
1 
 

                                                                        

Ministry of Higher Education and Scientific Research  

University Of Al-Qadisiyah 

College of Computer Science and Information Technology  

 

 

Linear Differential Equations of 

Higher Order and Dynamical 

systems  

A Thesis 

Submitted to the Council of the College of Computer Science and 

Information Technology, University Of Al-Qadisiyah as a partial 

Fulfillment of the Requirements for the Degree of Bachelor of 

Science in Mathematics 

By  

Zainbe Ali kareem  

Supervised by  

Sahar Jaʹafar  

 



2 
 

Abstract  

The aim of this Work is to study the existence and uniqueness of the 

solution of the higher order linear differential equations. Also we 

study some important Concepts in the Theory of dynamical Systems. 

Such as the flow of an autonomous equation, Orbits and invariant 

Sets. 
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INTRODUCTION  

     Differential equations are called partial differential equations (pde) or 

ordinary differential equations (ode) according to whether or not they 

contain partial derivatives. The order of a differential equation is the highest 

order derivative occurring. A solution (or particular solution) of a differential 

equation of order n consists of a function defined and n times differentiable on 

a domain D having the property that the functional equation obtained by 

substituting the function and its n derivatives into the differential equation 

holds for every point in D 

      Linear differential equations of order two and more .Many physical 

phenomena are expressed in terms of second order equation. The theoretical 

background of the second and nth order equations is common and hence, we 

study below the general higher order equations. 

   The class of nth order equations is divided mainly into two sub-classes: (i) 

differential equations with constant coefficients, and (ii) differential equations 

with variable coefficients. The equations in sub-class (i) can be shown to be 

related to the study of algebraic equations which can be solved in closed 

forms. However, the equations in sub-class (ii) quite often pose difficulties 

while obtaining closed form solutions.  

    The main problem of the study of higher order equations is the existence of 

solutions and then uniqueness of solutions. We consider homogeneous 

equations to begin with and then adopt necessary modifications to study non-

homogeneous equations. Some known methods of solving certain class of 

equations in closed forms are also dealt with and suitable illustrations are 

given.         
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1.1 Higher Order Equations  

A general nth order equation is o the form  

F (t, x, xꞌ, x (n)) = 0; xꞌ = 
 

  
 

Where F   is a real or complex valued function defined on 1      , I   being an 

interval on a real line. In particular   , a linear homogeneous equation of order 

n has the form  

 
     

     + 
     

       + …             

Where             ,    are known real or complex valued functions of t defined 

on an interval I of a real line? The above equation can also be written as  

 

                                 (t) +       
       t  +…+        (t) = 0                       (1.1) 

Where      =
 
    

 
    

;         for t I   ; i=1, 2, n.  

The notation L(x) stands for a linear operator L operating on a function x   

which is differentiable n times on an interval I and L(x) (t) stands for the 

value of L(x) at time    . This notation is useful in the subsequent 

developments. The equation  

L(x) (t) =0,      

Is a linear homogeneous differential equation of order n, while the non-

homogeneous equations is of the type 

                   L(x) =   +b1          + bn (t) x =h (t),                                         (1.2) 

Where b1, bn, h are given functions defined on I. In general, we assume that the 

functions b1, bn, h are continuous on I. This requirement is sufficient for the 

existence and uniqueness of solutions of the Equation (1.2)  
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     In order to get a specific solution we need initial data in the form of initial 

conditions. For nth order equation, we assume n initial conditions. These 

conditions are given in the form  

                      x (t0)= 1, xꞌ(t0) )= 2 ….         (t0) = n                                      (1.3)  

where 1,  2 ….   n are given constants . They can be real or complex. Here t0 is 

the initial point belonging to the interval I. The Equation (1.2) together with 

the initial conditions (1.3) forms the initial value problem (IVP) for the nth 

order equation.  

A second order linear IVP is of the form  

[
 ꞌꞌ +       ꞌ+                  

           ꞌ                    
 

While a third order linear IVP is  

[
 ꞌꞌꞌ +       ꞌꞌ+        ꞌ+                 

           ꞌ            ꞌꞌ       .              
 

There are several useful equation in applications which belong to higher order 

equations. For example  

(i) x ″ +λx     λ constant; equation of harmonic oscillator;                                       

(ii) x″ +axꞌ +bx =0, equation of damped oscillations; 

(iii) L
   

   
  + R 

  

  
 + 

 

 
 =0, equation of electrical network;  

(iv) g″ t  +   ꞌ     +μ   
  =0 , equation employed in the detection of diabetes. 

  Since several equations of higher order represent almost accurately physical 

phenomena, it is desirable to study these equations systematically. In 

particular, many equations cannot be solved in a closed form, i.e. in terms of 

elementary functions. The only way out for the study of such equations is the 

use of analytical methods. There are several analytical tools developed which 

work satisfactorily. 
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  Before we study the analytical methods, a mathematical model is discussed 

in the next section.  

1.2 A Modeling Problem    

Suppose that there are two living species which depend for their survival on a 

common source of food supply. This fact results into a competition in 

consuming the available food. The phenomenon is commonly noticed in the 

plant life having common supply of water, fertilizers and minerals. 

  Let x(t) be the size of the population of the first species at a time t and y(t) be 

the population of the second species at time t. Because of the dependence on a 

common food supply (which is limited), there starts the competition. 

  In the case of a single species x, the rate of its growth is assumed to be 

proportional to x, since the competition is absent. In this case, the 

mathematical equation governing the reduces to  

xꞌ(t)= ax(t), 

and similarly the growth rate of the other species (in the absence of x) is  

yꞌ(t)=cy(t). 

Assume that a ≥   c≥  and t0 is the initial time. We study the growth 

phenomena for t≥t0 ≥0. 

However, when the competition between two species begins, the growth rate 

of x, i.e. xꞌ, is retarded. The rate of retardation is naturally proportional to the 

size of the population of the y species al time t. Hence, the new set of growth 

equations are assumed to be of the form 

                                             xꞌ(t) =ax(t)-by(t),  

                                            yꞌ(t) =cy(t)-dx(t).   t≥ ;                                        .4  

Here it is assumed that a, b, c, d are all non-negative constants. The negative 

terms by(t) and dx(t) in the Equations (1.4) represent the fall in the growth 

rate of the respective species. In general, these coefficients may also depend 
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on time t. We have taken them as constants to simplify the problem. These 

coefficients can be determined on the basis of statistical information available 

for the two species. Although the problem stated above is describing the rate 

of growth of two species it is clear that it can be easily extended to n distinct 

species depending on common source of limited food supply. 

