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 الاهداء

 الى رسولنا الكريم محمد )صلى الله عليه واله وسلم( والى  

 آله الاطهار والى صاحب العصر والزمان )عليهم السلام(

الى الينبوع الذي لايمل والعطاء الى من حاكت سعادتي بخيوط منسوجة من  
 قبلها  

 امي العزيزة

 الى من سعى وشقى لانعم بالراحة والهناء الذي لم يبخل بشئ

 ابي العزيز

 الى من علمونا حروف ا من ذهب وكلمات من درر واحلى عبارات في العلم  

 من صاغونا علمهم حروف ا

 اساتذتي الكرام

 من حبهم يجري في عروقي الى من سرنا سويا ونحن نشق الطريق  الى  

 زملائي وزميلاتي
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 وتقدير شكر

 

الحمد لله المعلم بالق لم والشكر له على ما جاد وانعم والصلاة والسلام على            
 نبيه وسيد المرسلين محمد)صلى الله عليه  واله وسلم( 

الا ان نخط كلمات صغيرة في حجمها     وبعد... ف لا يسعنا ونحن نختم هذا العمل
لكنها كبيرة فيما تحمله من معاني الشكر والامتنان الى كل ذي فضل اسهم  
بجهد او مشورة او دعم في انجاز هذا البحث  في البداية اتقدم بالشكر الجزيل   
الى الدكتورة رجاء جف ات )مشرفة البحث( والتي امدتنا بالنصح والمشورة  

 شرا  على البحث ليضهربشكله المتكامل.وتفضلت علينا بالا

ونقدم شكرنا وامتناننا لاساتذتنا الاف اضل لجهودهم البناءة في ارواء ظمأنا الى  
 معين العلم والمعرفة.

كما نقدم شكرنا الى كل الزملاء في الدراسة والى الاصدق اء الذين امدونا  
 بدعمهم وعونهم ودعائهم.

سر الامور ومفرج الهموم ان نكون قد وفقنا فيما  وختاما نسأل الله العلي القدير مي
 قدمناه في هذا البحث.
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   Let 𝑅 be a ∗-prime ring with center 𝑍(𝐴), 𝑑 a non-zero (𝜎, 𝜏) derivation 

of 𝑅 with associated automorphisms 𝜎 and 𝜏 of 𝑅, such that 𝜎 and 𝜏 and 

𝑑 commute with 
'
*

'
 Suppose that 𝑈 is an ideal of 𝑅 such that 𝑈∗ = 𝑈 and 

𝐶𝜎,𝜏 = {𝑐𝜖𝑅: 𝑐𝜎(𝑥) = 𝜏(𝑥)𝑐, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥𝜖𝑅}. In the present paper, it is 

shown that if characteristic of 𝑅 is different from two and 

[𝑑(𝑢), 𝑑(𝑣)]𝜎,𝜏 = {0}, then 𝑅 is commutative. Commutativity of 𝑅 has 

also been established in case if  [𝑑(𝑅), 𝑑(𝑅)]𝜎,𝜏 ⊆ 𝐶𝜎,𝜏. 
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Preliminaries  

Definition (1.1)(Derivation):-  

An additive mapping 𝑑 ∶  𝑅 → 𝑅 is said to be a derivation if 𝑑(𝑥𝑦)  =

 𝑑(𝑥)𝑦 + 𝑥𝑑(𝑦) holds for all 𝑥, 𝑦𝜖 𝑅. 

Definition (1.2)(inner derivation):-  

The mapping 𝐼𝑎 ∶  𝑅 → 𝑅 given by 𝐼𝑎(𝑥)  =  [𝑎, 𝑥] for fixed 𝑎𝜖𝑅, is a 

derivation which is said to be an inner derivation. 

Definition (1.3)(prime):- Recall that 𝑅 is said to be prime if 𝑎𝑅𝑏 =

{0} implies 𝑎 =  0 or 𝑏 =  0. 

Definition(1.4)(2- torsion):- 

A ring 𝑅 is said to be 2-torsion free, if 2𝑥 =  0 implies 𝑥 =  0. 

Definition(1.5)((𝝈, 𝝉) −derivation):-  

For any two endomorphism 𝜎and 𝜏 of 𝑅, we call an additive mapping 

𝑑 ∶ 𝑅 → 𝑅 a(𝜎, 𝜏) -derivation if 𝑑(𝑥𝑦)  =  𝑑(𝑥)𝜎(𝑦)  + 𝜏(𝑥)𝑑(𝑦) for all 

𝑥, 𝑦𝜖 𝑅. 
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Example:-  

Let 𝑅 = {(
𝑎 𝑏
0 𝑐

) \𝑎, 𝑏, 𝑐𝜖ℤ} be the ring of all 2 × 2 matrices over ℤ, the 

ring of integers. Define 𝑑, 𝜎, 𝜏: 𝑅 → 𝑅 such that 𝑑 (
𝑎 𝑏
0 𝑐

) = (
𝑎 0
0 0

), 

𝜎 (
𝑎 𝑏
0 𝑐

) = (
𝑎 0
0 0

) and 𝜏 (
𝑎 𝑏
0 𝑐

) = (
0 𝑏
0 0

), It can be easily seen that 

𝜎and 𝜏 are auto morphisms of 𝑅, and 𝑑 is a (𝜎, 𝜏)-derivation which is not 

a derivation of 𝑅. We set 𝐶𝜎,𝜏 = {𝑥𝜖𝑅: 𝑥𝜎(𝑦) = 𝜏(𝑦)𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦𝜖𝑅} and 

[𝑥, 𝑦]𝜎,𝜏 =  𝑥𝜎(𝑦) − 𝜏(𝑦)𝑥. In particular 𝐶1,1 = ℤ(𝑅), is the center of 𝑅, 

and [𝑥;  𝑦]1,1= [𝑥;  𝑦] =  𝑥𝑦 – 𝑦𝑥, is the usual Lie product. An additive 

mapping 𝑥 → 𝑥∗ on a ring 𝑅 is called an involution if (𝑥 ∗) ∗ =  𝑥 and 

(𝑥𝑦) ∗ =  𝑦 ∗ 𝑥 ∗ hold for all 𝑥, 𝑦 𝜖𝑅. 

Definition(1.6)(involution):-  

An additive mapping 𝑥 → 𝑥∗ on a ring 𝑅 is called an involution if (𝑥 ∗) ∗

 =  𝑥 and (𝑥𝑦) ∗ =  𝑦 ∗ 𝑥 ∗ hold for all 𝑥, 𝑦 𝜖𝑅. 

Definition(1.7)( ∗-ring):-  

A ring equipped with an involution is called a ring with involution or ∗-

ring. 

