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 الاهداء 

  بصم الله السحمن السحيم

 (و قل  ئعملىا  فصيري  الله عملنم وزشىله والمإمنىن )

 صدق الله العظيم

 ئلهي لاًطيب الليل ئلا بشنسك ولاًطيب النهاز ئلا بطاعخك .. ولاجطيب اللحظاث 

 ئلا برلسك .. ولا جطيب الآخسة ئلا  بعفىك.. ولا جطيب الجنت ئلا بسؤيخك

 الله جل جلاله

  ئلى من بلغ السشالت وأدي الأماهت ..  وهصح  الأمت .. ئلى هبي السحمت وهى ز  العالمين

 شيدها محمد صلى الله عليه  واله  وشلم

 لنا ليقدم اهامله ملت من الى حب    قطسة    ليصقيني فازغا النأس جسع من الى

 القلب  الى  العلم طسيق لي ليمهد دزبي عن الاشىاك حصد  من   الى   شعادة لحظت

ئ العزيز  والدي النبير  

 وجصميما حبا وعمسها وزوحها دمها من وأعطخنا  ميها قد أمام العطاء زلع من ئلى

أجمل لغد   ودفعا  

عينيها من ئلا الأمل هسي  لا التي الغاليت ئلى  

الحبيبت أمي  

ئت والنفىس الطاهسة القلىب الى حياحي زياحين الى البرً  

واخىاحي اخىحي  

 ا الى من علمىها حسوفا من  ذهب و ملماث من دزز  و عبازاث من اشمى

 و اجلى عبازاث في العلم

 الى اشاجرجنا النسام

 



Abstract 

 

 

In a soft normed linear space we have been able to define a new concept 

of convergence of a sequence of soft elements, which we call soft 

convergence. We have defined a soft topology [15] generated by a soft 

norm and which is also known to be a topology of sets [10]. We are also 

able to introduce a definition of soft Banach algebra and study some of its 

propertie 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

INTRODUCTION 

Banach algebra is an important field of functional analysis, which 

has many ap- plications 

in various branches of mathematics. Many examples of classical 

Banach 

algebras are known, among them are B (X), the space of bounded 

linear operators 

on X and C (X), the space of continuous functions on X. When X is 

a Hilbert 

space, the space of bounded linear operators play a key role in 

quantum mechanics 

and differential equations. We have introduced fuzzy Banach 

algebra in [16, 17]. 

Thus it is a natural query to extend the concept of Banach algebra 

in soft setting. 

In this paper we introduce a definition soft Banach algebra and 

study some of its 

properties. In section 2, preliminary results are given. In section 3, we 

introduce a 

new concept of convergence of a sequence of soft elements. With this 

convergence we 

have shown that the condition of finiteness of parameter set is not 

required in many 

cases like completeness of finite dimensional soft normed linear spaces 

etc [3, 6]. In 

this section it is also shown that the norm axiom N (5) is redundant, 

which was used 

frequently to prove most of the theorems on soft normed linear spaces [3, 

6] and we 



are also able to define a soft topology generated by a soft norm in a soft 

normed 

linear space. In section 4, we introduce the concept of soft Banach 

algebra and some 

of its preliminary properties are studied. Section 5 concludes the paper. 
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On Soft Banach Algebra 

 

 

بحث مقدم الى مجلس قسم الرٌاضٌات جامعة القادسٌة كلٌة التربٌة وهو جزء من 

 متطلبات نٌل درجة البكلورٌوس علوم فً الرٌاضٌات

 

 من قبل 

 حنٌن سلمان عٌدان
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 الملخص

فً الفضاء الخطً المعٌاري اللٌن كنا قادرٌن على دراسة مفهوم جدٌد من 

تقارب المتتابعات اللٌنة العناصر التً نسمٌها لٌنة التقارب .وكذالك تمكنا 

من دراسة التبولوجٌا اللٌنة التً تم انشاؤها بواسطة السوفت والمعرفة 

المجموعات . نحن أٌضا كنا قادرٌن على تقدٌم تعرٌف للٌنة  بتبولوجٌا

 .باناخ الجبرا ودراسة بعض المبرهنات
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Definition 1.1.1[1]( linear algebra): We shall say that   is a linear 

algebra if   is a linear space. an operation of multiplication (which in 

general is  not commutative) is in   satisfying the following conditions:- 

1)  (  )  (  )   (  ) 

2)  (  )  (   ) 

3) (   )        

For arbitrary     and any number  . 

In the sequel we shall consider only linear algebras and the term 

"algebra" will a linear algebra. 

