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Abstract

Let R be a *-prime ring with center Z(A), d a non-zero (o, T) derivation
of R with associated automorphisms ¢ and t of R, such that ¢ and 7 and
d commute with * Suppose that U is an ideal of R such that U* = U and
Cyr = {ceR:ca(x) = 1(x)c, for all xeR}. In the present paper, it is
shown that if characteristic of R is different from two and
[d(u),d(v)]s = {0}, then R is commutative. Commutativity of R has

also been established in case if [d(R),d(R)]s: € Cy 1.






Preliminaries

Definition (1.1)(Derivation):-

An additive mapping d : R — R is said to be a derivation if d(xy) =

d(x)y + xd(y) holds for all x, ye R.

Definition (1.2)(inner derivation):-

The mapping I, : R — R given by I,(x) = [a,x] for fixed aeR, is a

derivation which is said to be an inner derivation.

Definition (1.3)(prime):- Recall that R is said to be prime if aRb =

{0} impliesa = O0orb = 0.

Definition(1.4)(2- torsion):-

A ring R is said to be 2-torsion free, if 2x = 0impliesx = 0.

Definition(1.5)((a, T) —derivation):-

For any two endomorphism cgand 7 of R, we call an additive mapping
d: R - R a(o, t) -derivation if d(xy) = d(x)o(y) + t(x)d(y) for all

x, Y€ R.



Example:-

LetR = {(g IZ) \a, b, ceZ} be the ring of all 2 X 2 matrices over Z, the

; : : . a by _(a 0
ring of integers. Define d,o0,7: R — R such that d(O C) = (0 0),

a(g é’) = (g 8) and r(g IZ) = (8 g) It can be easily seen that

oand t are auto morphisms of R, and d is a (o, T)-derivation which is not
a derivation of R. We set C, ; = {xeR:xa(y) = ©(y)x, for all yeR} and
[x,y]sr = x0(y) — t(¥)x. In particular C; ; = Z(R), is the center of R,
and [x; y]i11= [x; y] = xy— yx, is the usual Lie product. An additive
mapping x — x* on a ring R is called an involution if (x *) * = x and

(xy) * = y = x * hold for all x, y €R.
Definition(1.6)(involution):-

An additive mapping x — x* onaring R is called an involution if (x *)

= xand (xy) * = y * x * hold for all x,y eR.
Definition(1.7)( *-ring):-

A ring equipped with an involution is called a ring with involution or *-

ring.

Definition(1.8)( *-prime):-



! !

A ring R equipped with an involution "+’ is said to be *-prime if
aRb = aRb* = {0} (or, equivalently aRb = a*Rb = {0}) impliesa =0
or b = 0. If R° denotes the opposite ring of a prime ring R, then § =
R X R° equipped with the exchange involution =#,, defined by
*o (X, 7) = (y,x) IS *,,—prime, but not a prime ring because of the
fact that (1,0)S(0,1) = 0. In all that follows, Sa,(R) will denote the set
of symmetric and skew symmetric elements of R, i.e., Sa.(R) =
{x e R\x* = +x}: An ideal U of R is said to be a * —ideal of R if
U* = U. It can also be noted that an ideal of a ring R may not be *
—ideal of R. As an example, let R = Z X Z, and consider the involution
"« " on R such that (a,b)* = (b, a) forall (a,b)eR: The subset U = Z X
{0} of R is an ideal of R but it is not a = —ideal of R, because U* =
{0} X Z # U. Recently many authors have studied commutativity of
prime and semi prime rings with involution admitting suitably
constrained derivations. A lot of work have been done by L. Okhtite and
co-authors on rings with involution (see for reference [11, 12, 13], where
further references can be found). In [10], Lee and Lee proved that if a
prime ring of characteristic different from 2 admits a derivation d such
that [d(R),d(R)] < Z(R), then R is commutative. On the other hand in
[7] for ae R. Herstein proved that if [a,d(R)] = {0}, then ae Z(R).