Definition(1.8)( ∗-prime):-  
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A ring 𝑅 equipped with an involution ′ ∗ ′ is said to be ∗-prime if 

𝑎𝑅𝑏 =  𝑎𝑅𝑏∗ = {0} (or, equivalently 𝑎𝑅𝑏 =  𝑎∗𝑅𝑏 = {0}) implies a = 0 

or b = 0. If 𝑅𝑜 denotes the opposite ring of a prime ring 𝑅, then 𝑆 =

 𝑅 × 𝑅𝑜 equipped with the exchange involution ∗𝑒𝑥 defined by 

∗𝑒𝑥 (𝑥, 𝑦)  =  (𝑦, 𝑥) is ∗𝑒𝑥−prime, but not a prime ring because of the 

fact that (1,0)𝑆(0,1) = 0. In all that follows, 𝑆𝑎∗(𝑅) will denote the set 

of symmetric and skew symmetric elements of 𝑅, i.e., 𝑆𝑎∗(𝑅) =

{𝑥 𝜖 𝑅\𝑥∗  =  +̅𝑥}: An ideal 𝑈 of 𝑅 is said to be a ∗ −ideal of 𝑅 if 

𝑈∗  =  𝑈. It can also be noted that an ideal of a ring 𝑅 may not be ∗

−ideal of 𝑅. As an example, let 𝑅 =  ℤ × ℤ, and consider the involution 

′ ∗ ′ on 𝑅 such that (𝑎, 𝑏)∗ =  (𝑏, 𝑎) for all (𝑎, 𝑏)𝜖𝑅: The subset 𝑈 = ℤ ×

{0} of 𝑅 is an ideal of 𝑅 but it is not a ∗ −ideal of 𝑅, because 𝑈∗  =

{0}  ×  ℤ ≠  𝑈. Recently many authors have studied commutativity of 

prime and semi prime rings with involution admitting suitably 

constrained derivations. A lot of work have been done by 𝐿. Okhtite and 

co-authors on rings with involution (see for reference [11, 12, 13], where 

further references can be found). In [10], Lee and Lee proved that if a 

prime ring of characteristic different from 2 admits a derivation d such 

that [𝑑(𝑅), 𝑑(𝑅)]  ⊆ ℤ(𝑅), then 𝑅 is commutative. On the other hand in 

[7] for 𝑎𝜖 𝑅. Herstein proved that if [𝑎, 𝑑(𝑅)] = {0}, then 𝑎𝜖 ℤ(𝑅). 

Further in the year 1992, Aydin together with Kaya [4] extended the 



10 
 

theorems mentioned above by replacing derivation by (𝜎, 𝜏) −derivation 

and in some of those, 𝑅 by a non-zero ideal of 𝑅. In this note, we 

investigate the commutativity of ∗ −prime ring R equipped with an 

involution ′ ∗ ′ admitting a (𝜎, 𝜏 ) −derivation 𝑑 satisfying 

[𝑑(𝑈), 𝑑(𝑈)]𝜎,𝜏 = {0} and [𝑑(𝑅);  𝑑(𝑅)]𝜎,𝜏 ⊆ 𝐶𝜎,𝜏 where 𝑈 is a nonzero 

∗ −ideal of 𝑅. 
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   In the remaining part of the paper, R will represent a ∗ −prime ring 

which admits a non-zero (𝜎, 𝜏  ) −derivation d with auto morphisms 𝜎 

and 𝜏 such that ′ ∗ ′ commutes with 𝑑, 𝜎 and 𝜏. We shall use the following 

relations frequently without specific mention.  

[𝑥𝑦, 𝑧]𝜎,𝜏 =  𝑥[𝑦, 𝑧]𝜎,𝜏 + [𝑥, 𝜏(𝑧)]𝑦 =  𝑥[𝑦, 𝜎(𝑧)] + [𝑥, 𝑧]𝜎,𝜏 𝑦  

[𝑥, 𝑦𝑧] 𝜎,𝜏 =   𝜏(𝑦)[𝑥, 𝑧]𝜎,𝜏 + [𝑥, 𝑦]𝜎,𝜏𝜎(𝑧). And 

[𝑥, [𝑦, 𝑧]]𝜎,𝜏 + [[𝑥;  𝑧]𝜎,𝜏 − [[𝑥, 𝑦]𝜎,𝜏, 𝑧]𝜎,𝜏  =  0. 

Remark(2.1):-  

We find that if 𝑅 is a ∗ −prime ring of characteristic different from 2, 

then 𝑅 is 2-torsion free. In fact, if 2𝑥 =  0 for all 𝑥 𝜖𝑅, then 𝑥𝑟(2𝑠)  =  0 

for all 𝑟, 𝑠 𝜖𝑅. But since char 𝑅 ≠  2, there exists a non-zero l𝜖𝑅 such that 

2𝑙 ≠  0 and hence by the above 𝑥𝑅(2𝑙) = {0}. This also gives that 

𝑥𝑅(2𝑙)∗  = {0} and ∗ −primeness of R yields that 𝑥 =  0, that mean, 𝑅 is 

2-torsion free. 

The main result of the present paper states as follows: 

Theorem (2.2):-  

Let 𝑅 be a ∗ − prime ring with characteristic different from two and 𝜎, 𝜏 

be automorphisms of 𝑅, and 𝑈 a ∗ −ideal of 𝑅. If 𝑅 admits a non- zero 

(𝜎, 𝜏  )-derivation 𝑑 ∶ 𝑅 → 𝑅 such that [𝑑(𝑈), 𝑑(𝑈)]𝜎,𝜏  = {0}, then 𝑅 is 
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commutative. We facilitate our discussion with the following lemmas 

which are required for developing the proof of our main result. Since 

every ∗ −prime ring is semiprime and every ∗ −right ideal is right ideal, 

hence Lemmas 1.1.4 and 1.1.5 of [5] can be rewritten in case of ∗ −prime 

ring as follows: 

Lemma(2.3):-  

Suppose that 𝑅 is a ∗ −prime ring and that 𝑎 𝜖𝑅 is such that 𝑎(𝑎𝑥 −

𝑥𝑎)  =  0 for all 𝑥 𝜖𝑅: Then 𝑎 𝜖 ℤ(𝑅).  

Lemma(2.4):-  

Let 𝑅 be a ∗ −prime ring and 𝑈 a non-zero ∗ −right ideal of 𝑅. Then 

ℤ(𝑈) ⊆ ℤ(𝑅). 

Corollary(2.5):-  

Let 𝑅 be a ∗ −prime ring and 𝑈 a non-zero ∗ −right ideal of 𝑅. If 𝑈 is 

commutative then 𝑅 is commutative. 