Definition 1.1.2[1]: In elements     in the algebra   are said to commute 

if       an algebra is said to be commutative if any two of its elements 

commute. In the sequel we shall in general that the algebra under 

consideration are commutative a subset       is called a sub algebra of 

the algebra   if the application of  the addition scalar multiplication and 

multiplication to element of    elements in    

Definition 1.1.3[1]: A commutative sub algebra is said to be maximal if 

it is not contained in any a commutative sub algebra. It follows from the 

preceding discussion that. 

Theorem 1.1.4[1]: Every commutative sub algebra is contained in a 

maximal commutative sub algebra. 

Proof:- The set   of all all commutative sub algebra of the algebra  , 

which can in a given commutative sub algebra. Is a partially ordered set. 

Ordered by in which satisfies the condition of zeros lemma: namely. The 

least upper bound of any linear ordered set of these sub algebra is simply 

their union on the basis of the Zorn lemma.   contains a maximal 

element which will then be the maximal commutative sub algebra 

containing   . Since every element   is contained in the commutative sub 

algebra   ( ), it follows from proposition I that. 

Theorem 1.1.5[1]: Every element   is contains in a maximal 

commutative sub algebra. 

Example 1.1.6[1]: We denote  the set of all continuous complex- value 

function on the topological space   by  ( ) in  ( ) we define operations 

of addition- scalar multiplication and multiplication respectively as the 



3 
 

addition of function, the multiplication of function by a number and the 

multiplication of function clearly  ( ) will then be an algebra this 

algebra is commutative. 

Example 1.1.7[1]: Suppose   is an arbitrary linear, we denote the set of 

all linear operators in   with domain   by  ( ). In  ( ) we define 

operation of addition, scalar multiplication, and multiplication as the 

corresponding operation on operations (see subsection 6.) then  ( ) is an 

algebra  ( ) is commutative only in the case when   is one- 

dimensional. 

Definition 1.1.8[1]: (Algebra with identity) 

An algebra   iscalled an algebra with identity if   contains an elemente 

which satisfies the condition:         for all    . 

The element   itself which satisfies condition (1) is called an identity of 

the algebra  . 

Theorem 1.1.9[1]: Every algebra   without identity can be considered as 

a sub algebra of an algebra   with identity. 

Theorem 1.1.10[1]: A maximal commutative sun algebra  , of the 

algebra   with identity is also an algebra with identity. 

Theorem 1.1.11[1]: If     exists and if      commute, then     and   

also commute.in fact multiplication both members of the equality 

      on the left and right by    , we obtain          . 

Theorem 1.1.12[1]: If   is the maximal commutative sub algebra which 

contains   and     exists then      . 

Theorem 1.1.13[1]: If every element     in the algebra   with identity 

has a left inverse, then   is a division algebra. 

Definition 1.1.14[1]: An element     is called a left quasi- inverse of the 

element     in  ,     is a left inverse of the element     in  , that 

mean if  (   )(   )   . 

Example 1.1.15[1]: The algebra  ( ) is an algebra with identity. The 

identity of this algebra is the function which is identically equal to unity 

on  . 
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Example 1.1.16[1]: The algebra  ( ) and  ( ) are algebra with identity 

which is the identity operator. 

Definition 1.1.17[1]: The center of algebra   is the set of those element 

    which commutative with all the elements of  . The center a 

commutative sub algebra of the algebra  . 

Definition 1.1.18[1]: A set    of elements of the algebra   is called a left 

ideal   if  

1)     . 

2)    is a sub space of the linear space  . 

3) If    ,     then     . 

Theorem 1.1.19[1]: An element  of an algebra with identity has a left 

(right) inverse if and only if it is not contained in any left (right)ideal. 

Theorem 1.1.20[1]: Every left (right) ideal of the algebra   with identity 

is contained in a maximal left (right) ideal. 

Theorem 1.1.21[1]: An element   of an algebra with identity has a left 

(right) inverse if and only if it is not contained in any maximal left(right) 

ideal. 

Theorem 1.1.22[1]: Every  two- sided ideal of an algebra with identity is 

contained in a maximal two- sided ideal. 

Theorem 1.1.23[1]: Every regular (right, left, two- sided) ideal can be 

extended to a maximal (right, left, respectively, two- sided) ideal (which 

is obviously regular also). 

Theorem 1.1.24[1]: An element   in the algebra    has a left quasi- 

inverse if and only if for arbitrary maximal regular left ideal  , there 

exists element such that           . 

Theorem 1.1.25[1]: An element   in the algebra   dose not have a left a 

quasi- inverse if and only if     *    +    . 

