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ABSTRACT 

Unsteady conjugate natural convective heat transfer in a 
two-dimensional variable porosity layer sandwiched between 
two walls has been studied numerically. The Generalization 
model has been used to solve the governing equations in the 
saturated porous region. The Boussinesq approximation 
assumed to be valid. The vertical walls are impermeable and 
subjected to a horizontal gradient of temperature while the 
horizontal walls are adiabatic. A finite volume approach has 
been used to solve the dimensionless governing equations and 
the pressure velocity coupling is treated with the SIMPLE 
algorithm. The model has been validated with available 
experimental, analytical/computational studies. A correlation to 
evaluate the average Nusselt number has been proposed as a 
function of Rayleigh number, Darcy number, including a 
number of physical geometrical and material property ratios. 
 
KEYWORDS: Heat transfer, natural convection, porous 
media, non-Darcy, Conjugate, CFD and finite volume. 
 
INTRODUCTION 

An equally large body of research has emerged with 
respect to investigations of convective heat and mass transfer in 
rectangular porous cavities and vertical surfaces with 
uniform/non-uniform heat flux and surface temperatures. The 
classical Darcy formulation has been used as well as the Darcy-
Brinkman model, the Darcy-Forscheimmer model and Darcy-
Brinkman-Forscheimmer model. These areas have been 
thoroughly reviewed recently by Nield and Bejan  [1]. 
Sen [2] considered the Darcy-Brinkman convective flow in a 
shallow porous rectangular cavity with adiabatic upper and 
lower plate boundaries and differentially heated sidewalls. An 
important non-Darcian study also has been presented by 

Lauriat and Prasad [3] for a heated vertical porous cavity. The 
inertia and viscous forces on natural convection is examined 
via the Darcy-Brinkman-Forchheimer. Nithiarasu [4] studied 
the effect of the differences in existing porous medium flow 
models on flow and heat transfer in the context of heat flux 
boundary condition. The results showed that the effects of non-
linear drag term and porosity are significant at higher Rayleigh 
and Darcy numbers. Numerical investigation for transient free 
convection in a two-dimensional square cavity filled with a 
porous medium conducted by Saeid and Pop [5]. These results 
are in good agreement with the results obtained by Walker and 
Homsy [6], Bejan [7], Weber [8],  Gross et al [9] and Manole 
and Lage [10], Bankvall [11] .Also, the results show that the 
time required to get to steady state is shorter for the high 
Rayleigh number and longer for low Rayleigh number. 
In the last three decades, a wide range of studies have been 
published in the literature emphasizing the conjugate heat 
transfer phenomena in a porous media. It is of practical 
importance in for example, high performance insulation for 
buildings and cold storage installations. Nield and Bejan  [1] 
presented many reviews of the existing studies on such topics. 
In addition to Ingham and Pop [12,13], Pop and Ingham [14], 
Vafai [15] and Al Amiri [16] studies. 
Numerical investigations for non-Darcian effects on transient 
conjugate natural convection-conduction heat transfer from a 
two-dimensional vertical plate fin embedded in a high-porosity 
medium were carried out by Hung et al [17]. The results have 
shown that the inertial effects on heat transfer characteristic are 
negligible at earlier times. On the other hand the effect 
becomes increasingly important at longer times. Furthermore, 
as mentioned above, two-dimensional transient conjugate free 
convection due to a vertical plate in a porous medium was 
investigated both analytically and numerically by Vynnycky 
and Kimura [18] and Kimura et al [19]. 
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Important contributions were also made by Saeid [20] 
regarding the steady conjugate natural convection–conduction 
heat transfer in a two-dimensional vertical porous enclosure. 
The wall with a finite thickness was heated horizontally, while 
the outer surfaces of the vertical walls were isothermal at 
different temperatures, as opposed to the horizontal boundaries 
that were kept insulated. The Darcy model was considered in 
this model and the finite volume method was used to solve the 
dimensionless governing equations. The results indicate that in 
both the wall and the porous layer, the heat is transferred 
mainly by conduction and the average Nusselt number is 
approximately constant. Earlier Al-Amiri et al [21] studied 
numerically two-dimensional steady state conjugate natural 
convection in a fluid saturated porous cavity bounded by a 
conducting vertical wall. The results showed that as the wall 
thickness increases, the overall Nusselt number is reduced, 
while the average Nusselt number increases when the Rayleigh 
number increases. These results are in good agreement with the 
results obtained by Kaminski and Prakash [22], Hribersek and 
Kuhn [23], Wansophark et al [24], Al-Amiri [25]. 
In this paper, unsteady conjugate natural convective heat 
transfer in a two-dimensional porous layer sandwiched between 
two walls is investigated. The horizontal boundaries of the 
cavity are adiabatic and the vertical walls are maintained at 
fixed different temperatures. The generalized model with the 
Boussinesq approximation is used to solve the governing 
equations in the saturated porous region and the conductivity 
equation has been used to solve the energy equation in the 
finite thickness wall layer. A finite volume approach has been 
used to solve the dimensionless governing equations and the 
pressure velocity coupling is treated with the SIMPLE 
algorithm in the porous media domain. The results are 
presented in streamline, isothermal and Nusselt number 
profiles. 
 