   Differentiating the equation in x in (1.4) w.r.t. t and using the second 

equation, we get    

                                    x″ t   axꞌ(t)-byꞌ(t) 

=axꞌ(t)-b[cy(t) –dx(t)] 

      =axꞌ(t)+c [xꞌ(t)-ax(t)]+bdx(t) 

 =(a+c)xꞌ(t)+(bd-ac)x(t) 

Hence, x satisfies a second order linear differential equation  

x″ t -(a+c)xꞌ(t)+(ac-bd)x(t)=0 

It will be shown subsequently this equation possesses a solution x of the form  

x(t)=c1e t+c2eᵝt ;   t ≥0, 

Where c1 and c2 are arbitrary constants which can be determined by the initial 

data given by the two initial conditions . It is known that the numbers   and β 

occurring in the solution are the roots of a quadratic equation called 

characteristic equation  

r2 –(a+c) r+(ac-bd)=0. 

The other solution y can be calculated easily. Let us consider a particular case. 

Let a=3,b=1, c=3, d=1. The quadratic equation is  

r2- 6r+8=0  

Hence        β 4. The solution is given by  

x(t)=c1e2t + c2e4t. 
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Using this solution x and the equations (2.4), it follows that  

y(t)=c1e2t – 3c2e4t .  

Now suppose that initially, i.e. at t=0, x(0)=1000 and y(0)=1200. It than 

follows that  

c1 +c2= 1000, 

c1- 3c2= 1200; 

Yielding                                  c1=1050  and c2 =-50.  

Hence                        x(t)= 1050e2t – 50e4t,   y(t) = 1050e2t +150e4t  

It is noted that y(t) continues to increases; however, for some value if t ,x(t) 

can become zero.  

x(t)=0 implies that                                   e2t = 
    

  
 = 21 

i. e. t=
 

 
 loge 21 would be the time at which the x species will become extinct.   

1.3 Linear Independence  

The concept of linear dependence and independence has a species role in the 

study of differential equations. Consider real or complex valued functions 

defined on an interval I of the real line.  

Definition 1.1 Two real or complex valued functions x1(t) and x2(t) defined on 

an interval I are said to be linearly dependent on I if there exist two constants 

c1 and c2, at least one of them not zero, such that  

c1x1(t) + c2x2(t) =0,    t I.  

Functions x1(t) and x2(t) are said to be linearly independent on I if they are 

not linearly dependent on I. 

This definition implies that in case two functions x1(t) and x2(t) are linearly 

independent and in addition  

c1x1(t) +c2x2(t) =0,     t I  
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then c1  and c2 are necessarily both zero. Further, if two functions are linearly 

dependent on I, then one of them is a constant multiple of the other. The 

constants c1 and c2 may be real or complex.  

   The functions x1(t) = sin t, x2(t)= cos  , _∞<t<∞ are linearly independent. 

For                           c1 sin t+ c2       = 0;    t    (_∞  ∞ .  

So also                                c1       – c2 sin t = 0  

Solving these two equations in c1 and c2 we observe that c1=0 and c2=0.   

Example 1.1 (i) The functions ei t  sin  t ,        ; _∞< t< ∞    being a real 

number, are linearly dependent there since  

ei t -        – i sin  t  . 

(ii) The functions 1, 1+con 2t, sin2 t; _∞<t< ∞  are linearly dependent since  

c1 +c2(1+cos 2t) + c3 sin2 t =0  

holds true for the choice of c1 =1, c2=-
 

 
, c3=-1.  

(iii) The functions 1, t, t2 …. tn, _∞< t< ∞  are linearly independent there. For  

let there be constants c1 …. cn such that  

c1+c2t+….+cntn=0. 

Differentiating this relation w.r.t. t successively on _∞< t< ∞ yields  

c2 +2c3t+3c4t2+…+ncntn-1 =0,  

2c3+6c4t+…+n n-1)cntn-2 =0,  

⁞ 

n! cn = 0. 

The last relation proves that cn =0. Using this fact in the last but one relation it 

is seen that cn-1 =0.Continuing this process we prove that cn-2    …. c2=0 and 

c1=0.   
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 (iv) The functions x1(t)=t2, x2(t)=t │t│ are linearly independent on_∞<t< ∞ . 

For  

c1t2+c2t│t│   

Implies                                      c1t2+c2t2=0   for t≥   

and                                            c1t2-c2t2=0  for t<0.  

Should hold simultaneously .This is possible only when c1+c2=0 and c1-c2=0, 

i.e. c1=0 and c2=0.  

Remark   In the above example the two functions are linearly dependent on 

the intervals _∞< t≤ ∞ and  ≤ t< ∞. However  they are linearly independent 

on the interval _∞< t< ∞. Thus  the set of functions may be linearly 

independent on an interval but they may not be so on a proper part of such 

interval. However, if a set of functions are linearly dependent on an interval I, 

they continue to remain linearly dependent on any sub-interval of I.  

1.4 Equations with Constant Coefficients  

Let us consider a linear differential equation of order n  

L(x) = x(n)+b1x(n-1)+…+bnx =0,     t  I                                   (1.5) 

Where the coefficients b1 … bn are constants, real or complex. While 

considering the first order equation  

xʹ + ax =0;   t I  (a is a constant) , xʹ= 
 

  
 

we find that it has a solution  

x(t) = ceat ,  t I; 

Where c is an arbitrary constant. This conclusion provides us a clue that we 

may look for an exponential solution of higher order equation. The following 

example illustrates the procedure.  

Example 1.2    Consider a second order equation  

L x  xʺ +b1xʹ +b2x =0, _∞< t< ∞  
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where b1 and b2 are real constants. Assume that x(t) =eλt  is a solution. 

Then,                               L(eλt    λ2 + b1λ +b  eλt =0. 

Since eλt    for any finite value of t and λ  it follows that  

p λ   λ2 + b1λ +b2 =0. 