Further in the year 1992, Aydin together with Kaya [4] extended the



theorems mentioned above by replacing derivation by (o, t) —derivation
and in some of those, R by a non-zero ideal of R. In this note, we
investigate the commutativity of * —prime ring R equipped with an
involution '’ admitting a (o,7) —derivation d satisfying

[d(U),d(U)]s+ = {0}and [d(R); d(R)]s. € C,, Where U is a nonzero

+x —ideal of R.
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In the remaining part of the paper, R will represent a * —prime ring
which admits a non-zero (o,t ) —derivation d with auto morphisms o
and 7 such that ' « " commutes with d, o and . We shall use the following

relations frequently without specific mention.

[xy,2]6: = X[, 2l + [x, ©(2)]y = x[y,0(2)] + [x, 2] ¥

[%,y2] 60 = T(W)[X zlor + [%,¥]6r0(2). And

[X, [y' Z]]a,‘r + [[X, Z]a,r - [[x» y]a,r» Z]O‘,‘L’ = 0.
Remark(2.1):-

We find that if R is a * —prime ring of characteristic different from 2,
then R is 2-torsion free. In fact, if 2x = 0 for all x €R, then xr(2s) = 0
for all , s eR. But since char R # 2, there exists a non-zero leR such that
2l # 0 and hence by the above xR(2l) = {0}. This also gives that
xR(20)* = {0} and * —primeness of R yields that x = 0, that mean, R is

2-torsion free.
The main result of the present paper states as follows:
Theorem (2.2):-

Let R be a * — prime ring with characteristic different from two and o, 1
be automorphisms of R, and U a = —ideal of R. If R admits a non- zero
(0,7 )-derivation d : R — R such that [d(U),d(U)],, = {0}, then R is
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commutative. We facilitate our discussion with the following lemmas
which are required for developing the proof of our main result. Since
every * —prime ring is semiprime and every * —right ideal is right ideal,
hence Lemmas 1.1.4 and 1.1.5 of [5] can be rewritten in case of * —prime

ring as follows:

Lemma(2.3):-

Suppose that R is a * —prime ring and that a eR is such that a(ax —

xa) = 0forall x eR: Then a € Z(R).

Lemma(2.4):-

Let R be a * —prime ring and U a non-zero * —right ideal of R. Then

Z(U) € Z(R).

Corollary(2.5):-

Let R be a *x —prime ring and U a non-zero * —right ideal of R. If U is

commutative then R is commutative.

Proof:- Since U is commutative, by the Lemma 2.4, we have U =
Z(U) € Z(R). If forany x,y €R, ae U we have axeU then axeZ(R), and
hence (ax)y = y(ax) = ayx. This further yields U(xy — yx) = {0}.

Since U is a non-zero * —right ideal of R, we have UR(xy — yx) =

13



{0} = U"R(xy — yx). Also, since U # {0} is a right ideal, * —primeness

of R gives xy — yx = 0, for all x, ye R. Hence R is commutative.
Lemma(2.6):-

Let R be a x —prime ring and U a non-zero = —right ideal of R. Suppose

that aeR centralizes U. Then a€Z(R).

Proof:- Since a centralizes U, for all ueU and xeR, aux = uxa. But
au = ua, therefore uax = uxa, that mean, u[a,x] = 0. On replacing
u by uy for any yeR, we get uR[a,x] = {0} for all ue U, xeR. Also,
since U is = —right ideal, we get u*R[a, x] = {0}. Again since U # {0},
* —primeness of R vyields that [a,x] = 0 for all xe R. Therefore,

ae Z(R).
Lemma(2.7):-

Let R be a * — prime ring with characteristic different from two and
suppose that aeR commutes with all its commutators ax — xa for all

xeR. Then a€eZ(R).

Proof:- Defined : R - Rby d(x) = ax — xa for all x eR: By

hypothesis we arrive at

(2.1) d*(x) = 0forall x eR.

14



Also, d?(xy) = d?(x)y + 2d(x)d(y) + xd?(y). By (2.1) and using
torsion restriction on R, we get d(x)d(y) = 0 for all x,yeR: On
replacing y by yz for any zeR, we obtain d(x)Rd(y) = {0}, also
d(x)*Rd(y) = {0} for all x,yeR. Using * —primeness of R yields that
d(x) = 0 for all xeR. Recalling that d(x) = ax — xa, we obtain

ae Z(R).
Lemma(2.8):-

Let R be a x —prime ring. Suppose that ab,a*b, be C, , for all a,b € R.

Then either ae Z(R) orb = 0.