METHODOLOGY 

The model is constructed by using a two-dimensional 
porous cavity sandwiched between two finite thickness walls 
filled with an isotropic porous medium as shown in Figure (1). 
The horizontal boundaries of the cavity are adiabatic and the 
vertical walls are maintained at fixed different temperatures Th 
and Tc. The Brinkman-Forchheimer-extended Darcy 
(generalization) model has been used to solve the governing 
equations. Isotropic, homogeneous, local thermal balance, and 
saturated with an incompressible fluid has been assumed. All 
the properties have been assumed to be constant except the 
density. The flow is driven by a buoyancy fource due to 
temperature variations. The density variations are described by 
the Boussinesq approximation: 
 

[ ]1 ( )T oT Tρ ρ β= − −        (1) 
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is the thermal expansion coefficient. 

The two-dimensional continuity, energy, momentum in the x 
and y directions for unsteady natural convection (properly non-
dimensionalised) are given as in Nithiarasu et al [26]: 
 
Continuity equation is: 
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Y-momentum equation is: 
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Energy equation is: 
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and the energy equation for the walls is: 
2 2
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The heat flux and the temperatures at the solid-porous media 
interface must be the continuous. 
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where the subscript p and w refer to the porous and the wall 
respectively. 
Also, the heat transfer at the walls are defined as the following: 

0
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where Nu is the average Nusselt number,  
The non-dimensional parameters are:  
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The equations (2)-(8) are solved by using the non-dimensional 
initial boundary conditions: 
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NUMERICAL METHOD 
 

A finite volume approach has been used to solve the 
dimensionless governing equations (2)-(7). The transport 
process and the corresponding equations are strongly coupled, 
since the conjugate effect (convection-conduction) between the 
walls and the porous media. The primary steps for the pressure 
velocity coupling are treated using the SIMPLE algorithm 
tailored for the porous media domain by Patankar [27] and will 
not be presented here. A second order central discretization 
scheme is used for the momentum, energy equations, and the 
semi-implicit first order scheme is used for time step 
advancement in the momentum equations and the ADI method 
is adopted for the energy, John and Anderson [28]. The inertial 
term in momentum equations is considered a source term.  In 
the porous media, different mesh sizes were  tested and a 81*81 
grid is adopted as reasonable for the low Rayleigh number 
while a 121*121grid was deemed adequate  for the high 
Rayleigh number. The steady state was considered to have been 
arrived at when the changes in U, V, P and T satisfy the 
equation: 
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An in-house code developed for this study was validated using 
previous studies. For pure heat transfer in porous cavity 
without wall thickness, tables 1-4 show that the present results 
are in good agreement for most of the cases using various the 
Darcy, Darcy-Brinkman, Darcy-Forchhemier and generalized 
models.  
As another check on the accuracy of the in-house code, the 
effect of the finite walls thickness has been compared with that 
of Saeid [20]. A heat transfer cases were run by using the Darcy 
model for different wall thermal conductivity ratios and wall 
thickness to cavity length. Figure (2) shows that the isotherms 
and streamlines of the present study are matched fairly well to 
Saeid predictions. Also, the average Nusselt numbers of the 
wall-porous media interface are in good agreement with Saeid.  
The results presented here are in good accord with the available 
experimental, analytical and numerical/computational studies. 
 
RESULTS 
 
In this section, the results are presented in streamline, 
isothermal and Nusselt numbers profiles. A correlation equation 
was provided to calculate the average Nusselt number on the 
internal left wall of the porous cavity as a function of different 
values of the non-dimensionless governing parameters, 

including the modified Rayleigh number (100≤ Ra* ≤ 1000), 
Darcy Number (10-4 ≤ Da ≤ 10-7), thermal conductivity ratio 
(0.1≤ Kr ≤ 10) and the ratio of wall thickness to its height 
(0.1≤D ≤ 0.4). Where the modified Rayleigh number equal to 
the Ra*=Ra. Da.  
 