Hence, L(eλt)   if and only if λ is a root of the quadratic equation p λ    .This 

equation has two roots  say  λ1 and λ2. There are three possibilities:  

 i  λ1 λ2 are real and λ1 λ2;  

 ii  λ1 λ2 are real and λ1 λ2; 

 iii  λ1 and λ2 are complex. In this case the roots are complex conjugates 

(because b1 and b2 are real).  

Let us consider the three cases one after the other.  

 i  When λ1 λ2, clearly  

L(eλ t) =0 , L(eλ t)=0,          _∞< t< ∞. 

  Denote the two solution by  1 (t) and  2 (t). Then we have  

 1(t) = eλ t and  2 (t) =eλ t, _∞< t< ∞.  

  It is further observed that these solutions are linearly independent on the 

real line. For, if  

c1 +c2e λ -λ  t =0  

then we have  

c1 + c2e λ -λ  t =0;       _∞< t< ∞. 

Since e λ -λ  t      it follows that c1=0 and hence c2=0. One can note, at this 

point, that solutions of the given equation are related to the algebraic equation 

p λ   . 
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 ii  When λ1 λ2, we can conclude that  1(t) =eλ t is one of the solutions. Let us 

search another solution  2 so that  1are linearly independent. Since the roots 

are equal  

P λ   λ2 +b1λ +b2    λ-λ1)2. 

Hence, it follows that b1= - λ1 and b2 λ 
 
. The given equation takes the form  

L x   xʺ - λ1xʹ + λ 
 
x =0.  

Let us verify if  2(t) =teλ t is a solution. We have  

L(teλ t) = (teλ t ʺ -  λ1(teλ t ʹ + λ 
 
(teλ t) 

  [ tλ1 +  λ1+λ1]eλ t -  λ1 tλ1+1)eλ t +t λ 
 
 eλ t  =0. 

Hence, the two Solution are  

 1(t)=eλ t and  2(t)=teλ t;     _∞< t< ∞.  

The solutions  1 and  2 are linearly independent for  

c1eλ t +c2teλ t =0;    _∞< t< ∞.  

Implies that (because eλ t     c1+c2t=0. This is possible on _∞< t< ∞ when 

c1=0 and c2 =0. 

     Before considering the case (iii) we seek more information about the 

nature of solution  1 and  2. Firstly, if  1 is a solution, then c 1 (where c an 

arbitrary constant, real or complex) is also a solution.  

For                                        L(c 1) =cL( 1) =0.  

Consider a function   defined by  

  (t)= c1 1(t) +c2 2(t);     _∞< t< ∞ 

Where c1 and c2 constants. We note that   is also a solution since  

ʹL( )= L(c1 1 +c2 2)  

=(c1 1+c2 2 ʺ + b1(c1 1+c2 2 ʹ + b2(c1 1+c2 2)  
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=c1( ʺ1+b1 ʹ1+b2 )+ c2( ʺ1+b1 ʹ1+b2 )  

=c1L( 1) + c2 L( 2)=0 . 

Hence,  (t) =c1 1(t) + c2 2(t) is also a solution for any choice of constants c1 

and c2. We can say that {c1 1+c2 2, c1,c2 are arbitrary constants} represents a 

family of solution of the given second order equation. This conclusion arrived 

at by employing a theorem proved subsequently in this chapter. Solution  (t) 

=c1 1(t) + c2 2(t) is called a general solution of the equation. The general  
_∞< t< ∞. We now consider case  iii . 

     (iii) let the roots λ1 and λ2 be complex. It is known that they occur in 

conjugate pairs. Suppose that λ1  +iβ. Then λ2  -iβ. The solutions 

corresponding to these roots are  

eλ t = e  +iβ t=e t[cos   +i sin   ] 

and                                   eλ t = e  -iβ t=e t[cos   -i sin   ] 

The general solution   is then given by  

                            (t)=c1eλ t +c2eλ t  

=c1e t[cos   +i sin   ] +c2e t[cos   -i sin   ] 

                              =[(c1+c2) cos   +i(c1-c2) sin  ]e t   

Let                                   k1=c1+c2 and k2 =i(c1-c2)  

Hence                             (t)= k1e t cos     +k2e t  sin   ;               _∞< t< ∞.  

In this case we choose  1(t)= e t cos    when k1=1, k2=0 and  2(t)= e t 

 sin    when k1=0, k2=1. Further, it can be shown that these two solutions are 

linearly independent. We sum up the conclusions from the three cases 

discussed above. The general solution   of the equation  

xʺ+b1xʹ +b2xʹ=0,                   _∞< t< ∞ 

is associated with the quadratic equation (with real b1 and b2)  

p λ λ2+b1λ+b2 =0  
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having roots λ1 and λ2 and is given by  

λ1= (-b1 +√ 
 
 
 4     ⁄    

λ2=(-b1 -√ 
 
 
 4     ⁄    

  -b ⁄       β √4    
 
 
     .  

where c1 and c2 are arbitrary constants and  

                         (t)=c1eλ t +c2eλ t                             when  
 
 

>4  ;  

                                = (c1+c2t)eλ t                             when  
 
 

= 4  ;  

                               =[c1 cos   +c2 sin    ]e t            when     
 
 

< 4  ;   

Remark   Solving a differential equation means finding the general solution. 

1.5 nth Order Equations  

We now recall Equation (1.5) having constant coefficients. The discussion in 

the earlier part of this section provides us a clue to the search of a solution of 

Equation (1.5).It suggests that (1.5) can have solution of the form eλt for a 

suitable choice of λ. Let x(t)= eλt. Substituting in (1.5), we see  

L(eλt)=( eλt)(n) + b1(eλt)(n-1) +…+bn(eλt) 

  λn +b1λn-1+….+bn) eλt;     t I. 

Clearly  eλt is a solution of (1.5) if L(eλt)=0.In the above expression eλt    for 

t I.  