Proof:- Since 𝑈 is commutative, by the Lemma 2.4, we have 𝑈 =

 ℤ(𝑈) ⊆ 𝑍(𝑅). If for any 𝑥, 𝑦 𝜖𝑅, 𝑎𝜖 𝑈 we have 𝑎𝑥𝜖𝑈 then 𝑎𝑥𝜖𝑍(𝑅), and 

hence (𝑎𝑥)𝑦 =  𝑦(𝑎𝑥)  =  𝑎𝑦𝑥. This further yields 𝑈(𝑥𝑦 − 𝑦𝑥) = {0}. 

Since 𝑈 is a non-zero ∗ −right ideal of 𝑅, we have 𝑈𝑅(𝑥𝑦 −  𝑦𝑥) =
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{0} =  𝑈∗𝑅(𝑥𝑦 − 𝑦𝑥). Also, since 𝑈 ≠ {0} is a right ideal, ∗ −primeness 

of 𝑅 gives 𝑥𝑦 − 𝑦𝑥 =  0, for all 𝑥, 𝑦𝜖 𝑅. Hence 𝑅 is commutative. 

Lemma(2.6):-  

Let 𝑅 be a ∗ −prime ring and 𝑈 a non-zero ∗ −right ideal of 𝑅. Suppose 

that 𝑎𝜖𝑅 centralizes 𝑈. Then 𝑎𝜖ℤ(𝑅). 

Proof:- Since a centralizes 𝑈, for all 𝑢𝜖𝑈 and 𝑥𝜖𝑅, 𝑎𝑢𝑥 =  𝑢𝑥𝑎. But 

𝑎𝑢 =  𝑢𝑎, therefore 𝑢𝑎𝑥 =  𝑢𝑥𝑎, that mean, 𝑢[𝑎, 𝑥]  =  0. On replacing 

𝑢 by 𝑢𝑦 for any 𝑦𝜖𝑅, we get 𝑢𝑅[𝑎, 𝑥] = {0} for all 𝑢𝜖 𝑈, 𝑥𝜖𝑅. Also, 

since 𝑈 is ∗ −right ideal, we get 𝑢∗𝑅[𝑎, 𝑥] = {0}. Again since 𝑈 ≠ {0}, 

∗ −primeness of 𝑅 yields that [𝑎, 𝑥]  =  0 for all 𝑥 𝜖 𝑅. Therefore, 

𝑎𝜖 𝑍(𝑅). 

Lemma(2.7):-  

Let 𝑅 be a ∗ − prime ring with characteristic different from two and 

suppose that 𝑎𝜖𝑅 commutes with all its commutators 𝑎𝑥 − 𝑥𝑎 for all 

𝑥𝜖𝑅. Then 𝑎𝜖ℤ(𝑅). 

Proof:- Define 𝑑 ∶  𝑅 → 𝑅 by 𝑑(𝑥) =  𝑎𝑥 −  𝑥𝑎 for all 𝑥 𝜖𝑅: By 

hypothesis we arrive at  

(2.1)          𝑑2(𝑥)  =  0 for all 𝑥 𝜖𝑅. 
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Also, 𝑑2(𝑥𝑦)  =  𝑑2(𝑥)𝑦 + 2𝑑(𝑥)𝑑(𝑦) + 𝑥𝑑2(𝑦). By (2.1) and using 

torsion restriction on 𝑅, we get 𝑑(𝑥)𝑑(𝑦)  =  0 for all 𝑥, 𝑦𝜖𝑅: On 

replacing 𝑦 by 𝑦𝑧 for any 𝑧𝜖𝑅, we obtain 𝑑(𝑥)𝑅𝑑(𝑦) = {0}, also 

𝑑(𝑥)∗𝑅𝑑(𝑦) = {0} for all 𝑥, 𝑦𝜖𝑅. Using ∗ −primeness of 𝑅 yields that 

𝑑(𝑥)  =  0 for all 𝑥𝜖𝑅. Recalling that 𝑑(𝑥) =  𝑎𝑥 − 𝑥𝑎, we obtain 

𝑎𝜖 𝑍(𝑅). 

Lemma(2.8):-  

Let 𝑅 be a ∗ −prime ring. Suppose that 𝑎𝑏, 𝑎∗𝑏, 𝑏𝜖 𝐶𝜎,𝜏 for all 𝑎, 𝑏 𝜖 𝑅. 

Then either 𝑎𝜖 ℤ(𝑅) or 𝑏 =  0. 

Proof:- Since 𝑎𝑏𝜖𝐶𝜎,𝜏 𝑎𝑏𝜎(𝑥) = 𝜏(𝑥)𝑎𝑏 for all 𝑥𝜖𝑅. Also since 𝑏𝜖 𝐶𝜎,𝜏 

that mean 𝑏𝜎(𝑥) = 𝜏(𝑥)𝑏 for all 𝑥𝜖𝑅, we have 𝑎(𝑏𝜎(𝑥)) = 𝜏(𝑥)𝑎𝑏, or 

𝑎(𝜏 (𝑥)𝑏)  =  (𝜏 (𝑥)𝑎)𝑏, that  mean [𝑎, 𝜏 (𝑥)]𝑏 =  0. On replacing 𝑥 by 

𝑥𝑦 for any 𝑦 𝜖 𝑅, we get [𝑎, 𝜏(𝑥)]𝑅𝑏 = {0} for all 𝑥 𝜖 𝑅. 

Similarly, since 𝑎∗𝑏𝜖𝐶𝜎,𝜏 ,we have 

[𝑎∗, 𝜏 (𝑥)]𝑅𝑏 = {0} for all 𝑥𝜖𝑅. On replacing 𝑥 by 𝑥∗ in the above 

relation, we find that 

[𝑎, 𝜏(𝑥)𝑅𝑏 = {0} for all 𝑥 𝜖 𝑅. Therefore, on using ∗ −primeness of 𝑅, 

we find that either [𝑎, 𝜏(𝑥)]  =  0 or 𝑏 =  0 for all 𝑥𝜖𝑅. Hence, we 

conclude that 𝑎 𝜖ℤ(𝑅) or 𝑏 =  0. 
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Corollary(2.9):-  

Let 𝑅 be a ∗ −prime ring. Suppose that 𝑎𝑏 =  0 =  𝑎∗𝑏,𝑏𝜖𝐶𝜎,𝜏 for all 

𝔞, 𝑏𝜖𝑅. Then either 𝑎 =  0 or 𝑏 =  0. 

