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Abstract

In this search we will study ordered Banach algebras. Ordered Banach
algebras are necessary objects in analysis. We will study the important
concepts and theorems which need in this search like cone and ordered
Banach algebra. Also answered the question under which conditions the
spectral radius of a positive element ais contained in the
spectrum g(a) of that element and showed that the function f is
holomorphic on some open neighborhood of a(a), under what conditions
of a(a) implies that f(a) = 0 suchthata > 0.
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General Introduction




In Chapter one, shown three sections:

In section one, will establish some basic concepts and properties to be

use in this search.

In section two, shown many properties and theorems about continuous
homomorphism in normed algebra.
In section three, shown linear functional f in the symmetric algebra

R,and the properties about this function.
In Chapter two, will show three sections:

In section one, will shows three sections which contains the preparatory
material, define an algebra cone C of a real or complex Banach algebra A.
It induces on A an ordering that is compatible with the algebraic structure
of A, and the pair (4, C) is then called an ordered Banach algebra (OBA).
We also dene some properties of C, of which normality is the most
important one. The algebra cone C is said to be normal if there exists a
constant 8 > 1 such that for all a, b in A with 0 < a < b, we have that

Ilall<llbl.

In section two, will establish properties of the spectral radius in an OBA.
The spectral radius r is said to be monotone if 0 < a < b implies that
r(a) <r(b). proved that, if the algebra cone C is normal, then the
spectral radius is monotone. Also answered the question under which
conditions the spectral radius of a positive element a is contained in the
spectrum o(a) of that element. It turns out that monotonicity of the

spectral radius implies this property.



In section three, look at poles of the resolvent function and investigate
what role they play in spectral theory in OBA's. First proved several
versions of the Krein-Rutman Theorem, which is originally in terms of
operators, in the context of OBA's. These theorems describe conditions
under which the spectral radius of a positive element will be an
eigenvalue of that element, with a positive eigenvector. After that looked
at the structure of the spectrum o(a) and what properties this structure
forces on a. One of these properties is whether positivity of a implies that
a = 1. More general, for a function f that is holomorphic on some open
neighborhood of o(a), under what conditions of o(a) does a >
0 impliesthat f(a) =07






In this section, we introduce some basic concepts and properties from
[6],.[8],[9] to be use in this search

Definition (1.1.1)( linear algebra)[6]:- We shall say that R is a linear
algebra if R is a linear space. an operation of multiplication (which in
general is not commutative) is in R satisfying the following conditions:-

1) x(xy) = (xx)y = x(ay)
2) x(yz) = (xyz)
A (x+y)z=xz+yz

For arbitrary xeR and any number a.

In the sequel we shall consider only linear algebras and the term
"algebra” will a linear algebra.

Definition (1.1.2)[6]:- In elements x,y in the algebra R are said to
commute if xy = yx an algebra is said to be commutative if any two of
its elements commute. In the sequel we shall in general that the algebra
under consideration are commutative a subset R; € R is called a sub
algebra of the algebra R if the application of the addition scalar
multiplication and multiplication to element of R; elements in R,

Definition (1.1.3)[6]:- A commutative sub algebra is said to be maximal
if it is not contained in any a commutative sub algebra. It follows from
the preceding discussion that.

Theorem (1.1.4)[6]:- Every commutative sub algebra is contained in a
maximal commutative sub algebra.

Proof:- The set ) of all all commutative sub algebra of the algebra R,
which can in a given commutative sub algebra. Is a partially ordered set.
Ordered by in which satisfies the condition of zeros lemma: namely. The
least upper bound of any linear ordered set of these sub algebra is simply
their union on the basis of the Zorn lemma. ) contains a maximal
element which will then be the maximal commutative sub algebra



containing x. Since every element x is contained in the commutative sub
algebra R, (x), it follows from proposition | that.

Theorem (1.1.5)[6]:- Every element x is contains in a maximal
commutative sub algebra.

Example (1.1.6)[6]:- We denote the set of all continuous complex- value
function on the topological space x by C(x) in C(X) we define operations
of addition- scalar multiplication and multiplication respectively as the
addition of function, the multiplication of function by a number and the
multiplication of function clearly C(x) will then be an algebra this
algebra is commutative.

Example (1.1.7)[6]:- Suppose x is an arbitrary linear, we denote the set
of all linear operators in x with domain x by A(X). In A(X) we define
operation of addition, scalar multiplication, and multiplication as the
corresponding operation on operations (see subsection 6.) then A(x) is an
algebra A(X) is commutative only in the case when X is one-
dimensional.

Definition (1.1.8) (Algebra with identity)[8]:-

An algebra R iscalled an algebra with identity if R contains an elemente
which satisfies the condition: ex = xe = x for all xeR.

The element e itself which satisfies condition (1) is called an identity of
the algebra R.

Theorem (1.1.9)[8]:- Every algebra R without identity can be considered
as a sub algebra of an algebra R with identity.

Theorem (1.1.10)[8]:- A maximal commutative sun algebra R, of the
algebra R with identity is also an algebra with identity.

Theorem (1.1.11)[8]:- If x~1 exists and if x,y commute, then x~1 and y
also commute.in fact multiplication both members of the equality xy =
yx on the left and right by x 1, we obtain yx~1 = x~1y.

Theorem (1.1.12)[9]:- If x is the maximal commutative sub algebra
which contains x and x 1 exists then x ~1eX.



Theorem (1.1.13)[9]:- If every element x # 0 in the algebra R with
identity has a left inverse, then R is a division algebra.

Definition (1.1.14)[8]:- An element yeR is called a left quasi- inverse of
the element e + x in R, e + y is a left inverse of the element e + x in R,
that mean if (e +y)(e+x) =e.

Example (1.1.15)[8]:- The algebra C(x) is an algebra with identity. The
identity of this algebra is the function which is identically equal to unity
on x.

Example (1.1.16)[8]:- The algebra A(x) and A(x) are algebra with
identity which is the identity operator.

Definition (1.1.17)[8]:- The center of algebra R is the set of those
element aeR which commutative with all the elements of R. The center a
commutative sub algebra of the algebra R.

Definition (1.1.18)[6]:- A set I; of elements of the algebra R is called a
left ideal R if

1) I, #R.
2) I, is a sub space of the linear space R.
3) If xel, AeR then axel.

Theorem (1.1.19)[6]:- An element x of an algebra with identity has a left
(right) inverse if and only if it is not contained in any left (right)ideal.

Theorem (1.1.20)[6]:- Every left (right) ideal of the algebra R with
identity is contained in a maximal left (right) ideal.

Theorem (1.1.21)[6]:- An element x of an algebra with identity has a left
(right) inverse if and only if it is not contained in any maximal left(right)
ideal.

Theorem (1.1.22)[6]:- Every two- sided ideal of an algebra with identity
Is contained in a maximal two- sided ideal.

Theorem (1.1.23):- Every regular (right, left, two- sided) ideal can be
extended to a maximal (right, left, respectively, two- sided) ideal (which
Is obviously regular also).



Theorem (1.1.2)[8]:- An element x in the algebra R has a left quasi-
inverse if and only if for arbitrary maximal regular left ideal M, there
exists element such that x + y + yx eM.

Theorem (1.1.25)[8]:- An element x in the algebra R dose not have a left
a quasi- inverse if and only if I, = {z + z,}, zeR.

Definition (1.1.26)[8]:- An element x, in the algebra R with identity is
said to be generalized nilpotent if (e + yx,)~! exists for an arbitrary
element yeR.the set of all generalized nilpotent element in the algebra R
Is called its (Jacobson) radical.

Theorem (1.1.27)[8]:- The radical of an algebra with identity coincides
with intersection of all its maximal left ideal.

Theorem (1.1.28)[8]:- An element x, belong to the radical of an algebra
with identity if and only if a two- sided inverse (e + ax,)~! exists for
every element a of the algebra.

Theorem (1.1.29)[8]:- The intersection of all maximal left ideals
coincides with the intersection of all maximal right ideals and is the
radical of the algebra.

Definition (1.1.30)[8]:- An algebra is said to be semi simple if it is
radical consist of only the zero element suppose now that R is an algebra
without identity and that R’ is the algebra obtained form R by adjoining
the identity.

Definition (1.1.31)[8]:- An element x,, is said to be generalized nilpotent

xx, +zx, has a left quasi- inverse for arbitrary zeR and arbitrary
numbers x in this definition R is no large necessarily an algebra with
identity.