Definition 1.1.26[1]: An element    in the algebra    with identity is said 

to be generalized nilpotent if (     )
   exists for an arbitrary element 

   .the set of all generalized nilpotent element in the algebra   is called 

its (Jacobson) radical. 
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Theorem 1.1.27[1]: The radical of an algebra with identity coincides 

with intersection of all its maximal left ideal. 

Theorem 1.1.28[1]: An element    belong to the radical of an algebra 

with identity if and only if a two- sided inverse (     )
   exists for 

every element   of the algebra. 

Theorem 1.1.29[1]: 

 The intersection of all maximal left ideals coincides with the intersection 

of all maximal right ideals and is the radical of the algebra. 

Definition 1.1.30[1]: An algebra is said to be semi simple if it is radical 

consist of only the zero element suppose now that   is an algebra without 

identity and that    is the algebra obtained form   by adjoining the 

identity. 

 Definition 1.1.31[1]: An element    is said to be generalized nilpotent 

        has a left quasi- inverse for arbitrary     and arbitrary 

numbers   in this definition   is no large necessarily an algebra with 

identity. 

Theorem 1.1.32[1]: In a non- radical algebra, the radical is the 

intersection of all maximal regular left ideal and also the intersection of 

all maximal regular right ideal and therefore it is two sides ideal. 

Theorem 1.1.33[1]: The quotient algebra module the radical is a semi 

simple algebra. 

Theorem 1.1.34[1]: Every irreducible algebra    different form (0), of 

linear operators in the vector space   is a semi simple algebra. 

Definition 1.1.35[1]: A mapping      of the algebra   into an 

arbitrary algebra    if           imply that             

               if   is the image of the algebra  , then the 

homomorphism is called a homomorphism of   onto    .  

Definition 1.1.36[1]: Two algebras   and    are said to be isomorphic if 

there exists isomorphism of   onto   . 

Theorem 1.1.37[1]: Under a homomorphism of the algebra   into the 

algebra   , the inverse image   of the zero of   is a two sides ideal in  . 
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Theorem 1.1.38[1]: Under a homomorphism mapping of the algebra  . 

The inverse image   of the zero element is a two-sided ideal of this 

algebra and the homomorphic image itself is isomorphic to the quotient 

algebra   modulo  . 

Theorem 1.1.39[1]: The quotient algebra     is simple if and only if   is 

a maximal two-sided ideal in  . 

Definition 1.1.40[1]: Algebra is the so- called left regular representation 

of the algebra each element     is assigned the operator    of left 

multiplication by a       . 

Theorem 1.1.41[1]: Every primitive algebra is isomorphic to an 

irreducible algebra of linear operators in some vector space. 

Theorem 1.1.42[1]: Every primitive algebra is semi simple. 

Theorem 1.1.43[1]: If   * + is a two sided ideal in the primitive 

algebra   and if a is an arbitrary nonzero element of the algebra  , then 

   * +. 

 

Definition 1.1.44[1]: (topological algebra)  

  is called a topological algebra if : 

1)   is an algebra 

2)   is a locally convex topological linear space. 

3) The product    is a continuous function of each of the factors     

provided other factor is fixed. 

Definition 1.1.45[1]: A mapping      of the topological algebra   into 

the topological algebra    is called a continuous homomorphism if: 

1)      is a homomorphism of the algebra   into the algebra   . 

2)      is a continuous mapping of the topological space   into the 

topological space   . 

Definition 1.1.46[1]: A subset      is said to be a closed sub algebra 

of the algebra   if  

1)    is a sub algebra of the algebra  . 

2)    is a closed subspace of the topological space  . 
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Theorem 1.1.47[1]: If     is a sub algebra of the algebra    then it's 

closer   ̅̅ ̅  is a closed sub algebra of  . 

Theorem 1.1.48[1]: The algebra   ( ) is the closer of the algebra   ( ): 

  ( )    ( )̅̅ ̅̅ ̅̅ ̅̅ . 

Theorem 1.1.49[1]: The closer of a commutative sub algebra of a 

topological algebra is commutative. 

Theorem 1.1.50[1]: A maximal commutative sub algebra of a 

topological algebra is closed. 

Theorem 1.1.51[1]: The set    of all elements   of a topological algebra 

   which commute with all elements of some set      is a closed sub 

algebra of the algebra  . 

Theorem 1.1.52[1]: The center   of a topological algebra   is a closed 

commutative sub algebra in  . 