1.1 Wall thickness effects 
 

To show the effects of the wall thickness (D), streamline and 
isotherms line are presented in Figure (3) for Da=10-6, 
Ra=1*109, Pr=1.0, Kr=1 and different wall thickness. The 
circulation strength of the fluid in the porous medium is lower 
with thick walls as shown in Figure (3) (a) - (c). Also the 
isothermal lines shows that the most of the temperature 
variation still in the wall thickness due to conduction in the 
wall. These phenomena caused the decrease in heat transfer by 
convection in porous medium, because of the decreasing the 
temperature different. The average Nusselt numbers on the 
interface left wall porous decrease when the wall thickness is 
increased as shown in Figure (4). This means the heat transfer 
conduction are dominant in the porous cavity.  
 

1.2 Thermal conductivity ratio effects 
 

In Figure (3) (c) and (d) the streamlines, isotherms and iso-
concentration are presented for Da=10-6, Pr=1.0, Ra=1*109, 
D=0.4 and Kr= 1, 10 respectively to show the effect of the 
thermal conductivity ratio. It can be seen that, for the increase 
in the thermal conductivity ratio the circulation strength of the 
fluid in the porous cavity are increased.  This is due to the 
thermal field in the porous cavity, as influenced by the 
increasing temperature gradients in the horizontal direction 
with increases in the thermal conductivity ratio. For Da=10-6, 
Ra=1*109, Pr=1.0, D=0.1, the variation of the local Nusselt 
number on the vertical porous interface walls with thermal 
conductivity ratio are presented in figure (5). It show very 
clearly that the left and right local Nusselt numbers increases 
when the thermal conductivity increases along the high of the 
cavity. Also, it show that the heat flux on the hot left wall in 
equilibrium and equal to the heat flux on the cold right wall. 
These are happen because there is no heat generation assumed 
in the porous cavity and horizontal walls are insulated. For low 
thermal conductivity ratio there are no significant changes on 
the Nusselt number even with high Rayleigh number as shown 
in figure (6). 
  

In general, the Nusselt number increases when the 
Rayleigh number increases as shown in figure (6). 
 

1.3 Correlation equation for Nusselt number on the 
left porous interface wall 
 

The correlation equations are most important for the 
engineering approximation equations for describe the 
dependent variable as a function of the independents variables 
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for all domain. The average Nusselt number on the interface 
left porous wall was correlated by 

* * *b c d eNu a Da Ra D Kr= ∗   (11) 
 

Hundreds simulations were done to calculate the average 
Nusselt number on the internal left wall of the porous cavity. 
The non-dimensionless governing parameters were used for 
these simulations are: modified Rayleigh number 
(100≤Ra*≤1000), Darcy Number (10-4 ≤ Da ≤ 10-7), thermal 
conductivity ratio (0.1≤ Kr ≤ 10) and the ratio of wall thickness 
to its height (0.1≤D ≤ 0.4). For the whole range of the 
parameters, the correlation equation is: 

0.3386 0.3385 0.4188 0.52810.0994* * *Nu Da Ra D Kr−= ∗    (12) 
 
CONCLUSIONS 

 Two-dimensional porous cavity sandwiched between two 
finite thickness walls filled with an isotropic porous medium 
has been investigated numerically by using a finite volume 
method. The results are presented in a porous medium for 
different values of the non-dimensionless governing 
parameters, including the modified Rayleigh number 
(100≤Ra*≤1000), Darcy Number (10-4 ≤ Da ≤ 10-7), thermal 
conductivity ratio (0.1≤ Kr ≤ 10) and the ratio of wall thickness 
to its height (0.1≤ D ≤ 0.4. It show that as the wall thickness 
increases, the overall Nusselt number is reduced, while the 
average Nusselt number increases when the Rayleigh number 
and the thermal conductivity ratio increase. On the other hand, 
Nu increases when the Darcy number increases. A correlation 
to evaluate the average Nusselt numbers on the interface left 
wall is: 

0.3386 0.3385 0.4188 0.52810.0994* * *Nu Da Ra D Kr−= ∗  
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NOMENCLATURE 
 

A aspect ratio 
cp specific heat at constant pressure 
d thickness of the solid walls, m 
D non-dimensional wall thickness, m 
Da Darcy number,  
g gravitational acceleration, ms-2 

H height of the cavity, m 
K  permeability of the porous medium, m2 

k thermal conductivity, Wm−1 K−1 
keff  effective thermal conductivity of porous medium, 

m−1 K−1 
kf thermal conductivity of the fluid, Wm−1 K−1 

kw thermal conductivity of the wall, Wm−1 K−1 

kr  thermal conductivity ratio 
L length of the cavity, m 
Nu  average Nusselt number 
p pressure, ms-2 

P non-dimensional pressure 
Pr Prandtl number,   
Ra  Rayleigh number for porous medium,  
Ra* modified Rayleigh number for porous medium,  
t time, s 
T   dimensional temperature, K 
T  non-dimensional temperature 
u  velocity components in x-direction, ms-1 