Theorem (1.1.32)[8]:- In a non- radical algebra, the radical is the
intersection of all maximal regular left ideal and also the intersection of
all maximal regular right ideal and therefore it is two sides ideal.

Theorem (1.1.33)[8]:- The quotient algebra module the radical is a semi
simple algebra.

Theorem (1.1.34)[8]:- Every irreducible algebra R, different form (0), of
linear operators in the vector space x is a semi simple algebra.



Definition (1.1.35)[8]:- A mapping x — x’ of the algebra R into an
arbitrary algebra R’ if x = x",y -y’ imply that yx - y'x",x +y >
x"+y" ,xy>x'y" if R is the image of the algebra R, then the
homomorphism is called a homomorphism of R onto R’.

Definition (1.1.36)[8]:- Two algebras R and R’ are said to be isomorphic
if there exists isomorphism of R onto R’.

Theorem (1.1.37)[8]:- Under a homomorphism of the algebra R into the
algebra R’, the inverse image I of the zero of R is a two sides ideal in R.

Theorem (1.1.38)[8]:- Under a homomorphism mapping of the algebra
R. The inverse image I of the zero element is a two-sided ideal of this
algebra and the homomorphic image itself is isomorphic to the quotient
algebra R modulo 1.

Theorem (1.1.39)[6]:- The quotient algebra R/I is simple if and only if I
Is a maximal two-sided ideal in R.

Definition (1.1.40)[6]:- Algebra is the so- called left regular
representation of the algebra each element aeR is assigned the operator
A, of left multiplication by a A,x = ax.

Theorem (1.1.41)[6]:- Every primitive algebra is isomorphic to an
irreducible algebra of linear operators in some vector space.

Theorem (1.1.42)[6]:- Every primitive algebra is semi simple.

Theorem (1.1.43)[6]:- If I # {0} is a two sided ideal in the primitive
algebra R and if a is an arbitrary nonzero element of the algebra R, then
1, # {0}.

Definition (1.1.44) (topological algebra):-
R is called a topological algebra if :

1) R is an algebra

2) R is a locally convex topological linear space.

3) The product xy is a continuous function of each of the factors x,y
provided other factor is fixed.



Definition (1.1.45):- A mapping x — x' of the topological algebra R into
the topological algebra R’ is call a continuous homomorphism if:

1) x = x' is a homomorphism of the algebra R into the algebra R'.
2) x — x' is a continuous mapping of the topological space R into the
topological space R’.

Definition (1.1.46):- A subset R, € R is said to be a closed sub algebra
of the algebra R if

1) R, is a sub algebra of the algebra R.
2) R, is a closed subspace of the topological space R.

Theorem (1.1.47):- If R, is a sub algebra of the algebra R; then it's
closer R, is a closed sub algebra of R.

Theorem (1.1.48):- The algebra R, (s) is the closer of the algebra R, (s):
Rq(s) = Ry (s).

Theorem (1.1.49)[6]:- The closer of a commutative sub algebra of a
topological algebra is commutative.

Theorem (1.1.50)[6]:- A maximal commutative sub algebra of a
topological algebra is closed.

Theorem (1.1.51)[6]:- The set R, of all elements x of a topological
algebra R; which commute with all elements of some set S € R, is a
closed sub algebra of the algebra R.

Theorem (1.1.52)[6]:- The center z of a topological algebra R is a closed
commutative sub algebra in R.

Theorem (1.1.53)[6]:- The closer of a left, right, two- sided)ideal in a
topological algebra, which does not coincide with the entire algebra, is
also (left, right, two sided) ideal in this algebra.

Definition (1.1.54)[6]:- A topological algebra R with identity is called an
algebra with continuous inverse if there exists an neighborhood U, (e)
posseting the following properties:

1) Every element xeU, (e) has an inverse x !
2) x~tis a continuous function of x at the point x = e.



Definition (1.1.55) (normed algebra)[6]:- R is called normed algebra if

1) R is an algebra
2) R is anormed space

3) for any two elements x, yeR |xy| = |x| |y| ........... (1)

4) if R is contains an identity e, then |e| = 1. The norm in a normed
algebra R defines a topology in R in a natural manner recall that in this

topology, the open balls |x—x0| <r with center at x, from a
neighborhood basis of the element x,€eR.

Proposition (1.1.56)[8]:- In the norm topology, the product xy is a
continuous function of the variables x, y simultaneous.

In fact, in virtue of (1)
|2y = x0¥0 | = | G = 26) 7 = ¥o) + (x = %6)¥0 + %0 (v = ¥) |

=< |x_xo| |y_:VO| + |x_xo| |YO| + |y_YO| |X0|.

Now, the assertion follows directly from this since a normed space R is a
topological linear space, we conclude from proposition ()

Proposition (1.1.57)[8]:- In the topology define by the norm, a normed
algebra is a topological algebra a normed algebra R is said to be complete
iIf R is a complete normed algebra will also be called a Banach algebra.

Proposition (1.1.58)[8]:- Every non complete normed algebra can be
embedded in a complete normed algebra.

Proof:- suppose R is the completion of the normed space R. Now define
multiplication in R suppose X, yeR and < x, >, < y, > be fundamental
sequences in R. Which define Xx, y respectively. It follows from inequality
(2) with x,, x,, in place of x,x, and y,,y,, in place of y,y, that <
X, ¥, > also is a fundamental sequence. The element in R which it
define will be considered to be the product xy of the elements X, y. Again
applying inequality (2) it it can also be easily verified that xy, does not
depend on the choice of the fundamental sequence.

< x, >,< y, > which define x,y if in particular x = xeR, yeR, then
setting x, = x, y, =y, we conclude that in this case the product
coincides with the product in R passing to the limit in the relations for the



elements in the algebra R, it is easily shown that R is an algebra and that
the inequality |y | <| # | | # |is satisfy for elements of the ring R
consequently R is a complete normed which contains Ra sub algebra.

The algebra R is called the completion of the algebra R.

Example (1.1.59)[8]:- The algebra C(T) suppose T is topological space.
the set C(T)of all bounded continuous function x(t) on T forms a Banach

space recall that the norm |x| in C(T) is defined by the formula
|x|:5quT|x(t)L

Multiplication in C(T) can be define as the multiplication of function that
mean (xy)(t) = x(£).y(t)

1) this easily seen that the condition |xy| < |x| |y| will be satisfied
so that C(T) becomes a Banach algebra. If T is compact then the
boundedness condition on the functions x(t) is redundant in virtue.

2) The algebra B(x). Recall that B(x) denotes the set of all bounded
linear operations in the Banach space x. We saw above that B(x) is also

defined as the multiplication of operator with |AB| < |A| |B|
According to that we proved consequently, B(x) is a Banach algebra
3) The algebra W. We denote by W the set of all absolutely convergent

series x(t) = X% _o, Cpe™ withnorm | x|=32 o, | ¢, |

We obtain a Banach algebra by defining addition, scalar multiplication as
the corresponding operations on

2. Adjunction of the identity. Suppose R a normed algebra without
identity and let R be the algebra obtained from R upon adjunction of the
identity we may introduce a norm in R by setting

|xe+x|=|x|+|ﬂ
It is easily verified that R then becomes a normed algebra. If R is a
complete algebra without identity, then R’ is also a complete algebra. The
proof is simple and so we shall omit it.

The Radical in a Normed Algebra



Theorem (1.1.60)[8]:- for every x of the normed algebra R,

lim |x | " < oo exists.

n—-oo

Theorem (1.1.61)[8]:- If the element x of the normed algebra R belongs

to the radical of the algebra lim |x | n=0
n—-oo

Banach Algebra with identity

Theorem (1.1.62)[8]:- Every Banach algebra with identity is an algebra
with continuous inverse moreover, every element x; satisfying the

inequality |x - e| < lisinvertible.
Theorem (1.1.63)[8]:- In a Banach algebra R with identity:

1) The set of all elements x having a (left, right, two- sided) inverse is an

open set.

2) The inverse x~1 is a continuous function of x at all points for which

x~1 exists.

3) The closure of a (left, right, two- sided) ideal a (left, right)ideal.

4) Maximal (left, right, two- sided) ideal is closed.

5) The set R, of all regular points of the element xeR is open and the
resolve X; = (x — Ae)~1 is an analytic function of A.

6) The spectrum of every element xeR is a no avoid set.