Hence,                                                 p λ  λn +b1λn-1+…+bn=0                         (1.6)  

       If we choose λ such that p λ =0, then eλt is a solution of the 

Equation(1.5).The polynomial Equation(1.6) is an nth order algebraic 

equation in λ. The Equation   .6  is called the characteristic equation of   .5 . 
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The roots of the Equation p λ =0 are called characteristic roots. Since 

Equation (1.6) is of order n, it has n roots. They may be distinct, repeated, real 

or complex. Theoretically, Equation (1.6) can be solved. We have now the 

following theorem. 

Theorem 1.1 If λ is a root of the characteristic Equation   .6   then eλt is a 

solution of the Equation (1.5) for t I. 

   In case the n characteristic roots of   .6  namely λ1 .. λn are distinct from 

each other it follows from the above theorem that corresponding to each root 

there is a solution. So we get n solutions  

 1(t) = eλ t …  n(t)= eλnt ;    t I. 

Further, we can also show that their linear combination, namely, c1 1 

+…+cn n is also a solution of (1.5).  

Example 1.3 Solve  

xʺʹ +6xʺ +11xʹ +6x =0;      _∞< t< ∞.  

The characteristic equation is  

p λ   λ3 +6λ2+  λ+6   λ+   λ+   λ+    .  

The characteristic roots are λ1=-   λ2=-    λ3=-3. Hence,  1(t)=e-1,  2(t)=e-2t , 

 3(t)=e-3t .  

The general solution is given by  

 (t)= c1e-t +c2e-2t +c3e-3t ;    _∞< t< ∞.  

Another possibility for the characteristic roots of p(λ    is that some of them 

may be repeated. In the case of second order equation, it is observed that if 

the roots are repeated, the solution are eλt and teλt. Based on these 

conclusions, it is natural to expect similar behavior for higher order equations. 

    Suppose that λ1 is a root, repeated m1 (m1≤n) times, of the equation  

p λ    λn +b1λn-1 +…+bn =0. 
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So p λ  can be written in the form  

p λ   λ-λ1)m1q λ   

Where q λ  is a polynomial of degree n-m1 and  q λ1     .  

Further, observe that  

              pʹ(λ    m1 λ-λ1)m1-1q λ  +  λ-λ1)m1qʹ λ ;  

        p(m1-1) λ    m1(m1-  …  λ-λ1)q λ   

                       +terms containing higher powers of  λ-λ1)  

and    p(m1) λ  m1! q λ  +terms containing higher powers of  λ-λ1). 

Hence, it follows that  

p λ1)=0, pʹ λ1    …p(m1-1) λ1)=0,  but p(m1) λ1   .  

We use these relations below. Observe that  

L(eλt    λn + b1λn-1 +…+bn)eλt =p λ eλt . 

Differentiate L(eλt  w.r.t. λ. Note that here L is a linear operator. We have  

 

  
  (   )=L(

 

  
    )=L(       

and                                     
 

  
  (   )= [pʹ λ  +tp λ ]   . 

Hence,                                  (    ) = [pʹ λ  + tp λ ]    . 

At λ λ1, pʹ λ1)=0, p  λ1)=0. Hence it follows that  

 (    )   . 

      We conclude that      is a solution of the Equation (1.5). Further, it is 

observed that  

  

   
  (   )=L(

  

   
    )=L(        

                     =[pʺ λ  + tpʹ λ  +t2p λ ]     .  
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At λ λ1  

L(      ) =[pʺ λ1) +2tpʹ λ1) +t2p λ1)]      =0. 

This statement provides a conclusion that       is also a solution of the 

Equation (1.5). We continue this process of differentiation. Observe that  

     

      
  (   )=L(

     

      
    )=L(           

 =[p(m1-1) λ  +  m1-1)p(m1-2) λ t +
                

  
 p λ t2 +…+p λ tm1-1]     

Hence  for λ λ1, we get  

L(            .  

Yielding yet another solution           of (1.5) .  

It is to be observed that  

   

    
  (   )=L(

   

    
    )=L(         

= [p(m)(λ  + terms of lower order derivation]  

For λ λ1 ,                 p(m) λ1   .  

Hence                      L(tm1eλt)  0  

and tm1eλt is, therefore, not a solution of (1.5).  

     Summing up the discussion above it is concluded that when a root λ1 of p(λ  

=0 is repeated m1 times, it is seen that we get m1 solutions  

 1(t)= eλ t ,  2(t)= teλ t …  m(t)= tm1-1       

Defined on an interval I. The story covered so far is of the root λ1 repeated m1 

times. There may be other root λ2 repeated m2 times. The procedure has then 

to be repeated. We present this discussion in the form of a theorem. 
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Theorem 1.2 Suppose that λ1 … λs are s roots of the characteristic equation 

p λ    given in   .6  repeated m1 … ms times respectively, where m1+…+ms 

=n . Then the n functions  

           …  tm1-1    ;   (m1 function)  

                                       .      .   …        .                                                                               (1.7)  

                                              …   tms-1         (ms function ) 

are all solutions of the Equation (1.5) existing on the interval I. Further, if 

these functions are denoted by  1 …  n then their linear combination, say  , 

given by  

 =c1 1 +…+cn n  

Where c1 …  cn  are arbitrary constants, is also a solution of (1.5). 

   The set of n solutions given in (1.7) are, in fact, linearly independent. We 

prove this fact in a  Subsequent theorem in this chapter. 

    In the case of second order equations, we observed that the roots of a 

characteristic equation can be complex and that they occur in conjugate pairs. 

Let λ   +iβ be a complex root. It was shown that  e tcos    and e t sin   are 

two linearly independent solutions.  

     In the case of nth order equations among s distinct roots λ1 … λs, it may 

happen that one or more of them may be complex. The following result takes 

care of such a possibility.  

1.6 Equations with Variable Coefficients  

A linear differentiation equation of order n with variable coefficients has the 

form  

a0(t)x(n) + a1(t)x(n-1) + …+ an(t)x =h1(t)  

Where a0, a1 … an ,h1 are real or complex valued functions defined on an 

interval I of the real line R. Below, We assume that a0(t)   for any t  I. With 

this assumption the above equation becomes  
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         L(x)(t) ≡ x(n)(t)+ b1(t)x(n-1)(t) +…+ bn(t)x(t)=h(t),  t  I.                   (1.8)  

Where bi=
  

  
       …  n  and h 

  

  
  for   t   I .  

Here L denotes an operator on a function x which is differentiable n times on I. 

