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ABSTRACT 

The conjugate natural convection heat transfer in a partially heated porous enclosure had been studied numerically. The governing dimensionless 
equations are solved using finite element method. Classical Darcy model have been used and the considering dimensionless parameters are modified 
Rayleigh number (10 ≤ Ra ≤ 103), finite wall thickness (0.02 ≤ D ≤ 0.5), thermal conductivity ratio (0.1 ≤ Kr ≤ 10), and the aspect ratio (0.5 ≤ A≤ 10). 
The results are presented in terms of streamlines, isotherms and local and average Nusselt number. The results indicate that heat transfer can be 
enhanced by increasing the modified Rayleigh number, and thermal conductivity ratio. Wall thickness effects on the heat transfer mechanism had 
been studied and it is found that; as the Wall thickness increases, the conduction heat transfer mechanism will be dominated. Also, increasing aspect 
ratio will increase the stream function and reduced the heat transfer rate. 
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1. INTRODUCTION 

Due to the numerous engineering applications of natural convection 
heat transfer, a lot of investigation had been presented by many 
researchers. The industrial applications of natural convective fluid flow 
can be included in cooling storage, thermal solar-collectors, metals 
melting process, heat exchangers, chemical process and thermal 
insulation design (Basak, Singh, and Anandalakshmi 2014). Several 
studies regarding natural convection fluid flow in enclosure filled with 
pure fluid had been accomplished by (de Vahl Davis 1983; Mahapatra, 
Manna, and Ghosh 2015; Cianfrini et al. 2013; Kuhn and Oosthuizen 
1987; Valencia and Frederick 1989; Ho and Chang 1994; Türkoglu and 
Yücel 1995; Alam et al. 2012). Mahapatra, Manna, and Ghosh (2015) 
identified numerically the optimum location of partially active wall for 
better heat transfer. A dimensionless  correlation for heat transfer had 
been proposed for laminar natural convection in a  rectangular 
enclosure filled by air (Cianfrini et al. 2013). Effect of aspect ratio had 
been examined numerically and experimentally in enclosure with four 
two-dimensional discrete heaters. A correlation for average number had 
been proposed in terms of modified Rayleigh number and aspect ratio 
had been reported by Ho and Chang (1994).  

On the other hand, conjugate heat transfer in enclosures had been 
taken a lot of interest. Some of these studies presented by (Kaminski 
and Prakash 1986; Kuznetsov and Sheremet 2009; Ho and Yih 1987; 
Liaqat and Baytas 2001; Kahveci and Öztuna 2009; Turkoglu and 
Yücel 1996; Antar 2010; Cuckovic-Dzodzo, Dzodzo, and Pavlovic 
1999; Antar and Baig 2009; Sambou et al. 2008). Kuznetsov and 
Sheremet (2009) studied numerically the heat transfer mechanism by 
convective-radiation with finite thickness wall heating at the bottom of 
the enclosure. The importance for the conjugate analysis of the 
thickness walls and how they may be give different results from non-

conjugate analysis had been studied and examined by Liaqat and Baytas 
(2001). Natural convection heat transfer in porous enclosure had been 
studied by (Nithiarasu, Seetharamu, and Sundararajan 1997; Baytas and 
Pop 1999; Bin Kim 2001; Pakdee and Rattanadecho 2006; Basak et al. 
2006; Pourshaghaghy, Hakkaki-Fard, and Mahdavi-Nejad 2007; 
Sathiyamoorthy et al. 2007; Ramakrishna et al. 2013).  

A generalized model for double diffusive natural convection heat 
transfer in porous enclosure had been proposed by Nithiarasu, 
Seetharamu, and Sundararajan (1997). Natural convection phenomenon 
had been studied numerically in an inclined porous enclosure by Baytas 
and Pop (1999). Rectangular enclosure partially filled with a fluid-
saturated porous medium with uniform heat generation had been 
examined numerically by Bin Kim (2001). Conjugate natural 
convection heat transfer in porous enclosure had been studied by 
(Baytaş et al. 2001; Saeid 2008; Saeid 2007; Saleh and Hashim 2012; 
Saleh et al. 2011; Sheremet and Pop 2014; Ahmed et al. 2016). Baytaş 
et al. (2001) studied the natural convection in a square enclosure with 
two-finite thickness walls in the top and the bottom of the enclosure and 
they found that the heat transfer decreases with the increasing of the 
thermal conductivity ratio.  