Theorem (1.1.64):- (Gelfand and Mazur)[12]:- Every complete
normed division algebra is isomorphic to the field of complex number,

Theorem (1.1.65)[12]:- In a Banach algebra R the quotient algebra R/I
modulo a closed two- sided ideal I is a Banach algebra.

Theorem (1.1.66)[12]:- If in the Banach algebra R with identity every
element x # 0 has a left inverse. Then R is isomorphic to the field of
complex number.

Theorem (1.1.67)[12]:- For |/1| > lim |x | " the resolve X; can be
n—-oo

expended in absolutely convergent Laurent series.



Theorem (1.1.68)[8]:- For an arbitrary xeR, r(x) = lim i |x | n,
n—>0oo

Theorem (1.1.69)[8]:- The spectral radius possesses the following
properties.

1) r(x*) = [r(0]*
2) r(xx) = |x | r(x)
3)r(o) < ||

Section Two
Continuous Homomorphism of Normed Algebra

In this section we will introduce many properties and theorems about
continuous homomorphism in normed algebra



Theorem (1.2.1):- Every continuous homomorphism x — x' of the
normed algebra R into the normed algebra R’ satisfies in the inequality.
|x’ <C | x|
Theorem (1.2.2):- Every continuous homomorphism x — x' of a normed
algebra R into a normed algebra R’ is uniquely extendible to a continuous
homomorphism of the completion R of the algebra R into the completion
R’ of the algebra R'.
Theorem (1.2.3):- Every continuous isomorphism of a Banach algebra R
onto a Banach algebra R is a topological isomorphism.
Theorem (1.2.4):- Under a continuous homomorphism of the Banach
algebra R'. The kernel I of the homomorphism is a closed two- sided
ideal in R. And the algebra R’ it self is topologically isomorphism to the
quotient algebra R/I. Can certainly every closed two- sided ideal I of the
Banach algebra R induces a continuous homomorphism (the so- called
natural homomorphism) of the algebra R into the algebra R/I.

(regular representation of a normed algebra. Recall that the left and right
regular representations a - A, and a — B,of the algebra R are defined
by means of the formulas.)

Theorem (1.2.5):- A left (right) regular representation of a normed
algebra Ris a continuous. Homomorphism of the algebra R into the
algebra R(a) of all bounded linear operations in the space R. In fact, the
inequalities

|4.x| < lal [x], [BX| < |al |X]

[4.| < lal, |Bs| < ]al.

Theorem (1.2.6):- If R is a normed algebra with identity, then a left
(right) regular representation of the algebra R is an isometric
isomorphism (anti- isomorphism) of the algebra R into the algebra R(R).

In fact, for x = e, inequalities (1) go over into equalities, and hence
| 4.1=lal, 1B, = |a]

Theorem (1.2.7):- R is a minimal invariant sub space in R if and only if
it is the annihilator of maximal right ideal in R.

Theorem (1.2.8):- If R is an algebra with identity, then every closed
Invariant sub space in R, with is distinct from (0) contains a minimal
Invariant sub space and consequently, in contains elementary functions.




Theorem (1.2.9):- Suppose Ris an algebra with identity and let F #+ 0 be
a function in R there exists an elementary functional which is a weak
contact point of functional of the form f,(x) = f(xa). Regular
representations of an algebra can also be used in the proof of the
following proposition.

Theorem (1.2.10):- Suppose R is a complete topological algebra with

identity in which the topology is defined by the norm |x| Then R is
topologically isomorphic to a Banach algebra.

Definition (1.2.11)[20]:- R is called a symmetric algebra if:

1) R is an algebra

2) an operation is defined in R which assigns to each element x in R the
element x* in R in such a way that the following conditions are satisfies:-
Q) Ax+Ay)" = Ax* + uy”

b) x™ =x

c) (xy)* = y*x”

An element x is said to be Hermitian if x* = x.

Theorem (1.2.12)[20]:- Every element x of a symmetric algebra can be

uniquely represented in the form x = x; +ix,, wherex; ,x, are
Hermitian elements.

In fact, if such a representation holds, then x* = x; — ix, consequently

*

o x+x” XX
=T 2T,

Thus, this representation is unique. Conversely, the elements x4, x,
defined by equalities (1) are Hermitian and x = x; + ix,.

These elements x;, x, will be called the Hermitian components of the
element x an element x is called normal if x*x = xx*.

Theorem (1.2.13)[20]:- Every element of the form x*x is Hermitian
In fact, invirtueofcand b ). (x*x)* = x*x™ = x"x

Theorem (1.2.14)[20]:- The identity e is a Hermitian element. In fact
e* = e*e is a Hermitian element. Consequently, e* = e



If R is asymmetric algebra without identity and R’ is the algebra obtained
from R by adjunction of the identity, then setting (e + x)* = le + x*
for xeR.

Theorem (1.2.15)[20]:- If x~1 exists, then (x*)~! also exists and
()= ()"
Theorem (1.2.16)[6]:- If R is a maximal commutative symmetric sub

algebra containing a normal element x and if x~! exists, then x~1eR. In
fact since x and x* commute with all elements in R, x~* and x* = (x~1)*

Definition (1.2.17)[6]:- The mapping x — x’ of a symmetric algebra R
into the symmetric algebra R’ is called a symmetric homomorphism if

B) x = x" is ahomomorphism

) x = x' implies that x* — x"*.

Theorem (1.2.18)[6]:- The radical of a symmetric two- sided ideal.
Example (1.2.19)[6]:-

1) The algebra C(T) is a symmetric algebra if we set x* = X(t) for X =
X(t) (where the vinculum denotes conjugate complex number)

2) Suppose R is a Hilbert space. the algebra R(R) that mean R(x) with
X = R is a symmetric algebra if involution is under stood to be passage
over to the adjoint operator

3) The algebra W is asymmetric algebra if we set

x* =Y _C_,e™forx=3%_C,e™



Definition (1.3.1) (Positive functional)[3]:-

A linear functional f in the symmetric algebra R is said to be real- valued
If f assumes real value on all Hemitian elements of the algebra R.

Theorem (1.3.2)[27]:- Every linear functional in a symmetric algebra can
be represented in the form f = f; + if, where f;, f, are real valued
functional. Namely it suffices to set

1

() =[f () + fF(x)]fo(x) = o [f (o) = f(x].

20

Then f;, f, are real valued functional and f(x) = f;(x) + if5(x) these
functional f;, f, are called the real components.

Theorem (1.3.3)[27]:- If f is a real- valued functional then f(x*) =

f(x) for an arbitrary xeR. In fact setting x = x; + ix, where x;, x, are
Hermitian we have f(x*) = f(x; —ix;) = f(xy) +1f (x3) = f(x)

Inasmuch as f(x;), f (x,) are real- valued by assumption. A linear
functional f is said to be positive if f(x*x) > 0 for an arbitrary element
x of the algebra R.

Theorem (1.3.4)[27]:- For every positive functional f in the symmetric
algebra R.

1) fy'x) = f(x*y)

2 |foro |2 < fFormfe

3) f((Ax +uy).(Ax +uy)) >0

) |22 ) + 2af ' x) + Auf ('y) + [u | 2f ry) = 0

Theorem (1.3.5)[27]:- Every positive functional f in a symmetric
algebra R with identity is real and | F(x)2| < f(e)f(x*x).

Theorem (1.3.6)[9]:- Suppose R is a symmetric algebra without identity
and that R’ is the symmetric algebra obtained from R by adjunction of the
identity. A positive functional f in R can be extended to a positive
functional in R" if and only if £ is real and satisfies inequality

| F(0) |2 < cf (x*x) for all xeR where ¢ is some constant

Theorem (1.3.7)[9]:- If in a symmetric normed algebra R

a) |x|=|x|



b) There exists a set {e, } approximating the identity, then every
continuous positive functional in R can be extended to a positive
functional in R’

Definition (1.3.8)[8]:- R is called a normed symmetric algebra if

a) R is a normed algebra
b) R is a symmetric algebra

o) [x|=|x|



Chapter TWQ



In this section, we will define an algebra cone C of a real or complex
Banach algebra A and show that C induces on A an ordering which is
compatible with the algebraic structure of A. The Banach algebra A is
then called an ordered Banach algebra (OBA). We also define certain
additional properties of C.

Definition (2.1.1)[8]:- Let A be a real or complex Banach algebra with
unit 1. We call a nonempty subset C of A a cone if it satisfies the
following:

1.C + C c C,

2.AC c CforallA>0.