In case h(t)≡   t   I, in (1.8), we have  

         L(x)(t)= x(n)(t) + b1(t)x(n-1)(t) + ….+ bn(t)x(t) =0, t  I.                                

(1.9) 

Which is a linear homogeneous equation . The Equation (1.8),  L(x)(t)= h(t); 

h t  0 is linear non-homogeneous. 

In general, to determine a specific solution of the Equation (1.8), we need n 

conditions. The initial value problem for the nth order equation is  

L(x)(t)=h(t)   (t   I)  

With initial conditions   

x(t0   0,   xʹ(t0   1 … x(n-1)(t0   n-1  

Where  0   1 …   n-1 are  constants and t0   I.  

  The first aspect of these equations which needs immediate consideration is 

the existence of solutions of the initial value problems.  

We state the existence and uniqueness theorem for the nth order Equation 

(1.9).  

Theorem 1.3 Let b1 … bn be continuous functions on an interval I which 

contains a point t0. Let      1 …  n-1 be any n constants. Then there exists a 

unique solution   on I of the nth order Equation (1.9) satisfying the initial 

conditions  

 (t0    0,   ʹ(t0   1 …  (n-1)(t0   n-1.  

Suppose that  (t) …  n(t) are n solutions of L(x)(t)=0 given in (1.9).Let  

c1 … cn be n arbitrary constants. Then it is seen that  
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L(c1 1 +… +cn n) = c1L( 1  +… + cnL( n) =0.  

This relation holds because L is a linear operator and that L( i      i   … n.              

In case the n solutions  1 …   n are linearly independent on I , then the 

relation  

c1 1 +…+cn n =0,    t  I  

Where c1 …  cn are constants, implies that  

c1   …  cn=0  

Example 1.4 Prove that there are three linearly independent solutions of the 

third order equation  

                 x‴ + b1 t xʺ +b2 t xʹ +b3 t x     t   I                                            (1.10)  

When b1 , b2 and b3 are functions defined and continuous on an interval I.  

    Applying Theorem 1.3, we claim that there exist solutions  1(t),  2(t) and 

 3(t) of (1.10) such that for t0   I  

 1(t0) =1,   ʹ1(t0)=0.   ʺ1(t0)=0;    

                                         2(t0) =1,   ʹ2(t0)=0.   ʺ2(t0)=0;                             (1.11)  

and                                      3(t0) =1,   ʹ3(t0)=0.   ʺ3(t0)=1.  

We show that the solutions  1 ,  2 and  3 are linearly independent. Let  

                                 c1 1(t) + c2 2(t) + c3 3(t) =0,   t   I                             (1.12)  

For some constants c1, c2 and c3 . At t=t0 , from (1.12), we have  

c1 1(t0) + c2 2(t0) + c3 3(t0) =0, 

c1 ʹ1(t0) + c2 ʹ2(t0) + c3 ʹ3(t0) =0, 

c1 ʺ1(t0) + c2 ʺ2(t0) + c3 ʺ3(t0) =0.  

Using the initial data given in (1.11), it is seen that  

c1. 1+c2 .0 +c3 .0=0,  
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c1. 0+c2 .1 +c3 .0=0,  

c1. 0+c2 .0 +c3 .1=0,  

Yielding c1=c2=c3=0. The claim that  1 ,  2 and  3 are linearly independent is 

established.  

1.7 Wronskian  

Suppose that  1 …  n are n real or complex valued functions defined on an 

interval I and each having derivatives of order n.For t   I, define the 

determinant   

w(t)=w( 1 …  n)(t)=|

                                        …                 

 ʹ                  ʹ                   …           ʹ    

                                         …                   
|. (1.13)  

The function w(t) is called the Wronskian of n-functions  1 …  n .  

Theorem 1.4  Abelʹs formula    Let the function b1 … bn in Equation (1.9) be 

defined and continuous on an interval I. Let  1 …  n be n linearly independent 

solutions of (1.9) existing on I containing a point t0. Then  

w(t)=exp* ∫        
 

  
+w(t0);  t0, t  I . 

Proof   Differentiate w(t) to get  

wʹ =
|

|

 ʹ                    …                         ʹ 
 ʹ                        …                       ʹ 
 ʺ                      …                  ʺ 
.               …                .

  

  
     

             …            
     

   

|

|
+
|

|

                     …                          
 ʺ                     …                       ʺ 
 ʺ                      …                  ʺ 
.               …                .

  

  
     

             …            
     

   

|

|
++

|

|

                         …                          
 ʹ                     …                       ʹ 
 ʺ                      …                  ʺ 
.               …                .

  

  
   
             …              

   
   

|

|
 

While doing so, we differentiate elements in each row keeping other rows 

fixed in the process. Since there are n rows in the determinant, derivative 

wʹ t  turns out to be the sum of n determinants of which the first (n -1) 

determinants are zero since each of them has two identical rows. Only the last 

determinant has all rows distinct. Now, since  1  …  n are solutions of (1.9), 

we have  



22 
 

L( i) =  
  +bi  

     
+…+bn i =0;   for I     … n.  

It follows that  

    
 =- bi  

     
-…- bn i .                                                              (1.14)   

Observe that the last row of the last determinant contains the terms    
  

 …      
  which can be replaced by the relation (1.14). The right side of (1.14) is 

the sum of functions  i …    
     

 with some multiples. Note that these 

functions also appear in the upper rows. Hence, using the usual operations on 

the determinant, we obtain  

wʹ =
|

|

 ʹ                                …                               ʹ 
 ʹ                                …                                  ʹ 
 ʺ                               …                         ʺ 

  
     

               …                
     

   
       .                   …                           .  

      
     

                   …                           
     

 
              

|

|

= -b1w  

We have shown that the function w satisfies a first order linear homogeneous 

equation  

wʹ +b1w =0;  t   I  

Whose solution is  

                                     w(t)=exp* ∫        
 

  
+w(t0);  t0, t  I .                                                                     

The proof is complete. 

   It is clear from this relation that if   w(t0)    then w(t)   for t  I .Hence, it is 

enough to show that Wronskian w(t)   only at just one point of I. This 

criterion yields the linear independence of n solutions of (1.9).  