Thermal non equilibrium model had been used by (Saeid 2008; 
Saeid 2007) and adopted to conjugate problem. Non-uniform heat 
generation in a square porous enclosure with finite thickness wall had 
been reported by (Saleh and Hashim 2012). Ahmed et al. (2016) 
demonstrated numerically by finite volume method the natural 
convection heat transfer in a square inclined enclosure with finite wall 
thickness on both sides. Biswas, Manna, and Mahapatra (2016) 
investigated numerically sinusoidal non-uniform heating effect over 
uniform heating from bottom of a square enclosure which is filled with 
fluid-saturated porous medium and cooled from sidewalls. Datta et al. 
(2016) showed how the adiabatic block body effect on the entropy 
generation and heat transfer enhancement. Recently, many 
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investigations focusing on the convection heat transfer in porous media 
using nanofluid as working fluid (Sheikholeslami and Seyednezhad 
2018; Sheikholeslami and Rokni 2018; Sheikholeslami 2018; 
Sheikholeslami and Shehzad 2018; Al-Farhany and Abdulkadhim 
2018).  

It can be noticed from the literature review and according to the 
best author's knowledge that there were limitations in the studies 
regarding partially active walls of enclosures so this is the motivation 
for the present work. In this way, the main objective of the present work 
is to describe the natural convection heat transfer in porous enclosure 
partially heated from the left side wall and how the finite thickness wall 
effect on heat transfer rate. The finite element method used to study the 
effect of various dimensionless parameters such as modified Rayleigh 
number, thermal conductivity ratio, thickness wall and the aspect ratio 
on the natural convection heat transfer characteristics. The results are 
presented in terms of streamline, isotherms, local and average Nusselt 
number  

2. MATHEMATICAL and COMPUTATIONAL MODEL 

2.1 MATHEMATICAL FORMULATION 
In this paper, two-dimension natural convection on porous cavity 

have been studded numerically with the effect of the partially heated 
conduction on vertical wall as shown in Fig. 1 
The governing equations are subjected according to the assumptions:  

1. The flow is considered to be two-dimensional fluid flow, 
laminar, and steady state. 

2. The enclosure walls are impermeable. 
3. The porous media is homogenous and isotropic.  
4. The local thermal equilibrium is applied for porous matrix and 

the fluid. 
5. Darcy model is applied for predictions of fluid flow inside the 

porous medium.  
6. The internal heat generation assumed to be neglected.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Schematic diagram of the present work 
 

The Continuity, momentum and energy of two-dimensional steady 
state natural convection in porous cavity equations are: 

The Continuity equation is: 
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The energy equation for porous cavity is : 
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Energy equation at the wall: 
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The heat transfer at the walls are defined as in the 
following: 
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Equations (1)-(6) are solved using non-dimensional 

initial boundary conditions: 
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2.2 COMPUTATIONAL MODEL 

In order to solve the problem with high accuracy and low computation 
time, different mesh had been tested for the minimum number of 
elements that leads to grid-independent solution. Fig. 2 illustrates the 
relation between the average Nusselt number and the resulting number 
of elements for square porous enclosure for all cases these tested at 
[Ra=1000, Da=10-3, D=0.1, Kr=1]. It is shown that there is no effect on 
the average Nusselt number when the number of elements about 
(80000).  
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Fig. 2 Two dimensional computational domain within the triangle 
meshes type (left), the mesh independent study of average Nusselt 
number (right). 
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The program had been validated regarding average Nusselt number 
with significant researcher as shown in Table 1. Moreover, for 
streamlines and isotherms contours, good agreements had been 
achieved  with  Saeid (2007) works as shown in Fig. 3. 
 
Table-1: the validation of the present work with significant researchers 

Author average Nusselt number 
average Nusselt number 

Ra = 10 Ra = 100 

(Moya, Ramos, and Sen 1987) 1.065 2.801 

(Beckermann, Viskanta, and Ramadhyani 
1986) 

no data 3.113 

(Al-Farhany and Turan 2011) 1.08 3.13 

(Ahmed et al. 2016) 1.093 3.01 

Present Work 1.08 3.02 

      

 
Saeid work (Saeid 2007) 

          
Present work 

Fig. 3 Validation of the present work with Saeid work (Saeid 2007) in 
terms of isotherms and streamlines at D = 0.1 and 0.5 at Ra = 103. 

 
3. RESULTS AND DISCUSSIONS  
The results of the present work will be displayed considering the effect 
of the dimensionless parameters like modified Rayleigh number, finite 
wall thickness, thermal conductivity ratio and the aspect ratio. The 
results will be presented in terms of streamlines, isotherms, local and 
average Nusselt number for square enclosure filled with saturated 
porous medium. 
 