Proof:- Since abeC,, aba(x) = t(x)ab for all xeR. Also since be C, ;
that mean ba(x) = t(x)b for all xeR, we have a(bao(x)) = t(x)ab, or
a(t (x)b) = (r (x)a)b, that mean [a,t (x)]b = 0. On replacing x by

xy forany y € R, we get [a, T(x)]Rb = {0} for all x € R.
Similarly, since a*beC, ; ,we have

[a*, T (x)]Rb = {0} for all xeR. On replacing x by x* in the above

relation, we find that

[a, T(x)Rb = {0} for all x € R. Therefore, on using * —primeness of R,
we find that either [a,t(x)] = 0 or b = 0 for all xeR. Hence, we

conclude that a eZ(R) orb = 0.

15



Corollary(2.9):-

Let R be a * —prime ring. Suppose that ab = 0 = a*b,beC, , for all

a, beR. Then eithera = Oorb = 0.

Proof:- Since be C, ; ,ba(x) = t(x)b. Left multiplying by a and a* and
on using ab = 0 and a*b = 0, we obtain aba(x) = at(x)b = 0, for
all xeR, that mean aRb = {0} and a*ba(x) = a*t(x)b = 0, for all
x € R, that mean, a*Rb = {0}, respectively. Hence, * —primeness of

R yields eithera = Oorb = 0.
Lemma(2.10):-

Let R be a x —prime ring and U a * —right ideal of R. If d(U) = {0}, then

d = 0.

Proof:- For all ueU and xeR,0 = d(ux) =dw)o(x) + t(w)d(x) =
t(u)d(x). On replacing x by xy for any yeR, we get t(uw)d(x)a(y) +
t(w)t(x)d(y) = 0. or, t(uw)r(x)d(y) = 0, that mean t(u)Rd(y) = {0}
for all ueU and yeR. Also since U is a * —right ideal, we get
t(u)*Rd(y) = {0}. Also, x —primeness of R yields that t(u) = 0 for all

uelord = 0.Since U # {0} wegetd = 0.

Lemma(2.11):-
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Let R be a * —prime ring, U a non-zero * —ideal of R and aeR. If

ad(U) = {0} (or, d(U)a = {0}),thena = Oord = 0.

Proof:- For wueU, xeR,0 = ad(ux) = ad(u)o(x) + ar(u)d(x). By
assumption, we have at(u)d(x) = 0, for all x € R: On replacing u by uy
for any ye R, we obtain at(u)Rd(x) = {0} for all ueU,xe R: Also,
a(u)Rd(x)* = {0}. Since R is * —prime, we find that either at(u) =
Oord(x)=0.1fatr(u)=0forallueUort ' (a)u =0,or t7 1 (a)U =
{0}. Now since U is = —ideal, we can write 7-1(a)U * = {0}. This
implies that 771 (a)RU* = {0} = t-1(a)RU*. By the * —primeness of R,
we obtain 771(a) =0, since U # {0}: In conclusion, we get either

a = 0ord = 0.Similarly, d(U)a = {0} impliesa = Oord = 0.
Lemma(2.12):-

Let d be a non-zero (o,7 ) —derivation of * —prime ring Rand U a *

—right ideal of R. If d(U) € Z(R), then R is commutative.

Proof:- Since d(U) € Z(R), we have [d(U),R] = {0}. For u,veU and

X€R,

(2.2) [x,d(uv)] = [x,d(w)o(v) + T (w)d(v)] = d(w)[x,0(v)] +

d(v)[x,t(w)] = 0.

Replacing x by xo(v), veU in (2.2), we have

17



0 =dw[xa(v),o()] +dW)[xo(v), 7(w)]

= dW)[x,0(v)]o() + d@)(x[o(v), T(W)] + [x, T(W)]o (V).

By using (2.2), we get

23)  d@)R[ow),T(w)] = {0}, for all u, veU.

Let veUNSa * (R). From (2.3), it follows that

24)  d@)'R[o),T(w)] = {0}, for all ueU.