Proof:- Since 𝑏𝜖 𝐶𝜎,𝜏 , 𝑏𝜎(𝑥) = 𝜏(𝑥)𝑏. Left multiplying by 𝑎 and 𝑎∗ and 

on using 𝑎𝑏 =  0 and 𝑎∗𝑏 =  0, we obtain 𝑎𝑏𝜎(𝑥) = 𝑎𝜏(𝑥)𝑏 =  0, for 

all 𝑥𝜖𝑅, that mean 𝑎𝑅𝑏 = {0} and 𝑎∗𝑏𝜎(𝑥)  =  𝑎∗𝜏(𝑥)𝑏 =  0, for all 

𝑥 𝜖 𝑅, that mean, 𝑎∗𝑅𝑏 = {0}, respectively. Hence, ∗ −primeness of 

𝑅 yields either 𝑎 =  0 or 𝑏 =  0. 

Lemma(2.10):-  

Let 𝑅 be a ∗ −prime ring and 𝑈 a ∗ −right ideal of 𝑅. If 𝑑(𝑈) = {0}, then 

𝑑 =  0. 

Proof:- For all 𝑢 𝜖𝑈 and 𝑥𝜖𝑅, 0 =  𝑑(𝑢𝑥) = 𝑑(𝑢)𝜎(𝑥) + 𝜏(𝑢)𝑑(𝑥)  =

𝜏(𝑢)𝑑(𝑥). On replacing 𝑥 by 𝑥𝑦 for any 𝑦𝜖𝑅, we get 𝜏(𝑢)𝑑(𝑥)𝜎(𝑦) +

𝜏(𝑢)𝜏(𝑥)𝑑(𝑦) = 0. or, 𝜏(𝑢)𝜏(𝑥)𝑑(𝑦) = 0, that mean  𝜏(𝑢)𝑅𝑑(𝑦) = {0} 

for all 𝑢𝜖𝑈 and 𝑦 𝜖𝑅. Also since 𝑈 is a ∗ −right ideal, we get  

𝜏(𝑢)∗𝑅𝑑(𝑦) = {0}. Also, ∗ −primeness of 𝑅 yields that  𝜏(𝑢) = 0 for all 

𝑢 𝜖𝑈 or 𝑑 =  0. Since 𝑈 ≠ {0} we get 𝑑 =  0. 

Lemma(2.11):-  
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Let 𝑅 be a ∗ −prime ring, 𝑈 a non-zero ∗ −ideal of 𝑅 and 𝑎𝜖𝑅. If 

𝑎𝑑(𝑈) = {0} (or, 𝑑(𝑈)𝑎 = {0}), then 𝑎 =  0 or 𝑑 =  0. 

Proof:- For 𝑢𝜖𝑈, 𝑥𝜖𝑅, 0 = 𝑎𝑑(𝑢𝑥) = 𝑎𝑑(𝑢)𝜎(𝑥) + 𝑎𝜏(𝑢)𝑑(𝑥). By 

assumption, we have 𝑎𝜏(𝑢)𝑑(𝑥) = 0, for all 𝑥 𝜖 𝑅: On replacing 𝑢 by uy 

for any 𝑦𝜖 𝑅, we obtain 𝑎𝜏(𝑢)𝑅𝑑(𝑥) = {0} for all 𝑢 𝜖𝑈, 𝑥𝜖 𝑅: Also, 

𝑎(𝑢)𝑅𝑑(𝑥)∗ = {0}. Since 𝑅 is ∗ −prime, we find that either 𝑎𝜏(𝑢) =

0 or 𝑑(𝑥) = 0. If 𝑎𝜏(𝑢) = 0 for all 𝑢 𝜖 𝑈 or 𝜏−1(𝑎)𝑢 = 0, or 𝜏−1(𝑎)𝑈 =

{0}. Now since U is ∗ −ideal, we can write 𝜏−1(𝑎)𝑈 ∗ = {0}. This 

implies that 𝜏−1(𝑎)𝑅𝑈∗ = {0} =  𝜏−1(𝑎)𝑅𝑈∗. By the ∗ −primeness of 𝑅, 

we obtain 𝜏−1(𝑎) = 0, since 𝑈 ≠ {0}: In conclusion, we get either 

𝑎 =  0 or 𝑑 =  0. Similarly, 𝑑(𝑈)𝑎 = {0} implies 𝑎 =  0 or 𝑑 =  0. 

Lemma(2.12):-  

Let 𝑑 be a non-zero (𝜎, 𝜏  ) −derivation of ∗ −prime ring 𝑅 and 𝑈 a ∗

−right ideal of 𝑅. If 𝑑(𝑈) ⊆  ℤ(𝑅), then 𝑅 is commutative. 

Proof:- Since 𝑑(𝑈) ⊆ ℤ(𝑅), we have [𝑑(𝑈), 𝑅] = {0}. For 𝑢, 𝑣𝜖𝑈 and 

𝑥𝜖𝑅, 

(2.2)            [𝑥, 𝑑(𝑢𝑣)] = [𝑥, 𝑑(𝑢)𝜎(𝑣) + 𝜏(𝑢)𝑑(𝑣)] = 𝑑(𝑢)[𝑥, 𝜎(𝑣)] +

𝑑(𝑣)[𝑥, 𝜏(𝑢)] = 0. 

Replacing 𝑥 by 𝑥𝜎(𝑣), 𝑣𝜖𝑈 in (2.2), we have 
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0 = 𝑑(𝑢)[𝑥𝜎(𝑣), 𝜎(𝑣)] + 𝑑(𝑣)[𝑥𝜎(𝑣), 𝜏(𝑢)]  

= 𝑑(𝑢)[𝑥, 𝜎(𝑣)]𝜎(𝑣) + 𝑑(𝑣)(𝑥[𝜎(𝑣), 𝜏(𝑢)] + [𝑥, 𝜏(𝑢)]𝜎(𝑣)). 

By using (2.2), we get 

(2.3)          𝑑(𝑣)𝑅[𝜎(𝑣), 𝜏(𝑢)] = {0}, for all 𝑢, 𝑣𝜖𝑈. 

Let 𝑣𝜖𝑈⋂𝑆𝑎 ∗ (𝑅). From (2.3), it follows that 

(2.4)         𝑑(𝑣)∗𝑅[𝜎(𝑣), 𝜏(𝑢)] = {0}, for all 𝑢𝜖𝑈. 

By (2.3) and (2.4), the ∗ −primeness of 𝑅 yields that 𝑑(𝑣)  =  0 or 

[𝜎(𝑣), 𝜏(𝑢)]  =  0 

for any 𝑣 𝜖𝑈 ⋂𝑆𝑎 ∗ (𝑅) and for all 𝑢 𝜖𝑈. Let 𝑤𝜖𝑈, since 𝑤 −

𝑤∗ 𝜖 𝑈 ⋂𝑆𝑎 ∗ (𝑅), then  𝑑(𝑤 − 𝑤∗)= 0 or [𝜎(𝑤 − 𝑤∗)𝜏(𝑢)]  =  0. 