If in addition C satisfies C n —C = {0}, then C is called a proper cone.
Any cone C on A induces a relation ' < ' on A, called an ordering, in the
following way:

a < bifandonlyifb,aeC, (a,be A).

It can be shown that for every a, be A this ordering satisfies

1. a < a (< is reflexive),

2.ifa <bandb < c,thena < c (< is transitive).

The ordering does not have to be antisymmetric.

Proposition (2.1.2)[8]:- The cone C is proper if and only if the ordering
Is antisymmetric, i.e.a < band b < a impliesthata = b.

Proof:- Let C be a proper cone,a < band b < a. Then a — beC and

b—a =—(a—b)eC, so a— beCn—-C ={0}and we have a = b.
Conversely, let the ordering be antisymmetric and suppose the cone C is
not proper. Then there exists an xeC with x # 0 such that there is an
aeC with x = —a. Now we have x —a = 2xeC and a —x = 2aeC.
So x <aand a < x and the antisymmetric property gives us x = a,
which is a contradiction.

So the ordering induced by C is a partial ordering if and only if C is
proper. Considering the ordering that C induces, we find that



C = {aeA : a = 0}, and therefore we call the elements of C positive.

Definition (2.1.3)[8]:- A cone C of a Banach algebra A is called an
algebra cone if C satisfies the following conditions:

1.C.C c C,
2. 1eC.

Denition (2.1.4)[8]:- A real or complex Banach algebra A with unit 1 is
called an ordered Banach algebra (OBA) if A is ordered by a relation '<'
in such a manner that for every a, b, ceA and Ae C we have:

l.ab>0 =a + b =0,
2.a>20,1>20 = Aa =0,
3.a,b 20=ab >0,
4.1=0.

Therefore, if A is ordered by an algebra cone C, then A, or more specially
(A,C) isan OBA. Conversely, if Aisan OBA the set C = {aec A : a = 0}
Is an algebra cone that induces the ordering on A.

Definition (2.1.5)[8]:- An algebra cone C is called normal if there exists
a constant § > 1 such that for a, beA we have

O<asb=lalspIlbl
An alternative definition of normality is

Definition (2.1.6)[8]:- An algebra cone C is called a-normal if there
exists a constant a« > 1 such that for a, b, ce A we have

O<asb=lbl<sa(maxlallcl).

If the normality constant is equal to 1 we say that the C is 1-normal. It is
not hard to prove that the two definitions are equivalent, but the constants
and from the definitions need not be the same. If C is normal with
constant , C does not have to be a-normal.

Proposition (2.1.7)[8]:- If C is a normal algebra cone, then it is a proper
algebra cone.



Proof:- Let C be a normal algebra cone. Let xe C be such that there

exists an aeC with x = —a. Then for all scalars k > 0 we have a — ka =
a+k(—a) =a+kxeC, so ka < a. Because C is normal there exists a

constant ¢ > 0 such that for all Kk > 0 we have k|l all=1 ka II<
allall,soll all= 0. This means that a = 0 and therefore
C n—C ={0}.

If C has the property that if aeC and a is invertible, then a=! eC, then
C is said to be inverse-closed. The following lemma is immediate.

Lemma (2.1.8)[8]:- Let (4,C) be an OBA, and let x,yeA be such that
Xy < yx.

1. If x is invertible and x~1eC, then yx~1 < x~1y.
2. If y is invertible and y~teC, then y~1x < xy~1.
The following lemma follows with induction.

Lemma (2.1.9)[8]:- Let (4,C) be an OBA, and let x,y, ceC. If yx < xy,
then:

n

(x + )" < z (Z) xMkyk

k=0
for every neN U {0}.

Proof:- The statement clearly is true for n = 0. Now let m > 0 and
suppose the statement is true for all n < m. We have that yx <
xy implies yx™m~k~1yk < xym=k=1yk+1 and it follows that

m-—1
m m-—1 m—-k—-1,,k
x+"<(x+y) PE y
k=0

m-—1 m—1

m-—1 m-—1
< Z ( " )xm—kyk + ( " )xm—k—lyk+1
k=0 k=0



m-1 1 1 m
— M m= )(m_ ) m—k.k mzz m m-—k.,,k
* +;(( AUAVEEY ) k_o(k)x Y

Let A and B be Banach algebras such that 1eB c A, then we have a few
easy to prove facts [9].

(i) If C is an algebra cone in A, then € N B is an algebra cone in B and if
C is proper, then C N B is proper.

(i1) In the case where B has a finer norm then A, (i.e ll b I,<Il b llz for
all beB) if C is closed in A, then C n B is closed in B.

(iii) If B is a closed subalgebra of A (containing the unit of A), then the
normality of C in A implies normality of C N B in B

(iv) If T : A— B is a homomorphism and if C is an algebra cone of A4,
then TC = {Tc: c eC} is an algebra cone in B. In particular, if F is
aclosed ideal in the OBA (A,C) and if t: A — A/F is the canonical
homomorphism, then mCis an algebra cone of A/F. We cannot
deduce normality or closeness of mC from the corresponding
properties of C.
Now we give some examples of OBA's.

Example (2.1.10)[9]:- Let A = C be the Banach algebra with standard
normand C = R*. Then (4,C) isan OBA and C is normal.

Proof:- Trivial.

Example (2.1.11)[9]:- Let C? be equipped with |I. I, and let A be the set
of upper triangular 2 x 2 complex matrices with the operator norm for
bounded operators. Let C the subset of Aof matrices with only
nonnegative entries. Then (4, C) isan OBA and C is normal.

Proof:- It follows from simple calculations that (4, C) is an OBA. From
the definition of the operator norm for bounded operators we have for
MEeA,

I M lI= max{ll My llo: x €C?with || x llo, < 1}
=max{|m11| + |m12 |, |m21| + |m22|}

Let M,NeAwith 0 < M < N, thenm;; < ny; forall i, je{1, 2}. Thus we



see from the definition of the normthat || M || <I| N |.

Now an example of an infinite-dimensional and semi-simple OBA, [*,
consisting of all bounded sequences of complex numbers.

Example (2.1.12)[9]:- Let A = [®with multiplication defined coordinate
wise and C = f(cq,¢p,...) €l® 2 ¢; = 0 for all i eN. Then (4,C) is an
OBA, A is semi-simple and C is normal.

Proof:- From the coordinate wise multiplication it follows easily that A is
a Banach algebra, with unit (1,1, ... ). Direct calculation shows that C is
an algebra cone. Now we show that C is normal. Suppose that
(0,0,..) < (x1,x2,..) < (Y1, Y2,.. ) In A. By definition of C this
means that 0 <x, < yifor all keN. Hence I (xq,x,, .. ) I
V1,V2,. ) I, thus C is normal We have o((xq,%5,...)) =

{x1,%x5, ...} for (xq,x,, ... ) €1®, 50 QN (1) = {0}.

Now we look at the set consisting of all bounded sequences of upper
triangular 2 x 2 complex matrices to get an example of an infinite
dimensional and not semi-simple OBA.

Example (2.1.13)[11]:- Let A be the set of upper triangular 2 x 2
matrices, [*(A4) the set {x = (xy, x5, ..):x;€ A and |l x; I[,< K, for
some K,e€R, for all i eN} and C the set {(cy,c,, ... )el”(A)c; has only
nonnegative entries for all ieN}. Then (I*(A),C) is an OBA, C is closed
and normal andl® (A) is not semi-simple.

Proof:- By defining addition, scalar multiplication and multiplication
coordinate wise and the norm to be Il (xq, x5, ... ) I = supjen Il x; 1l it
is not hard to show that [*(A) is an Banach algebra with unit

1 0y /1 O . . :
<(0 1),(0 1), ) Direct calculation also show that C is an algebra

cone of [“(A4). Now we will prove normality. Suppose 0 < x <y,
[ (X11 X12)\ (K21 X22
anere 0= ((§ 0.5 8).-}x=(C5 29.(F 2).)

(o
And y = ((y11 ) ( o zii) ) From the definition of C we
<

see that 0 <xj; < yj, for alljeNand k =1,2,4. Therefore

l.e.

maX{|Xj1| + |ij|»’ |xj4|} = max{lyj1| + |3’j2|i



”(X,]C1 21)” S”(y;;l iﬁ)” for all jeN. It follows that

x. x. y. y.
Jj1 j2 Jj1 Jj2
sy | (% ) 5w 1O

Is normal. The closedness of C follows easily from the definition of C.