By (2.3) and (2.4), the  —primeness of R yields that d(v) = 0 or
[o(v),T(w)] = 0

for any veU NSax(R) and for all ueU. Let weU, since w —
w*eU NSa * (R), then d(w—-w")= 0 or [o(w— w")T(u)] = 0.
Assume that d(w — w*) = 0. Then d(w) = d(w™): Replacing v by
w™ in (2.3)and since U is = —right ideal, we get d(w*)R[oc(Ww*),T(u)] =

{0} for all ueU. Consequently,

(2.5) d(w)R[a(w),t(w)]* = {0}, forall u,w €U.

Also by (2.3), we get d(w)R[a(w),T(u)] = {0}, the x —primeness of R
together with (2.5) assures that d(w) = 0 or [c(w),7(uw)] = 0, for all
ueU: Now suppose that [o(v),7(u)] = 0; forall ve U NSa * (R) and u

e U. We have

18



[o(w —w™"),T(u)] = 0; for all ueU, or [c(w),t(w)] = [c(w"),T(u)].
Replacing v by w* in (2.3), we get d(w*)R[o(w™), t(u)] = {0} for all

uel. Consequently,
(2.6) d(w")R[o(w),T(w)]* = {0}, for all uel.

Since d(w)R[o(w), t(u)] = {0}, by (2.3), the = —primeness of R
together with (2.6) assures that d(w) = 0or [e(w),T(w)] = 0, for all
u eU: In conclusion, for all ueU we have either

d(w) =0o0r[c(w),t(w)] = 0.

Now, define K = {weU /d(w) =0} and L = {weU/ [c(w),T(w)] =0
for all ueU. Then U = K U L. Since d # 0, we have d(U) # {0} by
Lemma 2.10, therefore, U # K. By Brauer's trick, we have (2.7)
[c(w),T(u)] = 0 for all u,w € U. Replacing w by WO'_l( (v)),u eU, In
(2.7) and using (2.7), we geta(w)([v,u]) =0, for all u,v,w e U.On
replacing w by wx for any xeR, we get c(w)Rt([v,u]) = {0}, for all
u,v,w € U. Also, since U is * —right ideal, we get o(w)*Rt ([v,u]) =
{0} for all u,v,we U. Since R is * —prime, we find that o(w) = 0 or
t[v,u] = 0 for all u,v,weU. Since U # {0}, we have U is commutative.

In view of Corollary 2.5, we obtain the commutativity of R.

Using the same technique as in Lemma 4 of [4], we get the following

lemma.
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Lemma(2.13):-

Let R be a x — prime ring with characteristic different from two, d; :
R - R be a (o,7) —derivation and d, : R — R be a derivation. If

Proof:- Let us assume that d, # 0. Then forall x,y € R,

0= didy(xy) = di(d2(x)y + xd2(y)) = 1(d2(x))d:(¥) +

d, (x)a(d,2(y). That is

(28)  T(d(0))dy(y) = dy(¥)o(do () for all x, yeR.

If we replace x by d,(x) in (2.8), we have 7(d3(x))d;(y) = 0. This
further reduces to 7(d5 (x)) = 0 for all x €R, in view of Lemma 2.11.

Therefore

(2.9) d 2(x) = 0 for all x R.

Replacing x by xd,(z), zeR, in (2.8) and using (2.8) and (2.9), we get
0 = 7(da(xd2(2)))d1 (¥) + d1(xd3(2))o(d2 (1))

= 7(d,(x))t(d2(2))d,(¥) + di(x)o(d,(2))o(d,(¥))

= —1(dx(x))d1(2)a(d(¥)) + di(x)a(dx(2))a(d>(¥))

= d,(x)a(d(2)a(d, () + di(x)o(dy(2)o(d,(y))

So we obtain,

20



2d,(x)0(d,(2))o(dy(y)) = Oforallx,y,zeR.

Since characteristic of R is different from 2. Then by Lemma 2.11, we

have

(2.10) d,(z)d2(y) = 0 for all x, yeR.

Again applying Lemma 2.11 to (2.10), we get d, = 0.
We are now well equipped to prove our main theorem:

Proof of Theorem 2.2. First we will show that if any aeSa,(R) satisfies

[d(U),a],, = {0}, then ae Z(R).
0 = [duv),a]s; = [d(W)o (@) + 1(W)d(V), a]s,

= d(w)o)a(a) + t(w)dw)a(a) — 7 (a)d(w)a(v) — t(a)r(u)d(a)

By hypothesis, d(w)a(a) = T(a)d(u) for all ueU: We have
2.11)  dwo([v,al) + ([u,al)d(v) = 0 for all u, v eU
Replace v by va in (2.11) and use (2.11) to get

0 =dw)o([v,a])a(a) + t([u, a])(d(v)o(a) + T (v)d(a))
= {dwa([v,a]) + 1([w, a])d(w)}o(a) + 7([w, a])T(v)d(a).