Assume that 𝑑(𝑤 −  𝑤∗)  =  0. Then 𝑑(𝑤) = 𝑑(𝑤∗): Replacing 𝑣 by 

𝑤∗ in (2.3)and since 𝑈 is ∗ −right ideal, we get 𝑑(𝑤∗)𝑅[𝜎(𝑤∗), 𝜏(𝑢)] = 

{0} for all 𝑢𝜖𝑈. Consequently, 

(2.5)          𝑑(𝑤)𝑅[𝜎(𝑤), 𝜏(𝑢)]∗ = {0}, for all 𝑢, 𝑤 𝜖𝑈. 

Also by (2.3), we get 𝑑(𝑤)𝑅[𝜎(𝑤), 𝜏(𝑢)] = {0}, the ∗ −primeness of 𝑅 

together with (2.5) assures that 𝑑(𝑤)  =  0 or [𝜎(𝑤), 𝜏(𝑢)] = 0, for all 

𝑢𝜖𝑈: Now suppose that [𝜎(𝑣), 𝜏(𝑢)]  =  0; for all 𝑣 𝜖 𝑈 ⋂𝑆𝑎 ∗ (𝑅) and 𝑢 

𝜖 𝑈. We have 
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[𝜎(𝑤 − 𝑤∗), 𝜏(𝑢)]  =  0; for all 𝑢𝜖𝑈, or [𝜎(𝑤), 𝜏(𝑢)] = [𝜎(𝑤∗), 𝜏(𝑢)]. 

Replacing 𝑣 by 𝑤∗ in (2.3), we get 𝑑(𝑤∗)𝑅[𝜎(𝑤∗), 𝜏(𝑢)] = {0} for all 

𝑢𝜖𝑈. Consequently,  

(2.6)            𝑑(𝑤∗)𝑅[𝜎(𝑤), 𝜏(𝑢)]∗ = {0}, for all 𝑢𝜖𝑈. 

Since 𝑑(𝑤)𝑅[𝜎(𝑤), 𝜏(𝑢)] = {0}, by (2.3), the ∗ −primeness of 𝑅 

together with (2.6) assures that 𝑑(𝑤)  =  0 or [𝜎(𝑤), 𝜏(𝑢)]  =  0, for all 

𝑢 𝜖𝑈: In conclusion, for all 𝑢𝜖𝑈 we have either 

𝑑(𝑤) = 0 or [𝜎(𝑤), 𝜏(𝑢)] = 0. 

Now, define 𝐾 = {𝑤𝜖𝑈 / 𝑑(𝑤) = 0} and 𝐿 = {𝑤𝜖𝑈/ [𝜎(𝑤), 𝜏(𝑢)] = 0 

for all 𝑢 𝜖𝑈. Then 𝑈 =  𝐾 ∪ 𝐿. Since 𝑑 ≠  0, we have 𝑑(𝑈) ≠ {0} by 

Lemma 2.10, therefore, 𝑈 ≠  𝐾. By Brauer's trick, we have (2.7) 

[𝜎(𝑤), 𝜏(𝑢)] = 0 for all 𝑢, 𝑤 𝜖 𝑈. Replacing 𝑤 by 𝑤𝜎−1( (𝑣)), 𝑢 𝜖𝑈, in 

(2.7) and using (2.7), we get 𝜎(𝑤)([𝑣, 𝑢]) = 0, for all 𝑢, 𝑣, 𝑤 𝜖 𝑈. On 

replacing 𝑤 by 𝑤𝑥 for any 𝑥𝜖𝑅, we get 𝜎(𝑤)𝑅𝜏([𝑣, 𝑢]) = {0},  for all 

𝑢, 𝑣, 𝑤 𝜖 𝑈. Also, since 𝑈 is ∗ −right ideal, we get 𝜎(𝑤)∗𝑅𝜏 ([𝑣, 𝑢]) =

{0} for all 𝑢, 𝑣, 𝑤𝜖 𝑈. Since R is ∗ −prime, we find that 𝜎(𝑤) = 0 or  

𝜏[𝑣, 𝑢] = 0 for all 𝑢, 𝑣, 𝑤𝜖𝑈. Since 𝑈 ≠ {0}, we have 𝑈 is commutative. 

In view of Corollary 2.5, we obtain the commutativity of R.  

Using the same technique as in Lemma 4 of [4], we get the following 

lemma. 
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Lemma(2.13):-  

Let 𝑅 be a ∗ − prime ring with characteristic different from two, 𝑑1 ∶

 𝑅 →  𝑅 be a (𝜎, 𝜏 ) −derivation and 𝑑2 ∶  𝑅 → 𝑅 be a derivation. If 

𝑑1𝑑2(𝑅) = {0}, then 𝑑 1 =  0 or 𝑑 2 = 0. 

Proof:- Let us assume that 𝑑1 ≠  0. Then for all 𝑥, 𝑦 𝜖 𝑅, 

0 = 𝑑1𝑑2(𝑥𝑦) = 𝑑1(𝑑2(𝑥)𝑦 + 𝑥𝑑2(𝑦))  = 𝜏(𝑑2(𝑥))𝑑1(𝑦) +

𝑑1(𝑥)𝜎(𝑑22(𝑦). That is 

(2.8)         𝜏(𝑑2(𝑥))𝑑1(𝑦) = 𝑑1(𝑥)𝜎(𝑑2(𝑦)) for all 𝑥, 𝑦𝜖𝑅. 

If we replace 𝑥 by 𝑑2(𝑥) in (2.8), we have  𝜏(𝑑2
2(𝑥))𝑑1(𝑦) = 0. This 

further reduces to 𝜏(𝑑2
2 (𝑥))  =  0 for all 𝑥 𝜖𝑅, in view of Lemma 2.11. 

Therefore 

(2.9)            𝑑 2
2(𝑥) = 0 for all 𝑥 𝜖𝑅. 

Replacing 𝑥 by 𝑥𝑑2(𝑧), 𝑧𝜖𝑅, in (2.8) and using (2.8) and (2.9), we get 

0 = 𝜏(𝑑2(𝑥𝑑2(𝑧)))𝑑1(𝑦) + 𝑑1(𝑥𝑑2(𝑧))𝜎(𝑑2(𝑦))  

= 𝜏(𝑑2(𝑥))𝜏(𝑑2(𝑧))𝑑1(𝑦)  + 𝑑1(𝑥)𝜎(𝑑2(𝑧))𝜎(𝑑2(𝑦))  

= −𝜏(𝑑2(𝑥))𝑑1(𝑧)𝜎(𝑑2(𝑦))  + 𝑑1(𝑥)𝜎(𝑑2(𝑧))𝜎(𝑑2(𝑦))  

= 𝑑1(𝑥)𝜎(𝑑2(𝑧))𝜎(𝑑2(𝑦))  + 𝑑1(𝑥)𝜎(𝑑2(𝑧))𝜎(𝑑2(𝑦))  

So we obtain, 
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2𝑑1(𝑥)𝜎(𝑑2(𝑧))𝜎(𝑑2(𝑦))  =  0 for all 𝑥, 𝑦, 𝑧 𝜖 𝑅. 