)” e lxI<lyll. Thus C

: 0 1\ (0 1 : : o :
Since ((0 0),(0 0), ) Is an element of the radical, [*(A) is not

semi-simple.

Section Two

Spectral Properties in 0BAS

In this section we will establish properties of the spectral radius in an
OBA. We will follow [19].



Definition(2.2.1)[1]:- Let (A,C) be an OBA. If 0 < a < b relative to C
implies r(a) < r(b), then we say that the spectral radius (function) is
monotone w.r.t. the algebra cone C.

Theorem(2.2.2)[1]:- Let (4, C) be an OBA with a normal algebra cone C.
Then the spectral radius is monotone w.r.t. C.

Proof:- Let 0 < a < b, then we see with induction that 0 < a™ < b2.
Let a be the normality constant, then |l a™ lI< a || b™ || for all neN so

1 1 1 1
r(@) = lim || a® 7 < lim (a I b™ ||z) = liman . lim || b" |l =
n—-oo n—-oo n—-oo

r(b). o

Theorem(2.2.3)[1]:- Let (A;C) be an OBA with algebra cone C such that
the spectral radius is monotone. Let a,beA be such that 0 <a <b
relative to C. Then

1. if b is quasinilpotent then a is quasinilpotent,

2. if b is in the radical of A then a is quasinilpotent,

3.if b is in the radical of A and a in the center of A then a is in the radical
of A.

Proof:-

1. r(b)
o(a) = 0.

0, so from Theorem 2.2 we have 0 < r(a) < 0 wich gives

2. From 1. we have beRad A = b e QN(A) = a is quasinilpotent.

3. By 2. r(a) = 0. Let x be any element of A. Then, since a commutes
with x, r(ax) < r(a)r(x) = 0,50 ad c QN (A). This implies that a is in
the radical of A.

The converse of theorem (2.2.2) is in general not true. Also if the algebra
cone is not normal, the spectral radius may not be monotone.

Proposition(2.2.4)[1]:- Let (4, C) be an OBA with normal algebra cone
C and a, beC. If ab < ba then r(ba) < r(b)r(a), r(ab) < r(a)r(b)
and r(a + b) <r(a) +r(b)



Proof:- If a, be C with ab < ba, then 0 < (ba)* < b*a* (k eN). The
normality of C implies that || (ba) II¥<
Il b% 1IIl a® II. As in the proof of (2.2.2) it follows that (ba) <

r(b)r(a).

The second inequality follows in the same way as in the first part, from
the observation that (ab)*® < (ba)* < b*a* for every k eN.

Now we will discuss some results on the connection between the
monotonicity of the spectral radius relative to algebra cones of different
Banach algebras.

Proposition(2.2.5)[1]:- Let (4,C) be an OBA and B a Banach algebra
with 1 eB € A and such that the spectral radius function in the OBA
(B,C n B) is monotone. If a, b eB such that 0 < a < b relative to C and
r(b,B) = r(b,A) thenr(a,A) < r(b,A).

Proof:- Let a, beB with 0 < a < b relative to C. Since the spectral radius
in (B,C N B) is monotone, r(a,B) < r(b,B). Because B is a subalgebra
of A we have ¢g(a,A) € o(a,B) and therefore r(a,A) <r(a,B). We
assumed r(b,A) = r(b,B) and we get r(a,A) <r(a;B) < r(b,B) =
r(b, A).

If we restrict ourselves to inessential ideals, we can prove a quite similar
result in quotient algebras.

Theorem (2.2.6)[1]:- Let (4, C) be an OBA and B a Banach algebra such
that 1eB < A. Suppose that I is an inessential ideal of both A and B such
thatI; < I,, and such that the spectral radius function in the OBA
(B/Ig,m(C N B)) is monotone. If a,beB with 0 < a < b relative to C
and o(b,B) = o(b,A), then r(a,B/Iz) < r(b,B/Ig) andr(a,A/l)) <
r(b,A/Ly).

Proof:- Let A,beB with 0 < a < b relativeto C. Then0 <a < b w.rt.
the algebra cone m(C N B)of B =Iz. Because the spectral radius
in(B/Iz m(C N B)) is monotone r(a, B/Iz) < r(b,B/Ig). Let @ e B/Iy
be invertible, then there exists a ¢ eB/I such that a.¢ = 1. Since I ©
I, we have a.c =1 in A/l, as well, so o(a,A/ly) c o(a,B/Iz) and
therefore r(a,A/l,) <r(b,B/Iz). and the assumption o(b,B) =



o(b,A) imply that D(b,B,I) = D(b,A,I). The ideals I, and I; are
inessential now tells us that o (b, B/Iz)* = D(b,B,1)* = D(b,A, D" =
a(b,A/L)". So, r(b,B/Ig) =r(b,A/l;). Combining the results, it
follows that r(a, A/1,) < r(b,A/L).

Theorem(2.2.7)[8]:- Let (4, C) be an OBA with a closed algebra cone C
such that the spectral radius function is monotone. If aeC then
r(a)eo(a).

Proof:- Let a > 0 and assume r(a) = 1. Suppose 1 # o(a). Choose
0 < a< 1suchthat o(a) € {AeC: Re A < a} . Let t be a positive real
number and let f(z) = e'. By the spectral mapping theorem o(et®) =
et?@ c 2eC: | 1] < et} andsor(et®) < etforall t > 0. Since aeC,
t >0 and C is a closed algebra cone, we have e =1 + ta +
((ta)?/(2!) +--€C so that 0 < (t™)/(n))a™ < et?, for all neN and
t = 0. By the monotonicity of the spectral radius and r(a) = 1 we get,
0 < r((t") =mHa™) = (t") = (n!) < e'*Substituting t = n/a
in this inequality yields a contradiction to Stirling's formula.

Hence 1ea(a).
This theorem is a stronger version of the following well known theorem:

Theorem(2.2.8)[8]:- Let (4, C) be an OBA with a closed normal algebra
cone C and aeC. Then r(a)ea(a).

Proof:- Because C is normal, the spectral radius is monotone by Theorem
(2.2.2) and the result follows from Theorem (2.2.7).

Theorem (2.2.9)[8]:- Let (A;C) be an OBA with a closed cone C and
let F be a closed ideal of A such that the spectral radius function in
(A/F, C) is monotone. If aeC thenr(a,A/F)e(a,A = F).

Proof:- Since we cannot deduce from the closedness of C that nC is
closed, Theorem (2.2.9) does not just follow from Theorem (2.2.7), but
the proof is almost the same as that of theorem (2.2.7). There is just one
difference to get to the conclusion that et®enC. Let aeC, then we have
m(et?) = 1+ta+ ((ta)?) = (2) + - = e@and e®@e C because C is
closed, so et%erncC.



Theorem (2.2.10)[10]:- Let (4,C) be an OBA and B a Banach algebra
with 1eB < A such that € N B is closed in B. Suppose that I is an
inessential ideal of both A and B such that Iz c I, and suppose the
spectral radius function in the OBA (B/Ig, m(C N B)) is monotone. If
aeC N B is such that a(4,4) = g(4,B), then r(a,B/ Iz) ea(a,B/ Ig)
andr(a,A/ 1y) ea(a, A/ 1).

Proof:- It follows from Theorem 2.2.9 that r(a,B/ Iz) ea(a,B/ Ig).
Theorem 1.37, Theorem 1.39 and the assumption o(a; A) = o(a; B)
imply that D(A,B,I) = D(A4,A,I). So D(a,B,)* = D(a,A4,1)" and by
Theorem 1.36.3 we have r(a,A/I,)" =r(a,B/Iz)". Hence r(a,A/
1) = r(a,B/Iz). Combining the results it follows that r(a,A/
1)) ea(a,A/ I,)". Consider the polynomial x + r(a, A/1,), then we have
that |2r(a,A/IA) | <lx + r(a,A/I4) lsaa/,), and we conclude that
r(a,A/ly) ea(a, A/ 1y).

Theorem (2.2.11)[10]:- Let (A4, C) be an ordered Banach algebra with C
closed, normal and inverse-closed. If a eC, then §(a) ea(a).

Proof:- If a is not invertible then(a) = 0 ea(a). Suppose a is invertible.