Example 1.5 Consider the second order equation  

L(x) = x״ +b1(t)x׳ +b2(t)x=0,  t  I  

Where b1 and b2 are continuous functions on I . Let u and ʋ be any two twice-

differentiable functions on I. Then it follows that  
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uL(ʋ) –ʋL(u) = (uʋ״ –vu״) + b1(uʋ׳-ʋu׳). 

Note that w(u,ʋ) = uʋ׳-ʋu׳ and w׳(u,ʋ) = uʋ״-ʋu״ . Hence  

uL(ʋ) - ʋL(u) = w(u,ʋ) + b1w(u,ʋ).  

In case u and ʋ are solution of the given equation, we have L(u)=L(ʋ)=0 and 

w׳+b1w0= ׳  

Yielding                w(t)= w(t0)=exp* ∫        
 

  
+,    t0, t  I .    

(ii) Now consider the IVP  

L(x) =x״ +b1(t)x׳ +b2 t x  h t     t  I   

x(t0) = x׳(t0)=0; t0  I. Let x(t) be the solution of this IVP.  

   Let x1(t) and x2(t) be linearly independent solution of L(y)=0. Then we 

have  

                    w׳(x1, x) + b1(t) w (x1, x) = x1L(x) - xL(x1) = x1h(t) , since L(x1)=0. 

This is a first order equation in w (x1, x). Hence,                                            

  w (x1, x)(t)= exp* ∫        
 

  
+ + ∫ exp *∫        

 

  
+

 

  
 x1(s) h(s) ds.  

We have used here the initial conditions x(t0) =x׳(t0)=0 and hence w (x1, 

x)(t0) =0. It follows from Abel's formula that 

w(x1, x)(t)= w(x1, x2)(t)∫
           

            

 

  
 . 

Similarly, we get   

w(x2, x)(t)= w(x1, x2)(t)∫
           

            

 

  
 .  

Further, 

[w(x1, x2)(t)]x(t)= [w(x1, x)(t)]x2(t) - [w(x2, x)(t)]x1(t)  

=[w(x1, x2)(t)] ∫
[                     ]      
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Hence,           x(t)= ∫
[                     ]      

            

 

  
 .  

Thus, we have obtained the solution of the non-homogeneous equation in 

terms of solution of corresponding homogeneous equation. We obtain the 

result by another method in the next section.  

1.8 Variation of Parameters 

The discussions that we had so far are mainly concerned with Equation (1.9). 

In this section, we take up for study the non-homogeneous linear equation, 

namely  

                 L(x)= x(n) + b1(t)x(n-1)+…+bn(t)x =h(t).                                             (1.8)  

Here we assume that b1 … bn, h are given real or complex valued continuous 

functions defined on an interval I. The corresponding homogeneous equation 

is  

               L(x) = x(n) + b1(t)x(n-1) + ….+ bn(t)x =0,   t  I.                                   (1.9)  

A general result concerning the Equations (1.8) and (1.9) is the following.  

Theorem 1.6 Let  1 …  n be n linearly independent solution of the 

homogeneous Equation (1.9) existing on Ι. Let xp denote any particular 

solution of the non-homogeneous Equation (1.8) existing on Ι. Then any 

solution x of (1.8) is given by 

             x(t)= xp(t) +c1 1(t  +…+ cn n(t);      t  I.                                           (1.15) 

Where c1 … cn are n arbitrary constants (real or complex).  

Proof   We use the method of verification. Clearly L( i)(t) = 0 for i    … n. 

Since xp is a solution of (1.8),  

L(xp)(t) = h(t);    t  I.  

Further  

L(x)(t) = L(xp + c1 1 +…+ cn n)(t);    t  I.  
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= L(xp)(t) + c1L(ϕ1)(t +…+ cnL(ϕn)(t) =h(t).  

Hence, x(t) defined in (1.15) is a solution of (1.8). The proof is complete. 

Observe that      x(t) - xp(t) = c1 1 t  + …+ cn n (t);     t  I.  

This relation implies that the difference of two solutions of the Equation (1.8) 

is a solution of the homogeneous Equation (1.9). 

Theorem 1.6   Let ϕ1 … ϕn be n linearly independent solutions of the Equation 

(1.9) existing on Ι . Let the real or complex valued function h be defined and 

continuous on Ι. Further, assume that w(t)=w(ϕ1 … ϕn) and wk(t) denotes the 

determinant w(t) with kth column replaced by n elements     …  . Then a 

particular solution xp(t) of (1.8) is given by  

                      =∑   
 
       ∫

         

    

 

  
   ;    t  I.                             (1.16)  

Proof       ϕ1 … ϕn are n linearly independent solutions of the Equation (1.9). 

Hence c1 1 + …+ cn n represents a general solution of (1.9). It is natural to 

expect that solution of(1.8) are related to the solution c1 1 + …+ cn n. With 

this clue in mind, assume that  

                                         +  +           ;   t  I                             (1.17) 

Where    …     are functions of t to be determined. 

Differentiate (1.17) to get  

                                      (   
 
 
+ +    

 
 
) + [     + +      ] .  

Assume that                                              + +      =0,  

Which yields  

״                                   
 
 (   

״
 
+ +    

״
 
) +[      + +       ]. 

Again assume that  

      + +        =0. 
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Continuing the procedure, we have  

                         
      (    

     
+ +     

     
) +[    

     + +      
     

].  

Assume that                                   
     + +      

     
 =0. 

Lastly, we get  

  
   
 (    

 + +     
   
) +[     

     
+ +      

     
].  

Now, assume that  

     
     

+ +      
     

 =h.  

We verify now if, under these assumptions,        satisfies the Equation (1.8). 

Indeed it does, for  

                      (  )        + +      =      + +      (n) 

+b1(t)(      + +      (n-1)+…+bn(t)     + +        

=c1(t)L(ϕ1  +…+cn(t)L(ϕn) +h(t) = h(t)  

Here L(ϕi)=0, i   … n. While verifying the above steps, One has to note that 

c1 … cn  are functions of t . Hence         is a solution of (1.8).  

  Now, we need to determine the functions c1 … cn . The following conditions 

have been assumed  

            + +       =0, 

               + +        =0, 

                                                              

              
     

+ +      
     

 =h.  