Since characteristic of 𝑅 is different from 2. Then by Lemma 2.11, we 

have 

(2.10)        𝑑2(𝑧)𝑑2(𝑦) = 0 for all 𝑥, 𝑦𝜖𝑅. 

Again applying Lemma 2.11 to (2.10), we get 𝑑2 =  0. 

We are now well equipped to prove our main theorem: 

Proof of Theorem 2.2. First we will show that if any 𝑎𝜖𝑆𝑎∗(𝑅) satisfies 

[𝑑(𝑈), 𝑎]𝜎,𝜏 = {0}, then 𝑎𝜖 𝑍(𝑅). 

0 =  [𝑑(𝑢𝑣), 𝑎]𝜎,𝜏 = [𝑑(𝑢)𝜎(𝑣) + 𝜏(𝑢)𝑑(𝑣), 𝑎]𝜎,𝜏 

=  𝑑(𝑢)𝜎(𝑣)𝜎(𝑎) + 𝜏(𝑢)𝑑(𝑣)𝜎(𝑎) − 𝜏 (𝑎)𝑑(𝑢)𝜎(𝑣) − 𝜏(𝑎)𝜏(𝑢)𝑑(𝑎) 

By hypothesis, 𝑑(𝑢)𝜎(𝑎) = 𝜏(𝑎)𝑑(𝑢) for all 𝑢𝜖𝑈: We have 

(2.11)      𝑑(𝑢)𝜎([𝑣, 𝑎]) + 𝜏([𝑢, 𝑎])𝑑(𝑣) = 0 for all 𝑢, 𝑣 𝜖𝑈 

Replace 𝑣 by 𝑣𝑎 in (2.11) and use (2.11) to get 

0 = 𝑑(𝑢)𝜎([𝑣, 𝑎])𝜎(𝑎) + 𝜏([𝑢, 𝑎])(𝑑(𝑣)𝜎(𝑎) + 𝜏 (𝑣)𝑑(𝑎))  

= {𝑑(𝑢)𝜎([𝑣, 𝑎]) + 𝜏([𝑢, 𝑎])𝑑(𝑣)}𝜎(𝑎)  + 𝜏([𝑢, 𝑎])𝜏(𝑣)𝑑(𝑎).  

We have 𝜏 ([𝑢, 𝑎])𝜏(𝑣)𝑑(𝑎) = 0, for all 𝑢, 𝑣𝜖 𝑈. Replacing 𝑣 by 𝑣𝑥 for 

any 𝑥𝜖𝑅, we find that 𝜏([𝑢, 𝑎])𝜏(𝑣)𝑅𝑑(𝑎) = {0}, for all 𝑢, 𝑣𝜖𝑈. Since  
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𝑎𝜖𝑆𝑎∗(𝑅), the above expression can be rewritten as 

𝜏([𝑢, 𝑎])𝜏(𝑣)𝑅𝑑(𝑎)∗ = {0} for all 𝑢, 𝑣𝜖𝑈. On using ∗ −primeness of 𝑅, 

we obtain for all 𝑢, 𝑣𝜖𝑈 

(2.12)     𝜏([𝑢, 𝑎])𝜏(𝑣) = 0 or 𝑑(𝑎) = 0. 

Let us suppose that 𝑑(𝑎)  =  0, then for all 𝑢𝜖𝑈, 𝑑([𝑢, 𝑎])  =

 [𝑑(𝑢), 𝑎]𝜎,𝜏 − [𝑑(𝑎), 𝑢]𝜎,𝜏 =  0. That is  

(2.13)          𝑑([𝑈, 𝑎]) = {0}. 

On replacing 𝑣 by 𝑣𝑤, 𝑤𝜖𝑈, in (2.11), we get  

0 = 𝑑(𝑢)𝜎([𝑣𝑤, 𝑎]) + 𝜏([𝑢, 𝑎])𝑑(𝑣𝑤)  

= 𝑑(𝑢)𝜎(𝑣)𝜎([𝑤, 𝑎]) + 𝑑(𝑢)𝜎([𝑣, 𝑎])𝜎(𝑤) + 𝜏([𝑢, 𝑎])𝑑(𝑣)𝜎(𝑤) 

+𝜏([𝑢, 𝑎])𝜏(𝑣)𝑑(𝑤)  

= 𝑑(𝑢)𝜎(𝑣)𝜎([𝑤, 𝑎]) + 𝜏([𝑢, 𝑎])𝜏(𝑣)𝑑(𝑤) + {𝑑(𝑢)𝜎([𝑣, 𝑎]) +

𝜏([𝑢, 𝑎])𝑑(𝑣)}𝜎(𝑤)  

By using (2.11), we have 

(2.14) 𝑑(𝑢)𝜎(𝑣)𝜎([𝑤, 𝑎]) + 𝜏([𝑢;  𝑎])𝜏(𝑣)𝑑(𝑤) = 0 for all 𝑢, 𝑣, 𝑤𝜖𝑈. 

Replacing 𝑤 by [𝑤, 𝑎] in (2.14) and using (2.13), we get 

𝑑(𝑢)𝜎(𝑣)𝜎([[𝑤, 𝑎], 𝑎]) = 0 for all 𝑢, 𝑣, 𝑤𝜖𝑈. 

Replacing 𝑣 by 𝑥𝑣 for any 𝑥𝜖𝑅 in the above relation, we find that 
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𝑑(𝑢)𝑅𝜎(𝑣)𝜎([[𝑤, 𝑎], 𝑎]) = {0} for all 𝑢, 𝑣, 𝑤𝜖𝑈: Also since 𝑈 is ∗

−ideal, we may obtain 𝑑(𝑢)∗𝑅𝜎(𝑣)𝜎([[𝑤, 𝑎], 𝑎]) = {0} for all 𝑢, 𝑣, 𝑤𝜖𝑈. 