We have t ([u, a])t(v)d(a) = 0, for all u,ve U. Replacing v by vx for

any xeR, we find that t([u, a])t(v)Rd(a) = {0}, for all u, veU. Since

21



aeSa,(R), the above expression can be rewritten as
T([u, a])T(v)Rd(a)* = {0} for all u, veU. On using * —primeness of R,

we obtain for all u, veU
(2.12) t([u,a])r(v) =00rd(a) =0.

Let us suppose that d(a) = 0, then for all ueU, d([u,a]) =

[d(W), aly — [d(a),u],, = 0. Thatis
2.13)  d([U,a]) = {0}.

On replacing v by vw, weU, in (2.11), we get
0 =dw)o([vw,a]) + 7([u, a])d(vw)

= dwo)a([w,a]) + dWw)a([v,ah)o(w) + 1([u,a])d(w)o(w)

+7([u, a])T(v)d(w)

=d(uw)o)o([w,a]) + t([u, a)t(@)d(w) + {d(w)o([v,a]) +

T([w, a)d(W)}o(w)

By using (2.11), we have

(2.14) dw)o(W)o([w, a]) + t([w; a)T(v)d(w) = 0 for all u, v, weU.
Replacing w by [w, a] in (2.14) and using (2.13), we get
dw)o(v)a([[w,al,a]) = 0 for all u, v, wel.

Replacing v by xv for any xeR in the above relation, we find that
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d(u)Ra(v)a([[w, a],a]) = {0} for all u,v,welU: Also sinceU is =
—ideal, we may obtain d(w)*Ro(v)a([[w, al, a]) = {0} for all w, v, weU.
Using * —primeness of R, we get d(U) = {0} or a(v)a([[w,a],a]) = 0
for all u,v,weU. But d(U) # {0}, therefore, a(v)o([[w,a],a]) = 0 for

all u, v, weU: Replacing v by vx, and using U is * —ideal, we obtain

oc(U)Ra([[w,al,a]) = {0} and o(U)*Ro([[w,a] a]) = {0} for all
weU. Since Ris x—prime and o(U) # {0} is x*—ideal of R,

o([[U,a], a]) = {0}.

In other words, if we define I,(x) = [x, a] an inner derivation determined
by a then we have I12(U) = {0}. By Lemma 2.13, I, = {0}, that mean
[a, U] = {0}, and so by Lemma 2.6, a€eZ(R). In view of (2.12) let us now
suppose that 7([u, a])T(v) = 0 for all u, veU: On replacing v by xv for
any xeR, the above equation reduces to t([u,a])R (v) = {0}, for all
u,ve U. Also, U being a = —ideal, we get t([u,a])R (v) = {0}. Using
the = —primeness of R yields either t([U,a]) = {0} or =(U) = {0}.
Since t(U) = {0} is not possible, it reduces to t([U,a]) = {0} and so
[U, a] = {0}. In view of Lemma 2.6, we find that aeZ(R). Hence by our
hypothesis we obtain that d(U) <€ Z(R): So by Lemma 2.12, Ris

commutative.

Theorem(2.14):-
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Let R be a * — prime ring with characteristic different from two and o, t
be automorphisms of R. If R admits a non-zero (o,t ) —derivation

d : R — R such that [d(R),d(R)],: € Cy ., then R is commutative.