Since aeC and C is inverse-closed we have a~le C. Also, because C is
normal and closed, it follows from Theorem 2.2.8 that r(a™')ea(a™).
So using the spectral mapping theorem we see that r(a™1) = 1/A,, for
some A, eo(a). We have that r(a™!) = 1/6(a) by Lemma 1.23, which
implies §(a) = Aqyea(a).

Lemma (2.2.12)[10]:- Let (4, C) be an OBA with C closed and I a closed
inessential ideal of A such that the spectral radius in (?, nC) is monotone.
Let aeC.

1. If r(a) is a Riesz point of a(a), thenr(a) < r(a).

2. If, in addition, the spectral radius in (4, C) is also monotone, then r(a)
is a Riesz point of g(a) ifand only if r(a) < r(a).

Proof:- (1) If r(a) = r(a), then, by Theorem 2.2.9, r(a)ea(a).
Therefore by Theorem 1.36.3 r(a) eD(a), so that r(a) is not a Riesz
point of o(a).



(2) Conversely, if r(a) <r(a) and r(a) is not a Riesz point of o(a),
then by Theorem 2.2.7 we have r(a)eD(a), so by Theorem 1.36
r(a)ea(a)”™. Therefore r(a) < r(a).

Lemma (2.2.13)[4]:- Let | be a two-sided closed inessential ideal in the
Banach algebra A. Then for every aeA the set o(a, A)\ o(a,A/l,) is the
union of the Riesz points of a(a) relative to I and some of the holes of

O-(alA/IA)'
Proof:- See Theorem 6.1 in [4].

Theorem (2.2.14)[4]:- Let (A, C) be an OBA with C closed and I a closed
inessential ideal of A such that the spectral radius in (A/I,wC) is
monotone. If aeC is such that r(a) is a Riesz point of a(a), then psp(a)
consists of Riesz points of a(a).

Proof:- Let Aepsp(a). If Aer(@), then r(a) = |A| <r(@), so that
r(a) = r(a). But by Lemma 2.2.12 this is a contradiction with the fact
that r(a) is a Riesz point of a(a). Therefore psp(a) < oa(a) \o(a) and
Lemma 2.2.13,now tells us that psp(a) consists of Riesz points of a(a)

section Three

Poles of The Resolvent in OBA's

In this section we investigate the role of poles of the resolvent in
spectral theory. First we state versions of the Krein-Rutman Theorem in
an OBA ,then we take a closer look at the structure of the spectrum.

Lemma (2.3.1)[8]:- Let A be a Banach algebra and aeA. If A, is an
isolated point of a(a) then



G-a= ) (- )

n=-—oo

For0 < |z—2| < 1, = d(Ay, a(@)\{A,}), Where

n

f(z—/l) 1z —a) ldz

Zm

for any positively oriented circle centered at A, with radius < r,. The
isolated point A, is a pole of order k > 1 if and only if a_, # 0 and
a_, = Oforalln > k.

Proof:- The first part is Lemma 6.11 in [3] and the series follows from
the usual Laurent series development that can be found in Theorem 1.11
in [3]. The statement for the pole of order k.

Proposition (2.3.2)[8]:- Let A be a Banach algebra and aeA. If 4, is an
isolated point of g(a) and n = 1, then A,is a pole of the resolvent
function R(z,a) = (z—a)™! of order n if and only if (15—
a)"p(a, 1) = 0and (A, — a)" 1p(a, 1) # 0.

Proof:- Let (z—a) ! =¥% _(z — Ay)"a, as in Lemma 2.3.1. Now
Aoisa pole of ordernifand only if a® # Oand a_, = 0for k > n. Let
I' be a positively oriented system of curves such that a(a){A,} € ins T
and A,€ out I'. Let y be a circle centered at A, and contained in outr.
Let e(z) =1in a neighborhood of yuinsy and e(z)=0 in a
neighborhood of I' U ins I". So eeHol (a) and e(a) = p(a,1y). If k =
1,

_ ZmJ(Z_ D) (z—a)tdz

1
= 2—7_” f e(z)(z - Ao)k_l(Z - a)‘ldz
y+r

= p(a,Ap)(a— )

The last stap follows from the functional calculus, since o(a) <
ins (y + I').The proposition follows.



Since p(a, A,) is an idempotent it directly follows that:

Corollary (2.3.3)[8]:- Let A be a Banach algebra and ae A. If A,is an
isolated point of g(a) andn > 1, then 4, is a pole of order n of the
resolvent if and only if (1, — a)p(a, Ay) is a nilpotent element of A of
order n.

(2.3.4) Krein-Rutman Theorems[9]

We will now state OBA versions of the Krein-Rutman Theorem, which is
concerned with operators,. The Krein-Rutman Theorem describes
conditions under which the spectral radius of a positive operator is an
eigenvalue of that operator, with a positive eigenvector. For more
information on this theorem we refer to [7]. First we state a version in
which the condition that ensures that if a is positive, r(a) is an
eigenvalue of a with positive eigenvector, is in terms of r(a)

Theorem (2.3.5)[9]:- Let A be OBA with a closed algebra cone C and let
0 # aeC be such that r(a) > 0. If r(a) is a pole of the resolvent of a,
then there exists 0 # u eC such that ua = au = r(a)uand aua =
r(a)?u.

Proof:- Suppose that r(a) is a pole of order k of the resolvent of a. Then
we have according to Lemma 2.3.1 the following Laurent series
development of the resolvent:

R(z,a) =Y -_(z—71(a))"a,,0 < |Z —r(a) | < dist(r(a),o(a)\
{r(a)}).

From the Laurent expression it follows that a_, = lim,,)(z —

r(a))*R(z,a). We show that al K is a possible choice for u. It is clear
that a commutes with a_,. From the Neumann series R(z,a) =

20 1+1 —(z > r(a))for R(z,a)

and the fact that C is a closed algebra cone it follows that R(z; a), and
hence a_g, is an element of C. From the proof of Proposition 2.3.2 it
follows that 0 = a_ (k+1) = (r(a) —a)a_, = a_,(r(a) —a), which
yields the first part of the theorem, with u = a_,. Since au = ua =
r(a)u, it follows that aua = r(a)?u.



From the proof we see that if the pole r(a) of the resolvent function is of

order k, a possible choice for u is the coefficient a_;, from the Laurent
series expression of the resolvent. To distinguish a_, from possible other
eigenvectors, we will call a_; the (positive) Laurent eigenvector of the
eigenvalue r(a) of a. From the proof we see that we have more generally:

Theorem (2.3.6)[9]:- Let A be a Banach algebra and ae A. If is a pole of
the resolvent of a of order k, so that

G- = ) @- L)l a,

n=—oo
and 0 # u = a_y, then au = ua = u.

Now we state another version of the Krein-Rutman theory in an OBA
context

Theorem (2.3.7)[9]:- Let A be a semisimple OBA with a closed normal
algebra cone C and let aeC be such that r(a) > 0. If there exists a
closed inessential ideal | in A such that a is Riesz w.r.t I, then there exists
0 # u eC such that ua = au = r(a)u and aua = r(a)?eu.

Before we can give the proof we need a few other theorems and lemmas.

Theorem (2.3.8)[9]:- Let A be a semi simple Banach algebra and I an
inessential ideal of A. ThenI c kh(soc(A)).

From this theorem we get the following corollary

Corollary (2.3.9)[9]:- Let A be a semi simple Banach algebra, aeA and I
a closed inessential ideal of A. If a is Riesz relative to I then a is Riesz
relative to soc(A4).

Proof:- Suppose a is Riesz relative to I. According to Theorem 1.40 o(a)
is finite or a sequence converging to zero, and for every 0 # ea(a) the
spectral projection p(a, a) lies in I. By Theorem 2.3.8 we have I c
kh(soc(A)), so that all these spectral projections are in kh(soc(A)). tells
us that soc(A) and kh(soc(A)) have the same projections, so it follows
that all these spectral projections are in soc(A). Thus a is Riesz relative to
soc(A).



Lemma (2.3.10)[9]:- Let A be a semisimple Banach algebra and aeA. If a
Is in soc(A) and a is quasinilpotent, then a is nilpotent.

Theorem (2.3.11)[9]:- Let A be a semisimple Banach algebra, aeA and I
a closed inessential ideal of A such that a is Riesz relative to I. If 0 #
aea(a)then is a pole of the resolvent of a.