 

This is a system of n simultaneous non-homogeneous algebraic equations in n 

unknowns, c'1… c'n  for a fixed t . Further, the determinant of the coefficients is 

set of solutions and is given by  
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 ,  k   … n     t  I  

Which leads to   

       ∫
         

    

 

  
        k   … n  

In view of (1.17) the formula (1.16) follows. The proof is complete.  

Example 1.7   Consider the equation  

 ״      
 

 
  +

 

  
   sin      t  [1,∞). 

It is easily verified that ϕ1(t)=1 and ϕ2(t)=t2 are two linearly independent 

solutions of L(x)(t)=0 existing on [1,∞). Further, w(ϕ1,ϕ2)(t)=t2. It follows 

that   

      ∫
         

    

 

 

    ∫  
  sin  

  

 

 

   

=-∫  sin     [ cos   sin  ]  [cos   sin  ].
 

 
 

      ∫
         

    

 

 

    ∫  
  sin  

  

 

 

    cos  + cos  

The general solution x(t) is then given by  

x(t)=c1(t)ϕ1(t)+c2(t)ϕ2(t)+d1ϕ1(t)+d2ϕ2(t)  

Where d1 and d2 are arbitrary constants  

Hence                        [ cos   sin  ]  cos  .   +   cos  + sin  +     +

 cos +     
  

                   sin  +    +    
  , 
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2.1 Dynamical systems 

    You can think of a dynamical system as the time evolution of some physical 

system, such as the motion of a few planets under the influence of their 

respective gravitational forces. Usually you want to know the fate of the 

system for long times, for instance, will the planets eventually collide or will 

the system persist for all times?   

     For some systems (e.g., just two planets) these questions are relatively 

simple to answer since it turns out that the motion of the system is regular 

and converges, for example, to an equilibrium. 

      However, many interesting systems are not that regular! In fact, it turns 

out that for many systems even very close initial conditions might get spread 

far apart in short times. For example, you probably have heard about the 

motion of a butterfly which can produce a perturbance of the atmosphere 

resulting in a thunderstorm a few weeks later. 

We begin with the definition: A dynamical system is a semigroup G with  

identity element e acting on a set M. That is, there is a map 

                                                    T : G ×M → M  

                                                      (g, x) 7→ Tg(x)                                              (2.1) 

Such that                                     Tg ◦ Th = Tg◦h , Te = I.                                   (2.2) 

If G is a group, we will speak of an invertible dynamical system. We are mainly 

interested in discrete dynamical systems where 

                                                        G = N0 or G = Z                                            (2.3) 

and in continuous dynamical systems where 

                                                      G = R+ or G = R.                                             (2.4) 

Of course this definition is quite abstract and so let us look at some examples 

first .  

Example 2.1 The prototypical example of a discrete dynamical system is an 

iterated map. Let f map an interval I into itself and consider 

                           
                …      ⏟    

       

    G = N0.                               (2.5)                 

 Clearly, if f is invertible, so is the dynamical system if we extend this 

definition for n   Z in the usual way. You might suspect that such a system is 

too simple to be of any interest. However, we will see that the contrary is the 
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case and that such simple systems bear a rich mathematical structure with 

lots of unresolved problems.  

Example 2.2 The prototypical example of a continuous dynamical system is 

the flow of an autonomous differential equation 

                                            Tt =  t ,                G = R  ,                                         (2.6) 

Which we will consider in the following section .  

2.1 The flow of an autonomous equation 

Now we will have a closer look at the solutions of an autonomous system 

                                                       x' = f(x), x(0) = x0.                                        (2.7) 

Throughout the rest of this book we will assume f   Ck (M, Rn), k ≥ 1, where M 

is an open subset of Rn. 

         Such a system can be regarded as a vector field on Rn . Solutions are 

curves in M ⊆ Rn which are tangent to this vector field at each point. Hence to 

get a geometric idea of what the solutions look like, we can simply plot the 

corresponding vector field. 

Example2.3 Using Mathematic the vector field of the mathematical pendulum,  

f(x, y) = (y, sin(x)), can be plotted as follows. 

In [1]:= Vector Plot [{y,  Sin[x]}, {x,  2π  2π}, {y,  5, 5}] 

 

 

 
In particular, solutions of the IVP (2.7) are also called integral curves or 

trajectories. We will say that φ is an integral curve at x0 if it satisfies ф(0) = x0. 
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There is a (unique) maximal integral curve  x at every point x, defined on a 

maximal interval   Ix = (T (x), T+(x)). 

Introducing the set 

                            W =⋃       { } ⊆                                                       (2.8) 

We define the flow of our differential equation to be the map 

                                     Ф : W → M,          (t, x) 7   (t, x),                                 (2.9) 

Where  (t, x) is the maximal integral curve at x. We will sometimes also use 

 x(t) =  (t, x) and  t(x) =  (t, x). 

         If  (0) is the maximal integral curve at x, then  (0 + s) is the maximal 

integral curve at y =  (s) and in particular Ix = s + Iy.  As a consequence,  we 

note that for x   M and s   Ix we have 

                                            (s + t, x) = Ф(t,Ф(s, x))                                          (2.10) 

For all t   I ( s , x) = Ix   s. 

Theorem 2.1   Suppose f   C
k
 (M, R

n
).  For all x   M there exists an interval Ix ⊆ 

R containing 0 and a corresponding unique maximal integral curve ϕ(0, x)   C
k 

(Ix, M) at x. Moreover, the set W defined in (6.8) is open and ϕ  C
k
 (W, M) is a 

(local) flow on M, that is, ϕ(0, x) = x,  

                         ϕ(t + s, x) = ϕ(t, ϕ(s, x)),      x   M, s, t + s   Ix.                (2.11) 

Proof . It remains to show that W is open and     Ck(W,M). Fix a point  (t0, x0) 

  W (implying t0   Ix0) and set γ =   x0([0, t0]). There is an open 

neighborhood (−ε(x), ε(x)) × U(x) of (0, x) around each point x   γ such that ф 

is defined and Ck on this neighborhood. Since γ is compact, finitely many of the 

neighborhoods U(x) cover γ and hence we can find an ε > 0 and an open 

neighborhood U0 of γ such that ф is defined on ( ε  ε) × U0. Next, pick m   N 

so large that 
  

 
<    such that K   C

k(U0,M), where K : U0 → M, K(x) = ф
  

 
 . 