U non-dimensional velocity components in X-direction 

v  velocity components in y-direction, m s-1 
V non-dimensional velocity components in Y-direction 

x  x coordinates,  m 
X  non-dimensional X-coordinates 
y y coordinates,  m 
Y  non-dimensional Y-coordinates 
 
Greek symbols 
α  effective thermal diffusivity ,  m2 s−1 
βT  coefficient of thermal expansion , K−1 

Γ  is the wall to porous media heat capacity 

ε porosity of the porous media 
ν kinematic viscosity , m2 s−1 
θ  non-dimensional temperature 
ρ density, kgm-3 

τ non-dimensional time 
 
Subscripts 
c  cold 
h  hot 
eff effective 
f fluid 
s solid practical  
w  wall 
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Table 1 Comparison of average Nusselt number at study stat with some previous results for Darcy model (pure heat transfer, 
N=0) 

Author 

Nu 

Ra*=10 
 

Ra*=50 
 

Ra*=100 
 

Ra*=500 
 

Ra*=1000 
 

Walker and Homsy [6] 1.38 1.98 3.091 8.40 12.49 
Lauriat and Prasad  [3] 1.07 --- 3.09 ---- 13.41 
Trevisan and Bejan [51] --- 2.02 3.27 --- 18.38 
Nithiarasu [43] 1.08 1.958 3.02 8.38 12.514 
Present work 1.087 1.992 3.132 8.719 12.674 

 
 

Table 2 Comparison of average Nusselt number at study stat with some previous results for Darcy-Brinkman model (N=0, 
Pr=1) 

Author Nu 
Da=10-6 Da=10-2 

Ra*=10 Ra*=100 Ra*=1000 Ra*=10 Ra*=100 Ra*=1000 

Lauriat and Prasad [3] 1.07 3.06 13.2 1.02 1.70 4.26 
Nithiarasu [43] 1.08 3.00 12.25 1.02 1.71 4.26 
Present work 1.087 3.113 12.684 1.019 1.719 4.267 

 
 

Table 3 Comparison of average Nusselt number at study stat with some previous results for Darcy- Forchhemeir model (N=0, 
Pr=1) 

Author Nu 
Da=10-6 Da=10-2 

Ra*=10 Ra*=100 Ra*=1000 Ra*=10 Ra*=100 Ra*=1000 

Lauriat and Prasad [3] 1.07 2.97 9.62 1.06 2.28 5.55 
Nithiarasu [43] 1.08 3.00 9.63 1.08 2.30 5.58 
Present work 1.087 3.092 11.794 1.081 2.317 5.611 

 

Table 4 Comparison of average Nusselt number at study state with some previous results for generalization model ( N=0,  
Pr=1, Ra*=104) 

Author Nu 
Da=10-1 Da=10-4 

Lauriat and Prasad [3] 4.36 18.40 
Beckerman [50] 4.39 20.59 
Nithiarasu [43] 4.49 21.99 
Present work 4.458 22.131 
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Figure (1) the geometry of the model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (2) Comparison of present results with Saeid [20] results for Streamlines (right), isotherms (left) by using Darcy flow at 
Ra*=1000, a-(D=0.2, Kr=1), and b-(D=0.1, Kr=10). 

 
 
 
 

Present results ( Nuw=1.0251 , NuP=10.0250) 

Saeid results ( Nuw=1.888 , NuP=1.888) Saeid results ( Nuw=1.023 , NuP=10.238) 

   a           b  
Present results ( Nuw=1.894 , NuP=1.893) 
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(a)              Streamlines                                 isotherms    
 
 
 
 
 
 
 
 
 
 
 
(b)              Streamlines                                  isotherms    
 
 
 
 
 
 
 
 
 
 
 
 
(c)              Streamlines                                  isotherms    
 
 
 
 
 
 
 
 
 
 
 
(d)              Streamlines                                  isotherms    
 
 

Figure (3) Streamlines, isotherms lines for Da=10-6, Ra=1*109, Pr=1.0, Kr=1 at (a),D=0.0, (b)D=0.2, (c) D=0.4, and at (d) 
Kr=10,D=0.4 



 

9                                                    Copyright © 2010 by ICFD 10 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (4) Variation of average Nusselt number on the interface left wall porous with wall thickness at Da=10-7, Pr=1.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (5) Variation of Left and right local Nusselt number on the vertical interface walls with thermal conductivity ratio for 
Da=10-6, Ra=1*109, Pr=1.0, D=0.1 
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Figure (6) variation of Nusselt numbers with Ra* for Da=10-6, Pr=1.0 and D=0.1  