3.1 MODIFIED RAYLEIGH NUMBER  
Fig. 4 Demonstrates the isotherms (left) and streamlines (right) for 
various modified Rayleigh number and [D = 0.1, Kr = 1, and E = 0.5]. It 
can be noted that when modified Rayleigh number increase, the Nusselt 
number increase. This is recognized when modified Rayleigh number 
increase from Ra = 10 to Ra = 1000, 

max 0.56   to 
max 9.79  . For 

example, Average Nusselt number increases from 

0.94847, 1.6263f wNu Nu   at Ra=100 to 3.4729fNu  , 

6.2693wNu   at Ra = 1000. The reason is due to increase flow 

circulation intensity when modified Rayleigh number increases. With 
respect to isotherms, it can be seen that when modified Rayleigh 
number Ra = 10, the isotherms have a uniform shape. This is due to 
weak effect of convective flow and in this case the conductive heat 
transfer is dominant. But, when modified Rayleigh number increases to 
Ra = 1000, the isotherms change their shapes obviously due to strong 
effect of convection heat transfer. Fig. 5 illustrates the profile of local 
Nusselt number for both the fluid (a) and the solid phase (b) for various 
values of modified Rayleigh number. As expected, the heat transfer rate 
enhanced significantly when Ra increases from 10 to Ra = 1000 due to 
the increasing of buoyancy and natural convection flow within the 
enclosure.  

   
( ) 10, 0.94847, 1.6263m f wa Ra Nu Nu      

( ) 100, 1.8192, 3.1815m f wb Ra Nu Nu    

 
( ) 1000, 3,4729, 6.2693m f wc Ra Nu Nu    

Fig. 4 Isotherm (left) and streamlines (right) for various modified Ra 
number, D = 0.1, Kr = 1, and E = 0.5 

 
3.2 DIMENSIONLESS WALL THICKNESS EFFECT  
Fig. 6 illustrates the isotherms (left) and streamlines (right) for various 
dimensionless wall thickness and [Ra = 1000, Kr = 1]. It may be noted 
that as the dimensionless wall thickness increases, the maximum stream 
function will decreases. For example, when the dimensionless wall 
thickness increases from D = 0.02 to D = 0.5,

max 15   into 

max 6.4  . Also, the Nusselt number will decrease because the 

conduction heat transfer is dominant with increasing wall thickness. For 
example, 6.3921, 12.973f wNu Nu  at D=0.02 while 1.2478fNu  , 

2.153wNu   at D = 0.5.  For the isotherms contours, it can be noticed 

that as the walls thickness increases, the isotherms pattern becomes 
more uniform which indicating that the effect of the conduction heat 
transfer mode becomes more significant. Moreover, the isotherms 
pattern shows that the heat is transferred from the left sidewall at the 
middle where the hot wall exists towards the cold right sidewall due to 
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the large temperature gradient and this result matches with the problem 
boundary conditions.   

Fig. 7 displays effect of dimensionless wall thickness on the local 
Nusselt number for the fluid phase (a) and solid phase (b). It can be 
noted that conduction mode will be dominant as the wall thickness 
increasing which leads to reducing the rate of heat transfer on the 
enclosure.  
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Fig. 5 Profile of local Nusselt number for (a) the fluid phase and (b) 
along the active hot wall for various modified Rayleigh number  
 
 

 
( ) 0.02, 6.3921, 12.973f wa D Nu Nu    

   
( ) 0.1, 3.4729, 6.2693f wb D Nu Nu    

       
( ) 0.5, 1.2478, 2.153f wc D Nu Nu    

Fig. 6 Isotherm (left) and streamlines (right) for various dimensionless 
wall thickness, Ra = 1000, Kr = 1, E = 0.5  
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Fig. 7 Profile of local Nusselt number for the fluid phase and along the 
active hot wall for various finite wall thicknesses  
 
3.3 THERMAL CONDUCTIVITY RATIO EFFECT  
Fig. 8 displays the isotherms (left) and streamlines (right) for various 
thermal conductivity ratio and [Ra = 1000, D = 0.1]. It is known that 
the thermal conductivity ratio Kr is defined as the ratio of the thermal 
conductivity of solid walls to the thermal conductivity of the fluid. 
Therefore, from this definition it can be obtained that when the thermal 
conductivity ratio Kr is small, i.e., Kr = 1, the thermal conductivity of 
walls is small, too. So, the thermal resistance is high and as a result the 
average Nusselt number at solid walls is high, while the average 
Nusselt number of fluids is low. On the contrary, when the thermal 
conductivity ratio increases from Kr = 1 to Kr = 10, the thermal 
conductivity of solid walls increases, i.e., convection decreases, while it 
decreases for the fluid, i.e., convection increases. For example, when 
thermal conductivity ratio increases from Kr = 1 to Kr = 10, maximum 
stream function value will increases from 

max 9.7   to 
max 15   

respectively. For this reason, the average Nusselt number at solid walls 
decreases from 6.3712

w
Nu   at Kr = 1 to 1.7256wNu   at  Kr=10. 