Furthermore,  Kj   Ck(Uj ,M) for any 0 ≤ j ≤ m, where Uj = K j(U0) ⊆ U0 is 

open. Since x0 = K j (ф( 
 

 
        we even have x0   Uj , that is, Uj is nonempty. 

In particular, 

ф(t, x) = ф(t − t0, ф(t0, x)) = ф(t − t0,K
m
(x)) 

is defined and Ck for all (t, x)   (t0 − ε, t0 + ε) × Um.   

      In particular, choosing s =  t respectively t =  s in (6.11) shows that 

фt(0) = ф(t, 0) is a local diffeomorphism with inverse ф t(0). Note also that 

if we replace f → −f, then ф(t, x) → ф(−t, x). 
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Example 2.4 Let M = R and f(x) = x
3. Then W = {(t, x)|2tx

2 < 1} and ф(t, x) = x 
 

√      
 . T (x) =  ∞ and T+(x) = 1/(2x

2).   

A point x0 with f(x0) = 0 is called a fixed point. Away from such points all 

vector fields look locally the same. 

Lemma 2.1  (Straightening out of vector fields). Suppose f(x0) ≠ 0. Then there is 

a local coordinate transform y =  (x) such that x = f(x) is transformed to 

                                         y = (1, 0, . . . , 0).                                              (6.12) 

Proof.  Abbreviate δ1 = (1, 0, . . . , 0). It is no restriction to assume x0 = 0.  After 

a linear transformation we see that it is also no restriction to assume 

f(0) = δ1. 

   Consider all points starting on the plane x1 = 0. Then the transform   we are 

looking for should map the point ф(t, (0, x2, . . . , xn)) to 

(0, x2, . . . , xn) + t(1, 0, . . . , 0) = (t, x2, . . . , xn). 

                                                          

Hence   should be the inverse of  

ψ((x1, . . . , xn)) = ф(x1, (0, x2, . . . , xn)), 

Which is well defined in a neighborhood of 0 . The Jacobian determinant at 0 is 

given by 

   (
  

  
)          (

 ф

  
)  (

 ф

   
)  (

 ф

   
)              Ι    

 

since ∂ф ∂x|t=0,x=0 = In and ∂ф ∂t|t=0,x=0 = f(0) = δ1 by assumption. So by 

the inverse function theorem we can assume that ψ is a local diffeomorphism 

and we can consider new coordinates y = ψ 1(x). Since (∂ψ ∂x)δ1 = ∂ψ ∂x1 
= f(ψ(x)) our system reads in the new coordinates 
 

  (
  

  
) -1  y=ψ−1(x) f(x) =δ1,  
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Which is the required form . 

2.3 Orbits and invariant sets  

The orbit of x is defined as 

                                             γ(x) = ф (Ix × {x}) ⊆ M.                                   (6.15)   

Note that y   γ(x) implies y = ф(t, x) and hence γ(x) = γ(y) by (6.11). In 

particular, different orbits are disjoint (i.e., we have the following equivalence 

relation on M: x ≃ y if γ(x) = γ(y). If γ(x) = {x}, then x is called a fixed point 

(also singular, stationary, or equilibrium point) of ф. Otherwise x is called 

regular and ф(0 , x) : Ix → M is injective.  Similarly we introduce the forward 

and backward orbits 

                                         γ±(x) = _((0, T±(x), x).                                      (6.16) 

Clearly γ(x) = γ−(x) ∪ {x} ∪ γ+(x). One says that x   M is a periodic point of ф if 

there is some T > 0 such that ф(T, x) = x. The lower bound of such T is called 

the period, T(x) of x, that is, T(x) = inf {T > 0|ф(T, x) =x}. By continuity of ф we 

have ф(T(x), x) = x and by the flow property ф(t + T(x), x) = ф(t, x). In 

particular, an orbit is called a periodic orbit if one (and hence all) point of the 

orbit is periodic.  

     It is not hard to see that x is periodic if and only if γ+(x)∩ γ (x) 6= ∅ and 

hence periodic orbits are also called closed orbits. 

    Hence we may classify the orbits of  f  as follows: 

(i) fixed orbits (corresponding to a periodic point with period zero). 

(ii) regular periodic orbits (corresponding to a periodic point with 

positive period). 

(iii) non-closed orbits (not corresponding to a periodic point). 

    The quantity T+(x) = sup Ix (resp. T−(x) = inf Ix) defined in the previous 

section is called the positive (resp. negative) lifetime of x.  A point x   M is 

called σ complete, σ   {±}, if Tσ(x) = σ∞ and complete if it is both + and   

complete (i.e., if Ix = R). 

Lemma 2.2  (i). Arbitrary intersections and unions of σ invariant sets are σ 

invariant. Moreover, the closure of a σ invariant set is again σ invariant.  (ii). If 

U and V are invariant, so is the complement U\V . 

Proof.   Only the last statement of (i) is nontrivial. Let U be σ invariant and 

recall that x    ̅ implies the existence of a sequence xn   U with xn → x.  Fix t   
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Ix. Then (since W is open) for N sufficiently large we have t   Ixn, n ≥ N, and 

ф(t, x) = limn→∞ ф(t, xn)    ̅. 

    Concerning (ii) let x   U\V. Then, if γ(x) ∩ V contains some point y, we 

must have γ(y) = γ(x) ⊆ V contradicting our assumption x   V . Thus γ(x) ⊆ 

U\V.  

     One of our main aims will be to describe the long-time asymptotics of 

solutions. For this we next introduce the set where an orbit eventually 

accumulates: 

The ω±-limit set of a point x   M, ω±(x), is the set of those points y   M for 

which there exists a sequence tn → ±∞ with ф(tn, x) → y. 

      Clearly, ω±(x) is empty unless x is ± complete. Observe, that ω±(x) = 

ω±(y) if y   γ(x) (if y = ф(t, x) we have ф(tn , y) = ф(tn ,ф(t, x)) = ф(tn +t, x)).     

Hence ω±(x) depends only on the orbit γ(x). Moreover .  
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