Theorem 1.1.53[1]: The closer of a 9left, right, two- sided)ideal in a 

topological algebra, which does not coincide with the entire algebra, is 

also (left, right, two sided) ideal in this algebra. 

Definition 1.1.54[1]: A topological algebra   with identity is called an 

algebra with continuous inverse if there exists an neighborhood   ( ) 

posseting the following properties: 

1) Every element     ( ) has an inverse      

2)    is a continuous function of   at the point    . 

Definition 1.1.55[1]: (normed algebra):   is called normed algebra if  

1)   is an algebra 

2)   is a normed space 

3) for any two elements                    ………..(1) 

4) if   is contains an identity   , then      . The norm in a normed 

algebra   defines a topology in   in a natural manner recall that in 

this topology, the open balls          with center at    from a 

neighborhood basis of the element     . 

Proposition 1.1.56[1]: In the norm topology, the product    is a 

continuous function of the variables     simultaneous. 
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In fact, in virtue of (1)  

         = (    )(    )  (    )     (    )  

                                   . 

Now, the assertion follows directly from this since a normed space   is a 

topological linear space, we conclude from proposition ( )  

Proposition 1.1.57[1]: In the topology define by the norm, a normed 

algebra is a topological algebra a normed algebra   is said to be complete 

if   is a complete normed algebra will also be called a Banach algebra. 

Proposition 1.1.58[1]: Every non complete normed algebra can be 

embedded in a complete normed algebra. 

Proof:- suppose   is the completion of the normed space  . Now define 

multiplication in   suppose   ̅  ̅   and     ,      be fundamental 

sequences in  . Which define   ̅  ̅ respectively. It follows from inequality 

(2) with   ,    in place of       and       in place of      that 

        also is a fundamental sequence. The element in  ̅ which it 

define will be considered to be the product  ̅ ̅ of the elements   ̅  ̅. Again 

applying inequality (2) it it can also be easily verified that  ̅ ̅, does not 

depend on the choice of the fundamental sequence.  

          which define   ̅  ̅ if in particular  ̅     ,  ̅  , then 

setting     ,       we conclude that in this case the product 

coincides with the product in   passing to the limit in the relations for the 

elements in the algebra  , it is easily shown that  ̅  is an algebra and that 

the inequality   ̅ ̅  │  ̅ ││  ̅ │is satisfy for elements of the ring  ̅ 

consequently  ̅ is a complete normed which contains  a sub algebra. 

The algebra  ̅ is called the completion of the algebra  . 

Example 1.1.59[1]: The algebra  ( ) suppose T is topological space. the 

set  ( )of all bounded continuous function  ( ) on   forms a Banach 

space recall that the norm     in  ( ) is defined by the formula 

   =        (  ) . 

Multiplication in  ( ) can be define as the multiplication of function that 

mean (  )( )   ( )  ( )  
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1) this easily seen that the condition             will be satisfied 

so that  ( ) becomes a Banach algebra. If   is compact then the 

boundedness condition on the functions  ( ) is  redundant in virtue. 

2) The algebra  ( ). Recall that  ( ) denotes the set of all bounded 

linear operations in the Banach space  . We saw above that  ( ) is 

also defined as the multiplication of operator with             

According to that we proved consequently,  ( ) is a Banach algebra 

3) The algebra  . We denote by   the set of all absolutely convergent 

series  ( )      
    

     with norm      =     
 
      

We obtain a Banach algebra by defining addition, scalar multiplication as 

the corresponding operations on  

2. Adjunction of the identity. Suppose   a normed algebra without 

identity and let   be the algebra obtained from   upon adjunction of 

the identity we may introduce a norm in   by setting   

               

It is easily verified that   then becomes a normed algebra. If   is a 

complete algebra without identity, then    is also a complete algebra. The 

proof is simple and so we shall omit it. 

 

The Radical in a Normed Algebra 

 

Theorem 1.1.60[1]: for every   of the normed algebra  , 

      √   
    exists. 

Theorem 1.1.61[1]: If the element   of the normed algebra   belongs to 

the radical of the algebra         √   
    

Banach Algebra with identity 

Theorem 1.1.62[1]: Every Banach algebra with identity is an algebra 

with continuous inverse moreover, every element    satisfying the 

inequality         is invertible. 

Theorem 1.1.63[1]: In a Banach algebra   with identity: 
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1) The set of all elements   having a (left, right, two- sided) inverse is an 

open set. 

2) The inverse     is a continuous function of   at all points for which 

    exists. 

3) The closure of a (left, right, two- sided) ideal a (left, right)ideal. 

4) Maximal (left, right, two- sided) ideal is closed. 