Using ∗ −primeness of 𝑅, we get 𝑑(𝑈) = {0} or 𝜎(𝑣)𝜎([[𝑤, 𝑎], 𝑎])  =  0 

for all 𝑢, 𝑣, 𝑤𝜖𝑈. But 𝑑(𝑈) ≠ {0}, therefore, 𝜎(𝑣)𝜎([[𝑤, 𝑎], 𝑎]) = 0 for 

all 𝑢, 𝑣, 𝑤𝜖𝑈: Replacing 𝑣 by 𝑣𝑥, and using 𝑈 is ∗ −ideal, we obtain 

𝜎(𝑈)𝑅𝜎([[𝑤, 𝑎], 𝑎]) = {0} and 𝜎(𝑈)∗𝑅𝜎([[𝑤, 𝑎], 𝑎]) = {0} for all 

𝑤 𝜖 𝑈. Since 𝑅 is ∗ −prime and 𝜎(𝑈) ≠ {0} is ∗ −ideal of 𝑅, 

𝜎([[𝑈, 𝑎], 𝑎]) = {0}. 

In other words, if we define 𝐼𝑎(𝑥) = [𝑥, 𝑎] an inner derivation determined 

by 𝑎 then we have 𝐼𝑎
2(𝑈) = {0}. By Lemma 2.13, 𝐼𝑎 = {0}, that mean  

[𝑎, 𝑈] = {0}, and so by Lemma 2.6, 𝑎𝜖ℤ(𝑅). In view of (2.12) let us now 

suppose that  𝜏([𝑢, 𝑎])𝜏(𝑣) = 0 for all 𝑢, 𝑣𝜖𝑈: On replacing 𝑣 by 𝑥𝑣 for 

any 𝑥𝜖𝑅, the above equation reduces to  𝜏([𝑢, 𝑎])𝑅 (𝑣) = {0}, for all 

𝑢, 𝑣𝜖 𝑈. Also, 𝑈 being a ∗ −ideal, we get 𝜏([𝑢, 𝑎])𝑅 (𝑣) = {0}.  Using 

the ∗ −primeness of 𝑅 yields either  𝜏([𝑈, 𝑎]) = {0} or  𝜏(𝑈) = {0}.  

Since 𝜏(𝑈) = {0} is not possible, it reduces to  𝜏([𝑈, 𝑎]) = {0} and so 

[𝑈, 𝑎] = {0}. In view of Lemma 2.6, we find that 𝑎𝜖𝑍(𝑅). Hence by our 

hypothesis we obtain that 𝑑(𝑈)  ⊆ ℤ(𝑅): So by Lemma 2.12, 𝑅 is 

commutative. 

Theorem(2.14):-  
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Let 𝑅 be a ∗ − prime ring with characteristic different from two and 𝜎, 𝜏 

be automorphisms of 𝑅. If 𝑅 admits a non-zero (𝜎, 𝜏  ) −derivation 

𝑑 ∶  𝑅 → 𝑅 such that [𝑑(𝑅), 𝑑(𝑅)]𝜎,𝜏 ⊆ 𝐶𝜎,𝜏, then 𝑅 is commutative. 

Proof:- First we will show that for any 𝑎𝜖𝑆𝑎∗(𝑅) satisfying 

[𝑑(𝑅), 𝑎]𝜎,𝜏 ⊆  𝐶𝜎,𝜏, we have 𝑎 𝜖ℤ(𝑅): Suppose on contrary that 𝑎 ∉

ℤ(𝑅). Using the hypothesis we have [𝑑(𝑎2), 𝑎]𝜎,𝜏𝜖𝐶𝜎,𝜏, 

[𝑑(𝑎2), 𝑎]𝜎,𝜏 = [𝑑(𝑎)𝜎(𝑎) + 𝜏(𝑎)𝑑(𝑎), 𝑎]𝜎,𝜏  

=  𝑑(𝑎)𝜎(𝑎)𝜎(𝑎) − 𝜏(𝑎)𝜏(𝑎)𝑑(𝑎)  

=  [𝑑(𝑎), 𝑎2]𝜎,𝜏 = 𝜏(𝑎)[𝑑(𝑎), 𝑎]𝜎,𝜏 + [𝑑(𝑎), 𝑎]𝜎,𝜏𝜎(𝑎)  

=  2 𝜏(𝑎)[𝑑(𝑎);  𝑎]𝜎,𝜏  

Since char 𝑅 ≠  2, we have𝜏(𝑎)[𝑑(𝑎), 𝑎]𝜎,𝜏𝜖𝐶𝜎,𝜏 . Since 𝑎𝜖𝑆𝑎∗(𝑅), we 

also have 𝜏(𝑎)𝜎[𝑑(𝑎), 𝑎]𝜎,𝜏𝜖𝐶𝜎,𝜏. In view of the hypothesis and Lemma 

2.8, we get either 𝜏(𝑎) 𝜖 ℤ(𝑅) or [𝑑(𝑎), 𝑎]𝜎,𝜏 =  0. Since by our 

assumption a ̸2 Z(R), we have 

(2.15)          [𝑑(𝑎), 𝑎]𝜎,𝜏 =  0. On the other hand, since [𝑑(𝑅), 𝑎]𝜎,𝜏  ⊆

𝐶𝜎,𝜏, for any 𝑥𝜖𝑅, [𝑑([𝑎, 𝑥]), 𝑎]𝜎,𝜏𝜖𝐶𝜎,𝜏. Therefore 

[𝑑([𝑎, 𝑥]), 𝑎]𝜎,𝜏 = [[𝑑(𝑎), 𝑥]𝜎,𝜏, 𝑎]𝜎,𝜏 − [[𝑑(𝑥), 𝑎]𝜎,𝜏, 𝑎]𝜎,𝜏. We obtain 

(2.16)        [[𝑑(𝑎), 𝑥]𝜎,𝜏, 𝑎]𝜎,𝜏, 𝜖𝐶𝜎,𝜏 for all 𝑥𝜖𝑅. 



25 
 

Replacing 𝑥 by 𝑎𝑥 in (2.16) 

[[𝑑(𝑎), 𝑎𝑥]𝜎,𝜏, 𝑎]𝜎,𝜏  =  [𝜏(𝑎)[𝑑(𝑎), 𝑥]𝜎,𝜏  +  [𝑑(𝑎), 𝑎]𝜎,𝜏𝜎(𝑥), 𝑎]𝜎,𝜏 

= [𝜏(𝑎)[𝑑(𝑎), 𝑥]𝜎,𝜏, 𝑎]𝜎,𝜏. 

= 𝜏(𝑎)[[𝑑(𝑎), 𝑥]𝜎,𝜏, 𝑎]𝜎,𝜏 + [𝜏(𝑎), 𝜏(𝑎)][𝑑(𝑎), 𝑥]𝜎,𝜏.  