Proof:- If a is Riesz relative to I, then by Corollary 2.3.9 we have that a
Is Riesz relative to soc(A). If 0 # aeo(a), then that is an isolated point
of o(a) and p(a, o) isin soc(A). Since soc(A) is an ideal, we have (a —
a)p(a,a) esoc(4). that (a— a)p(a,a) is quasinilpotent, so from
Lemma 2.3.10 we see that (a — a)p(a, @)is nilpotent. It follows from
Corollary 2.3.3 that is a pole of the resolvent of a.

In a similar way as for the previous theorem, we can prove the following
related theorem. We do not use it to prove Theorem 2.3.7, but we will use
it later on.

Theorem (2.3.12)[8]:- Let A be a semisimple Banach algebra, I an
inessential ideal of A, and a € A. Then a point in g(a) is a Riesz point of
o(a) relative to I if and only if is a pole of the resolvent of a and

p(a, a )el.

Proof:- One implication is trivial. For the other implication let be a Riesz
point of a(a) relative to I. Then by definition is an isolated point of o(a)
and p(a, @ )el. From Theorem 2.3.8 and the fact that kh(soc(A)) and
soc(A) have the same spectral projections we see that p(a, @ )e soc(A).
Since soc(A) is an ideal, we have (a — @)p(a, @))esoc(A). Then (a —
@) is quasinilpotent, so from Lemma 2.3.10 we see that (a — a)p(a, @) is
nilpotent. It follows from Corollary 2.3.3 that is a pole of the resolvent of
a.

Now we can give the proof of Theorem 2.3.7.

Proof:- By Theorem 2.2.2 and Theorem 2.3.7, r(a)e o(a). By
assumption r(a) # 0, so by Theorem 2.3.11 r(a) is a pole of the
resolvent of a. The theorem now follows from Theorem 2.3.5.

(2.3.12) More spectral theory



In this section we are going to investigate the influence that the structure
of the spectrum o (a) has on some properties of a. First we discuss the
case in which the spectrum consists of one element. Then we also
consider spectra consisting of multiple elements. The property of a we
focus on is whether positivity of a implies that a™! is positive, i.e. a > 1.
Later on we discuss the more general case, if feHol(a) and f(a) defined
by the functional calculus, whether aeC implies f(a)eC.

Theorem (2.3.13)[8]:- Let (A, C) be an OBA with C closed and let aeC.
IfA>7r(a),then(1—a)"1 > 0.

Proof:- For |A| > r(a), the resolvent of a has a Neumann series
representation (A — a)~! =X°_,(a™/A™*1). Since 2 > 0, all the terms in
the series are positive, so because C is closed, we have (1 —a)~! > 0.

Theorem (2.3.14)[8]:- Let A be a Banach algebra and aeA such that
o(a) = {A}.1f A1 # Ao, then (A —a) 1 =32 b_y(A — 2)" 1

Where b_,, = (a — 2-)"* 1
Proof:- If 1 # . then |/1 — Ao | >=0=1r(1— 1), sothat

[¢) (Cl _ Ao)n

A—a)yt=(A=2) - (a=2)) "t = zn=om

_y lami
C Lapey (A—2)M
Hence the result follows.

Theorem (2.3.15)[8]:- Let A be a Banach algebra and aeA such
thata (a) = {A-}. A-is a pole of order k of the resolvent of a, then

/%iral (A=2)c(A—a)™t = (a— )1,
Now we can state some conditions which imply that if aeC and a(a)
={r(a)} with r(a) = 1, then a™eC.

Theorem (2.3.16)[8]:- Let A be a Banach algebra and aeA such that
o(a) = {r(a)}



1. If r(a) is a pole of order k of the resolvent of a, then (a — r(a))* =
0.

2. If r(a) is a simple pole of the resolvent of a, then a = r(a). It
follows that, if Cis an algebra cone of 4, then r(a) > 1= a — 1eC
Suppose that C is a closed algebra cone of A, and aeC.

3. If r(a) is a pole of order k of the resolvent of a, then (a—
r(a))*1eC.

4. If r(a) is a pole of order 2 of the resolvent of a, then a = r(a).
Proof:-

1. Follows directly from Theorem 2.3.15.
2. Follows from 1.

3. From Theorem 2.3.15 we have (a—r(a))k‘1=llir{1)(l—
->ra

r(a)*(A—a)™! so we certainly have (a— r(a))* = lim (41—
A-r(a)t

r(a))*(A — a)~L. Since C is closed, it follows from Theorem 2.3.13 that
(a —r(a))*1eC

4. Follows from 3.

Now we state some results about the following question: if aeC, for
which functions f eHol(a) does it follow that f(a)eC?

Theorem (2.3.17)[8]:-Let (A4, C) be an OBA and aeC.

1LIfp(A) = apA™ + -+ a1 44 + ay with a,,, ..., @, real and positive,
then p(a)eC.

2. Suppose, in addition, that C is closed. If f(1) = e?, then f(a)eC
Proof:- Follows from the functional calculus.

Theorem (2.3.18)[8]:- Let A be a Banach algebra and aeA such that r(a)
is a pole of order k of the resolvent of a. Let f be a complex valued
function that is analytic in the open disk D(r(a),R) for some R > 0.
Let g() = fADA— a)! and let ¥y (A —r(a))"a,be the
Laurent series of g around r(a).



1. If f(r(a)) = 0andthe order of f atr(a)isk,thena_; = 0.

Suppose, in addition, that (4,C) is an OBA with C closed, aeC and
f(A4) > Ofor all Ain the open real interval (r(a),r(a) + R).

2. If the order of fin r(a) isequal to j = 0, then a_, jeC and a; = 0 for
< —k +j.
Proof:-

1. If f(r(a)) = 0 and the order of f at r(a) is k, then the order of g at
r(a) is zero, so its residue is zero. Hence a_, = 0.

2. If the order of f in r(a) is equal to j > 0, then the order of g atr(a) is
k—j,s0a_gy; = lim (A—7r(a))*7g(a). Restricting A to the
A-r(a)
interval (r(a),r(a) + R), we geta_,,; = N lirP) A=r@)* T —
-ra

a)~1. For din (r(a),r(a) + R) we have that f(1) > 0 by assumption
and (1 — a)~teC by Theorem 2.3.13,50 (A — r(a))* / f() (A —
a)~'e C. Since C is closed,a_ je C. Itisclearthata; = Oforl <
-k + j.

If we take f = 1 we know that a_; is equal to the spectral projection
p(a,r(a)), so that the above Theorem gives us.

Corollary 2.3.19[8]:- Let (4, C) be an OBA with C closed, and aeC such
that r(a) is a simple pole of the resolvent of a, then p(a,r(a)) 2 C.

Theorem (2.3.20)[8]:-Let A be a Banach algebra and aeA such that
o(a) ={Ay,...,4n} (m = 1) where 4; = r(a) and 4;is a pole of order
k; of the resolvent of a (j = 1,...,m). Let feHol(a), such f has a zero
of order k; at A; forj = 2,..,m.

1. If f(r(a)) = 0 and the order of f at r(a) is kq, then f(a) = 0.
Suppose, in addition, that (4,C) is an OBA with C closed, a eC and
f(A) > 0inthereal interval (r(a),r(a) + b), forsomeb > 0.

2. If order of f atr(a) is k; — 1, then f(a)eC



Proof:- LetT" be the union of circles with centers 1,,..., 4,,, m and resp.
radii ry, ..., 7, such that they are disjoint. Then the functional calculus
gives us f(a) = — [ . g(A)dA = z;&lﬁfcaj,rj) g(A)dA with g(1) =
f(A) (2 —a)~*. Since the order of g at A; is zero, it follows that fcu,- )
g(DdA=0 for j = 2,..,m, so that f(a) = #[F g()dA. We can
choose the radius r; such that r; is analytic in a deleted neighbourhood of
r(a) containing C(r(a),r;). Therefore zim'fF g(A)dA is the residue of g

at r(a). So f(a) = a_,, with a_, the coefficient of (A — r(a))~? in the
Laurent series of g around r(a). The results now follow from Theorem
2.3.18.

We now give some corollaries of Theorem 2.3.20

Corollary (2.3.21)[8]:- Let A be a Banach algebra and aeA such that
r(a) = kmeo(a) with k eN an even number, and

o(a)\r(a) c {nm: ne{0,+1, ..., +k}}.

1. If each value in og(a) is a simple pole of the resolvent of a, then
sina = 0. Suppose, in addition, that (4, C) is an OBA with C closed, and
aeC.