Proof:- First we will show that for any aeSa,(R) satisfying
[d(R),al,; € Cysr, We have a €Z(R): Suppose on contrary that a &

Z(R). Using the hypothesis we have [d(a?), a]y.€Cy 1,
[d(a?),als. = [d(@)a(a) + T(a)d(a),als

= d(a)o(a)o(a) — 1(a)r(a)d(a)

= [d(a),a®],r = t(@)[d(a),als + [d(a), als-0(a)
= 21(a)[d(a); a]o;

Since char R # 2, we haver(a)[d(a),al,.€Cs- . Since aeSa.(R), we
also have t(a)o[d(a),a],€Cs ;. In view of the hypothesis and Lemma
2.8, we get either t(a)€eZ(R) or[d(a),al,, = 0. Since by our

assumption a/2 Z(R), we have

(2.15) [d(a),a]s, = 0. On the other hand, since [d(R),al,, S

Cy ¢, forany xeR, [d([a, x]),a],€C, ;. Therefore
[d([a: x]): a]a,’r = [[d(a)» x]a,’r» a]a,‘r - [[d(x)» a]a,‘r» a]O',‘L" We Obtain
(2.16) [[d(a),x]s 1 g €Cy . TOr all xeR.
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Replacing x by ax in (2.16)
[[d(a), ax]sr, a)sr = [t(@)[d(a), x]s. + [d(a),a]s.0(X), als;
= [t(@)[d(a), x]5,z) Az

= t(a)[[d(a), X]s 1, Al 5 + [T(@), T(@)][d(@), X]; -

We get t(a)[[d(a),x]s+ als.€Cs, for all xeR: Since aeSa.(R), we
have t(a)*[[d(a), x]s 1 als€Cy . TOr all xeR. In view of (2.16), together
with above two relations and Lemma 2.8, we obtain 7(a)e Z(R) or

[[d(a),x]sr alsr = 0.Since a € Z(R), we have
(2.17)  [[d(a),x]s alsr = O for all xeR.

Now, applying the relation

[x, [y, 2]loc + [[% 2]6,0 V]oe = [[% V)6 Zloe = O
to (2.17) and using (2.15), we obtain

(2.18)  [d(a),[a,x]]s, = O forall xeR.

In other words, if we define I,(x) = [a, x] an inner derivation determined
by a and I;)(x) = [d(a), x], . a (g, T)-derivation determined by d(a),
in view of (2.18), we find that I;(4yI,(x) = 0, for all xeR: By Lemma
2.13, either I;qy = 0 or I, = 0. Thatis, d(a)eCy 7, Or aeZ(R). Since
aQ & Z(R), this gives us d(a)eC, ;
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On the other hand, since [d(R), a],; € Cy ;. FOr xeR, [d(ax),al, €Cqy ¢

Then[d(ax),al,. = [d(a)o(x) + t(a)d(x),als-

=d(a)o(x)o(a) + t(a)d(x)a(a) — t(a)d(a)o(x) — T (a)Tt(a)d(x).

Now since we have d(a)eC, ;, the above equation reduces to

[d(ax),al,, = d(a)o(ax) + t(a)d(x)o(a) — d(a)o(ax) —

t(a)r(a)d(x),
or,
219)  d(a)o([x,a]) + 1(a)[d(x), a],.€C, . for all xeR.
Commuting (2.19) with a and using d(a), [d(x), a]y.€C, . We get
0 = [d(a)o([x,a]) + 1(@)[d(x), a]s . Al
= d(a)a([x,a])a(a) + t(a)[d(x), a]s 0(a) — T(a)d(a)o([x,a])
—t(a)t(a)[d(x), ]y

= d(a@)a([x,a]a) + 1(a)[d(x), a],,.0(a) — d(a)o(alx, a])

—t(@)[d(x), als.0(a) = d(a)a([[x,al,a]).

Also since a €Sa,(R), we have d(a)a([[x,a],a])* = 0: Therefore, by
Corollary 2.9, d(a) = 0or [a,][a,x]] = 0 for all xeR. If [a, [a,x]] = O,
for all xe R, we have by Lemma 2.7, aeZ(R); a contradiction. Therefore,

d(a) = 0. Now (2.19) can be rewritten as t(a)[d(x),a],.€Cs, ,for
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all x eR. Also t(a)o[d(x),al,€C,, , for all xeR. But [d(x),a],.€Cs 7,
yields by Lemma 2.8 either 7(a) €Z(R) or [d(x),a],, = 0, for all xeR.
Now in application of Theorem 2.2, we obtain aeZ(R). This contradicts
our assumption. Hence, a€eZ(R). By our hypothesis we have d(R) S

Z(R), and hence R is commutative by Lemma 2.12.
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