We get 𝜏(𝑎)[[𝑑(𝑎), 𝑥]𝜎,𝜏, 𝑎]𝜎,𝜏𝜖𝐶𝜎,𝜏 for all 𝑥𝜖𝑅: Since 𝑎𝜖𝑆𝑎∗(𝑅), we 

have 𝜏(𝑎)∗[[𝑑(𝑎), 𝑥]𝜎,𝜏, 𝑎]𝜎,𝜏𝜖𝐶𝜎,𝜏 for all 𝑥𝜖𝑅. In view of (2.16), together 

with above two relations and Lemma 2.8, we obtain  𝜏(𝑎)𝜖 ℤ(𝑅) or 

[[𝑑(𝑎), 𝑥]𝜎,𝜏, 𝑎]𝜎,𝜏 = 0. Since 𝑎 ∉  ℤ(𝑅), we have  

(2.17)      [[𝑑(𝑎), 𝑥]𝜎,𝜏, 𝑎]𝜎,𝜏 = 0 for all 𝑥𝜖𝑅. 

Now, applying the relation 

[𝑥, [𝑦, 𝑧]]𝜎,𝜏 + [[𝑥, 𝑧]𝜎,𝜏, 𝑦]𝜎,𝜏 − [[𝑥, 𝑦]𝜎,𝜏, 𝑧]𝜎,𝜏 =  0  

to (2.17) and using (2.15), we obtain 

(2.18)       [𝑑(𝑎), [𝑎, 𝑥]]𝜎,𝜏 =  0 for all 𝑥𝜖𝑅. 

In other words, if we define 𝐼𝑎(𝑥) = [𝑎, 𝑥] an inner derivation determined 

by 𝑎 and 𝐼𝑑(𝔞)(𝑥) = [𝑑(𝑎), 𝑥]𝜎,𝜏 a (𝜎, 𝜏)-derivation determined by 𝑑(𝑎), 

in view of (2.18), we find that 𝐼𝑑(𝑎)𝐼𝑎(𝑥) = 0, for all 𝑥𝜖𝑅: By Lemma 

2.13, either 𝐼𝑑(𝑎) = 0 or 𝐼𝑎 = 0. That is, 𝑑(𝑎)𝜖𝐶𝜎,𝜏, or 𝑎𝜖ℤ(𝑅). Since 

𝑎 ℚ ∉ 𝑍(𝑅), this gives us 𝑑(𝑎)𝜖𝐶𝜎,𝜏 
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On the other hand, since [𝑑(𝑅), 𝑎]𝜎,𝜏 ⊆ 𝐶𝜎,𝜏. For 𝑥𝜖𝑅, [𝑑(𝑎𝑥), 𝑎]𝜎,𝜏𝜖𝐶𝜎,𝜏 

Then[𝑑(𝑎𝑥), 𝑎]𝜎,𝜏 =  [𝑑(𝑎)𝜎(𝑥) + 𝜏(𝑎)𝑑(𝑥), 𝑎]𝜎,𝜏 

= 𝑑(𝑎)𝜎(𝑥)𝜎(𝑎) + 𝜏(𝑎)𝑑(𝑥)𝜎(𝑎) − 𝜏(𝑎)𝑑(𝑎)𝜎(𝑥) − 𝜏 (𝑎)𝜏(𝑎)𝑑(𝑥). 

Now since we have 𝑑(𝑎)𝜖𝐶𝜎,𝜏, the above equation reduces to 

[𝑑(𝑎𝑥), 𝑎]𝜎,𝜏 =  𝑑(𝑎)𝜎(𝑎𝑥) + 𝜏(𝑎)𝑑(𝑥)𝜎(𝑎) − 𝑑(𝑎)𝜎(𝑎𝑥) −

𝜏(𝑎)𝜏(𝑎)𝑑(𝑥), 

or, 

(2.19)         𝑑(𝑎)𝜎([𝑥, 𝑎]) + 𝜏(𝑎)[𝑑(𝑥), 𝑎]𝜎,𝜏𝜖𝐶𝜎,𝜏 for all 𝑥𝜖𝑅. 

Commuting (2.19) with a and using  𝑑(𝑎), [𝑑(𝑥), 𝑎]𝜎,𝜏𝜖𝐶𝜎,𝜏. we get 

0 =  [𝑑(𝑎)𝜎([𝑥, 𝑎]) + 𝜏(𝑎)[𝑑(𝑥), 𝑎]𝜎,𝜏, 𝑎]𝜎,𝜏 

=  𝑑(𝑎)𝜎([𝑥, 𝑎])𝜎(𝑎) + 𝜏(𝑎)[𝑑(𝑥), 𝑎]𝜎,𝜏, 𝜎(𝑎) − 𝜏(𝑎)𝑑(𝑎)𝜎([𝑥, 𝑎]) 

−𝜏(𝑎)𝜏(𝑎)[𝑑(𝑥), 𝑎]𝜎,𝜏 

=  𝑑(𝑎)𝜎([𝑥, 𝑎]𝑎) + 𝜏(𝑎)[𝑑(𝑥), 𝑎]𝜎,𝜏𝜎(𝑎) − 𝑑(𝑎)𝜎(𝑎[𝑥, 𝑎]) 

−𝜏(𝑎)[𝑑(𝑥), 𝑎]𝜎,𝜏𝜎(𝑎) =  𝑑(𝑎)𝜎([[𝑥, 𝑎], 𝑎]). 

Also since 𝑎 𝜖𝑆𝑎∗(𝑅), we have 𝑑(𝑎)𝜎([[𝑥, 𝑎], 𝑎])∗ = 0: Therefore, by 

Corollary 2.9, 𝑑(𝑎)  =  0 or [𝑎, [𝑎, 𝑥]] = 0 for all 𝑥𝜖𝑅. If [𝑎, [𝑎, 𝑥]]  =  0, 

for all 𝑥𝜖 𝑅, we have by Lemma 2.7, 𝑎𝜖ℤ(𝑅); a contradiction. Therefore, 

𝑑(𝑎) = 0.  Now (2.19) can be rewritten as 𝜏(𝑎)[𝑑(𝑥), 𝑎]𝜎,𝜏𝜖𝐶𝜎,𝜏 ,for 
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𝑎𝑙𝑙 𝑥 𝜖𝑅. Also 𝜏(𝑎)𝜎[𝑑(𝑥), 𝑎]𝜎,𝜏𝜖𝐶𝜎,𝜏 , for all 𝑥𝜖𝑅. But [𝑑(𝑥), 𝑎]𝜎,𝜏𝜖𝐶𝜎,𝜏, 

yields by Lemma 2.8 either  𝜏(𝑎) 𝜖ℤ(𝑅) or [𝑑(𝑥), 𝑎]𝜎,𝜏 = 0, for all 𝑥𝜖𝑅. 

Now in application of Theorem 2.2, we obtain 𝑎𝜖ℤ(𝑅). This contradicts 

our assumption. Hence, 𝑎𝜖ℤ(𝑅). By our hypothesis we have 𝑑(𝑅) ⊆

𝑍(𝑅), and hence 𝑅 is commutative by Lemma 2.12.   
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