2. If each element of a(a)\ r(a) is a simple pole and r(a) is a pole of
order 2 of the resolvent of a, then sin aeC

Proof:- Let f(1) = sin A. Then f has simple zeros at all the values of
the spectrum of a and f(4) > 0 for all A in the real interval
(r(a),r(a) + m). Since f(a) = sina,

1. Follows from Theorem 2.3.20(1).
2. Follows from Theorem 2.3.20(3).

Corollary (2.3.22)[8]:- Let (A,C) be an OBA with C closed, and aeC
such that r(a) = (k + 1;) 7 ea(a) with keN an even number, and

o(a)\r(a) c {nm: ne{0,+1, ..., +k}}.

If each value in g (a) is a simple pole of the resolvent of a, then sin aeC.



Proof:- Let f(1) = sin A. Then f has simple zeros at all the values of
o(a)\ r(a). Furthermore, f(r(a)) = 1 > 0and f(1) > 0 forall 1in

the real interval (r(a),r(a) + g). Since f(a) = sin a, the result follows
from Theorem 2.3.20(2).

Corollary (2.3.23)[8]:- Let A be a Banach algebra and aeA such that
o(a) = {r(a)} withr(a) > 0.

1. If r(a) = 1isasimple pole of the resolvent of a, then log a = 0.
Suppose, in addition, that (4, C) is an OBA with C closed, and aeC

2. If r(a) is a simple pole of the resolvent of a and r(a) > 1, then
logaeC.

3. Ifr(a) = 1isapole of order 2 of the resolvent of a, then logaeC.

Proof:- Let f(1) = log A(logA is the principal branch of the complex
logarithm), then £ is analytic on the right half plane, so because r(a) >
0, feHol(a). Also, f has a simple zero at 1, and f (A1) > 0 for all real
A > 1. Hence the results follow from Theorem 2.3.20.

Corollary (2.3.23)[8]:- Let (4,C) be an OBA with C closed and a eC
such that o(a) = {1,r(a)}, with r(a) > 1. If both 1 and r(a) are simple
poles of the resolvent of a, then logaeC.

Proof:- Let f = log A, then as in the proof of the previous corollary we
have feHol(a) and f(1) > 0 for all real A > 1. Furthermore, 1 and
r(a) are both simple poles, hence the result follows from Theorem
2.3.20(2).

Corollary (2.3.24)[8]:- Let (4,C) be an OBA with C closed and aeC
such that o (a) = {1,7r(a)}, with r(a) > 1. If both 1 and r(a) are simple
poles of the resolvent of a, then log a eC.

Proof:- Let f = logA, then as in the proof of the previous corollary we
have feHol(a) and f(4) > 0 for all real A > 1. Furthermore, 1 and r(a)
are both simple poles, hence the result follows from Theorem 2.3.20(2).

Now we discuss the case of C being inverse-closed. First a theorem that

complements Theorem 2.3.17 and 2.3.20.



Theorem (2.3.25)[8]:- Let (4, C) be an OBA with C inverse-closed, and
aeC. Let pAD) =a A"+ -+ +a, and q(A) = B A"+ -+
1A + By with ay, ..., &g, Bm, -, Bo real a positive. Suppose that g(A) has
no zeroes in g(a) and let t(1) = p(1)/q(A). Then t(a)eC.

Proof:- From Theorem 2.3.17(1) it follows that p(a)eC and g(a) € C.
According to the Spectral Mapping Theorem a(q(a)) = q(o(a)), and
q(A) has no zeroes in a(a), so g(a) is invertible and g~ eHol(a). Since
C is inverse-closed, (g(a)) e C. From the functional calculus we have
t(a) = p(a)(q(a))~1, so it follows that t(a)eC.

Now we give some conditions under which it is true that aeC and
o(a) = {1} imply that a — 1eC, under the assumption that C is inverse-
closed.

We begin with an obvious lemma

Lemma (2.3.26)[8]:- Let (4,C) be an OBA with a and b invertible
elements of Asuchthata <banda ',b~1>0.Thenb™ ! < a7 1.

Theorem (2.3.26)[8]:- Let (4, C) be an OBA with C closed and inverse-
closed. If aeC and a is invertible, then

l.a > aforal a > 0witha < §(a).
2.a < Bforall g > r(a).
Proof:-

1. For a = 0 itis obviously true. Let 0 < a < (a), then (1/6(a)) <
(1/@), so that (1/a) > r(a™1). It follows from Theorem 2.3.13 that
(1/a) —a™1)~1 = 0 Because C is inverse-closed(1/a) —a™! = 0, so we
have a1 < (1/a) The result now follows from Lemma 2.3.26.

2. If B> r(a), then according to Theorem 2.3.13, (8 — a)"1 > 0.
Since C is inverse-closed, it follows that S — a > 0, and hence a < f3.

Theorem (2.3.27)[8]:- Let (4, C) be an OBA with C closed and inverse-
closed, and let aeC. Then we have

1.6(a) <a<r(a).

Suppose, in addition, C is proper. Then,



2.0(a)c{zeC: |z| =1}= a = 1.
3.0(a)={1} = a=1.
Proof:-

1. Let (a,) be a sequence of real numbers such that 0 <
a, < 6(a) and a,, » 6(a) as n — o. By Theorem 2.3.27(1), a = «a,,,
i.e. (a—a,)eC for all n. Therefore lim,_(a—a,) =a—§(a)eC,
because C is closed. Let (f,) be a sequence of real numbers such that
r(a) < B, and B, - r(a) as n —» o. Then a < f,, by Theorem
2.3.27(2), so as before we have that a < r(a).

2.1fg(a) c{zeC: |z| = 1}, then 6(a) = 1 = r(a), so by 1. we have
that

1 < a < 1. Therefore, because C is proper, it follows that a = 1.
3. Follows from 2.

Lemma (2.3.28)[8]:- Let A be a Banach algebra and aeA. If there exist
k eN and 1, eC such that psp(a®) = {1}, then #psp(a) < k.

Proof:- If Ae psp(a), then (by the Spectral Mapping Theorem)
A¥epsp(a®),s0 1% = 1,. Hence every Aepsp(a) is a k —th root of
Ao and thus #psp(a) < k.

Theorem (2.3.29)[8]:- Let (A,C) be an OBA with C closed and the
spectral radius function monotone. If aeA and there exist keN and
a > Osuchthata® > a, then

1.psp(a®) = {r(a)*}.
2. #psp(a) < k.
Proof:-

1. Since psp(a) = Bpsp(a) for all B0, we may assume without loss of
generality that r(a) = 1. Letb = a®*—a . Thenb > 0. Sincea® =

b+a , it follows that 1 = r(a¥) = r(b + a), so that 1 = sup{|1 +

a | : lea(b)g. Since r(b)ea(b), by Theorem 2.2.7, this supremum is
exactly 7(b) + a. Hence r(b)=1—a , so that c(a®¥)c{A+a:



|/1| < 1 — a}.Now suppose z epsp(a*®). Then z = 1 + a with |/1| <
1 —a, so that |z| <1-—a, and |z| = 1. Consequently zeD(a,1 —
Q)N{zeC: |z| =1}. Let z = c+di. Then (c —a)?> +d? < (1-—
a)?and c? + d? = 1, so that 2ac > 2a, and hence ¢ > 1, since a > 0.

Since c?+d? =1, it follows that c = 1 and d = 0, so that z = 1.
Hence the result follows.

2. Follows from 1. and Lemma 2.3.29.
Now with Theorem 2.3.27(1) and 2.3.30(1) we come to

Theorem (2.3.30)[8]:- Let (A,C) be an OBA with C closed, inverse-
closed and the spectral radius function monotone. If aeC is an invertible
element, then psp(a) = {r(a)}.

(2.3.31)Representation theorems for OBA's

Let A be a Banach space. With A* we denote the dual space of A and with
wk* the weak-star topology of this space.

We state a corollary of the Hahn-Banach Theorem .

Corollary (2.3.32)[8]:- If A is a normed space and xe A, then || x ||=
sup{| f(x) |: feA  and Il f I< 13

Moreover, this supremum is attained.

If X is a normed space, denote by ball(X) the closed unit ball in X. So
ballX) ={xeX :llx II< 1}.

Theorem (2.3.33) (Alaoglu’s Theorem)[8]:- If X is a normed space, then
ball(X™*)

Is wk* compact.
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