using MATLAB function “anfis.” That
function uses a hybrid learning algorithm (combination of
least-squares and backpropagation gradient descent methods) to

Fig. 2 The modular servo system setup
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identify (train) the membership function parameters to model a
given set of input/output data (first 9000 samples for our
experiment).

OEANFIS used in experiment had a completely equal structure
to the default ANFIS, except implemented orthogonal member-
ship functions in the neurons of the fourth layer instead of single-
tons, and introduced d obtained from the sensors (in this case,
temperature sensor) as the measure of environmental changes. d
was calculated in the real-time based on difference between normal

(nominal) operating environmental conditions and real conditions,
as parameter close to one (equal to one, for nominal values). We
used four neurons in the fourth layer (i.e., first four orthogonal func-
tions given in Eq. (12)) because we wanted to have the same condi-
tions as in second experiment with regular ANFIS, and the training
of ANFIS resulted in exactly four neurons of the output layer.

Sensed output signals and approximations obtained from three
different models: ARX, ANFIS, and OEANFIS are given in
Figs. 4 and 5. We can see that all three models follow training

Fig. 4 Training data and model responses

Fig. 5 Checking data and model responses

Fig. 3 Input and output training sets
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data well (Fig. 4) but difference becomes noticeable with check-
ing data set (Fig. 5). While OEANFIS response is practically over-
lapping with systems output, other two models fall behind in
terms of modeling precision. Difference between three models
can be best noticed from comparative results for all three model-
ing methods in terms of root-mean-squared error (RMSE) and
needed computational time, given in Table 1.

The ARX modeling spends the least amount of time to reach
the worst precision, and two models based on ANFIS take more
time to reach the better precision. In other words, if fast modeling
is the goal, then ARX model or some simple neural network is the
right choice. But if precision is the utmost concern, then ANFIS is
the right answer, because it is structurally designed for modeling
dynamic systems and higher precision. By comparing two ANFIS
models we can see improvement in precision when dealing with
OEANFIS, coming from the natural property of orthogonal basis
to approximate signals in optimal manner, opposed to the random
distributed singleton functions. On the other hand, improvement
in computational time comes from the need to train and adjust
only one parameter to feed the orthogonal basis in fourth layer,
off course, at the cost of higher model complexity. Another
important advantage of using orthogonal functions described in
this paper is that, knowing the coefficients (weights) of the orthog-
onal basis, we can easily obtain systems’ model in the form of
transfer function [10].

5 Conclusion

This paper presented a new method of modeling dynamic sys-
tems, based on the modification of existing, well-known ANFIS.
ANFIS was chosen because, as a hybrid technique, it provides
excellent synergy of fuzzy logic and neural networks. Fuzzy logic
provides to this combination the possibility of representing knowl-
edge in a way understandable to the humans, and neural network
an opportunity for learning and adapting to the environmental
conditions. The paper describes in detail the structure of ANFIS,
layer by layer.

The main proposed modification of ANFIS consists in replacing
the existing singleton or linear functions characteristic for the
Sugeno-type fuzzy inference, implemented as a fourth layer of
ANFIS, by orthogonal functions specifically tailored and adapted
for the analysis and synthesis of continuous dynamic systems.
Another advantage of these orthogonal functions is also reflected
in the fact that they contain a built-in measure of imperfections of
real systems that can be introduced into neural network by the
mechanism of hormonal action that enables adaptability to ever
changing environmental conditions in which the system operates.

The proposed new method of modeling dynamic systems has
been tested through experiments with servo system. Modeling of
the system was performed with the randomly generated input sig-
nal and sensed response of the system. Half of the obtained data
was used as training set for the neural network, and half as verifi-
cation data. The system was then modeled by three different

methods: ARX, ANFIS, and modified ANFIS (OEANFIS), then
the results were compared in terms of mean square error and the
time required for the modeling process. The results confirmed the
quality of the designed OEANFIS modeling method and showed
that OEANFIS can be effectively used for modeling dynamic sys-
tems due to the better approximation power of orthogonal func-
tions and introduced adaptive hormonal effect.
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“Approximation Based on Orthogonal and Almost Orthogonal Functions,”
J. Franklin Inst., 349(1), pp. 323–336.

[6] Timmis, J., Neal, M., and Thorniley, J., 2009, “An Adaptive Neuro-Endocrine
System for Robotic Systems,” IEEE Workshop on Robotic Intelligence in Infor-
mationally Structured Space, Nashville, TN, pp. 129–136.

[7] Chen, D., Wang, J., Zou, F., Yuan, W., and Hou, W., 2014, “Time Series Pre-
diction With Improved Neuro-Endocrine Model,” Neural Comput. Appl., 24(6),
pp. 1465–1475.

[8] Sauze, C., and Neal, M., 2013, “Artificial Endocrine Controller for Power Man-
agement in Robotic Systems,” IEEE Trans. Neural Networks Learn. Syst.,
24(12), pp. 1973–1985.
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Lj., 2013, “On a New Class of Quasi-Orthogonal Filters,” Int. J. Electron.,
100(10), pp. 1361–1372.

[16] Jang, J.-S. R., and Sun, C.-T., 1997, Neuro-Fuzzy and Soft Computing: A Com-
putational Approach to Learning and Machine Intelligence, Prentice Hall, Eng-
lewood Cliffs, NJ.

[17] The MathWorks Inc., 2014, Fuzzy Logic Toolbox
TM

User’s Guide, The Math-
Works Inc., Natick, MA.

[18] Zhang, Y., Chai, T., Wang, H., Fu, J., Zhang, L., and Wang, Y., 2010, “An
Adaptive Generalized Predictive Control Method for Nonlinear Systems Based
on ANFIS and Multiple Models,” IEEE Trans. Fuzzy Syst., 18(6), pp.
1070–1082.

[19] Inteco, 2008, “Modular Servo System-User’s Manual,” www.inteco.com.pl
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