On the other hand, average Nusselt number for the fluid phase increases 
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from 3.3715fNu    at Kr = 1 to 9.9799fNu   at Kr = 10. This result 

demonstrates that the heat transfer mechanism inside the enclosure is 
converted from conduction mode when Kr is small into convection 
mode when Kr is high. Fig.9 illustrates the effect of thermal 
conductivity ratio for the fluid phase (a) and along the sold wall (b). the 
results indicates that when the thermal conductivity ratio increases, the 
thermal conductivity of the fluid phase decreases. This leads to 
enhancing of the natural convection heat transfer and increasing the 
local Nusselt number for the fluid phase. However this behavior is 
completely reversed for the Nusselt number along the solid wall. 
Actually, the local Nusselt number along the hot wall decreases as the 
thermal conductivity ratio increases which leads to enhancing in the 
conduction effect.  

        
         ( ) 0.1, 2.8531, 9.4808r f wa K Nu Nu    

        
   ( ) 1, 3.3715, 6.3712r f wb K Nu Nu    

        

( ) 10, 4.9799, 1.7256r f wc K Nu Nu    
Fig. 8 Isotherm (left) and streamlines (right) for various thermal 
conductivity ratio, Ra = 1000, D = 0.1, E = 0.5 
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Fig. 9 Profile of local Nusselt number for the fluid phase and along the 
active hot wall for various thermal conductivity ratios.  
 
3.4 EFFECT OF ASPECT RATIO 
The effect of aspect ratio on heat transfer rate is presented in Fig. 10. It 
can benoted that as the aspct ratio increases, stream function value 
increases. For example 

max 6.3    at aspect ratio equals to 0.5 while it 

increases to
max 41   at aspect ratio = 10. Fig. 11 illustrates the effect 

of aspect ratio on average Nusselt number for various modified 
Rayleigh numbers. At low Rayleigh numbers (Ra<100) when the aspect 
ratio increases from 0.5 to 1, the average Nusselt number decreses. 
After that it increases again till aspect ratio increases to 2. After that 
increasing aspect ratio will lead to decrease in the heat transfer rate. 
But, at high modified Rayleigh number, when the aspect ratio increases 
from 0.5 to 1, the Nusselt number will increases. Beyond that, 
increasing aspect ratio will lead to contioneous reducing in the heat 
transfe rate. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 Streamlines (Top) and isotherms (bottom) for various aspect 
ratio at D = 0.1, Ra = 103.  
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Aspect ratio

A
v

e
ra

g
e

N
u

s
s

e
lt

N
u

m
b

er
fo

r
th

e
fl

u
id

p
h

a
s

e

2 4 6 8 10
0

1

2

3

4

5

6

Ra = 10
Ra = 100
Ra = 1000

 
Fig. 11 Profile of average Nusselt number for the fluid phase with 
aspect ratio for various modified Rayleigh number. 
 
4. CONCLUSIONS  
The present work illustrates numerically the natural convection heat 
transfer in enclosure filled with porous media using Darcy model. The 
results can be summarized as follow: 

1. When the dimensionless wall thickness increases, the 
convection mechanism will be converted into conduction 
mode. This will reduce the Nusselt number leading to reduce 
the rate of heat transfer. 

2. When the thermal conductivity ratio increases, the local 
Nusselt number for the fluid phase will increase. While a 
reverse behavior for local Nusselt number along the heated 
wall.  

3. As the Rayleigh number increases, the heat transfer rate will 
be enhanced, as a results, local Nusselt number for both fluid 
and solid phase will be increased. 

4. Increasing of the aspect ratio makes the flow strength 
increases and the heat transfer decreases. 

NOMENCLATURE 

A  aspect ratio 
d dimensional wall thickness  m−1 
D non-dimensional wall thickness  
Da Darcy number 
g gravitational acceleration, m s-2 

H high of the enclosure, m   
K  permeability of the porous medium, m2 
k thermal conductivity, W m−1 K−1 
kr  thermal conductivity ratio, kr = kw/kf 
L length of the enclosure, m 
Nu Nusselt number 
p pressure, kg m-1 s-2 
P non-dimensional pressure,   
Pr Prandtl number,   
Ra modified Rayleigh number for porous medium,   
t time, s 
T  non-dimensional temperature,  

T   dimensional temperature, K 
u velocity components in x-direction, m s-1 
v  velocity components in y-direction, m s-1 
x  x coordinates,  m 
y y coordinates,  m 
U non-dimensional velocity components in X-direction,  
V non-dimensional velocity components in Y-direction,  
X  non-dimensional X-coordinates,  
Y  non-dimensional Y-coordinates,  
 
Greek symbols 
α  effective thermal diffusivity , m2 s−1 

βT  coefficient of thermal expansion , K−1 
 kinematic viscosity , m2 s−1 
ρ density, kg m-3 
Subscripts 
c cold 
eff effective 
f fluid 
h hot 
w wall 
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