5) The set    of all regular points of the element     is open and the 

resolve    (    )   is an analytic function of  . 

6) The spectrum of every element     is a no avoid set. 

 Theorem 1.1.64[1]: (Gelfand [1] and Mazur [1]): Every complete 

normed division algebra is isomorphic to the field of complex number. 

Theorem 1.1.65[1]: In a Banach algebra   the quotient algebra     

modulo a closed two- sided ideal   is a Banach algebra. 

Theorem 1.1.66[1]: If in the Banach algebra   with identity every 

element     has a left inverse. Then   is isomorphic to the field of 

complex number. 

Theorem 1.1.67[1]: For           √   
  the resolve    can be 

expended in absolutely convergent Laurent series. 

Theorem 1.1.68[1]: For an arbitrary    ,  ( )        √    
 

. 

Theorem 1.1.69[1]: The spectral radius possesses the following 

properties. 

1)  (  )  , ( )-  

2)  (  )      ( ) 

3)  ( )      

 

continuous homomorphism of normed algebra 

 

Theorem 1.1.70[1]: Every continuous homomorphism      of the 

normed algebra   into the normed algebra    satisfies in the inequality. 
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Theorem 1.1.71[1]: Every continuous homomorphism      of a 

normed algebra   into a normed algebra    is uniquely extendible to a 

continuous homomorphism of the completion   of the algebra   into the 

completion    of the algebra   . 

Theorem 1.1.72[1]: Every continuous isomorphism of a Banach algebra 

  anto a Banach algebra   is a topological isomorphism. 

Theorem 1.1.73[1]: Under a continuous homomorphism of the Banach 

algebra   . The kernel   of the homomorphism is a closed two- sided 

ideal in  . And the algebra    it self is topologically isomorphism to the 

quotient algebra    . Can certainly every closed two- sided ideal   of the 

Banach algebra   induces a continuous homomorphism (the so- called 

natural homomorphism) of the algebra   into the algebra    . 

 

(regular representation of a normed algebra. Recall that the left and right 

regular representations      and     of the algebra   are defined 

by means of the formulas.) 

Theorem 1.1.74[1]: A left (right) regular representation of a normed 

algebra  is a continuous. Homomorphism of the algebra   into the 

algebra  ( ) of all bounded linear operations in the space  . In fact, the 

inequalities  

                           

                  . 

Theorem 1.1.75[1]: If   is a normed algebra with identity, then a left 

(right) regular representation of the algebra   is an isometric 

isomorphism (anti- isomorphism) of the algebra   into the algebra  ( ).  

In fact, for    , inequalities (1) go over into equalities, and hence 

    =   ,         

Theorem 1.1.76[1]:   is a minimal invariant sub space in   if and only if 

it is the annihilator of maximal right ideal in  . 

Theorem 1.1.77[1]: If   is an algebra with identity, then every closed 

invariant sub space in  , with is distinct from (0) contains a minimal 

invariant sub space and consequently, in contains elementary functions. 

Theorem 1.1.78[1]: Suppose  is an algebra with identity and let     

be a function in   there exists an elementary functional which is a weak 

contact point of functional of the form   ( )   (  ). Regular 
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representations of an algebra can also be used in the proof of the 

following proposition. 

Theorem 1.1.79[1]: Suppose   is a complete topological algebra with 

identity in which the topology is defined by the norm    . Then   is 

topologically isomorphic to a Banach algebra. 

Definition 1.1.80[1]:   is called a symmetric algebra if: 

1)   is an algebra 

2) an operation is defined in   which assigns to each element   in   the 

element    in   in such a way that the following  conditions are 

satisfies:- 

a) (     )          

b)       

c) (  )       

An element   is said to be Hermitian if     . 

Theorem 1.1.81[1]: Every element   of a symmetric algebra can be 

uniquely represented in the form         , where    ,    are 

Hermitian elements. 

In fact, if such a representation holds, then           consequently  

   
    

 
 ,    

    

  
 

Thus, this representation is unique. Conversely, the elements       

defined by equalities (1) are Hermitian and           

These elements       will be called the Hermitian components of the 

element   an element   is called normal if         . 

Theorem 1.1.82[1]: Every element of the form     is Hermitian 

In fact, in virtue of c and b ). (   )            

Theorem 1.1.83[1]: The identity   is a Hermitian element. In fact 

       is a Hermitian element. Consequently,      

If   is  asymmetric algebra without identity and    is the algebra obtained 

from    by adjunction of the identity, then setting (    )        

for    . 
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Theorem 1.1.84[1]: If     exists, then (  )   also exists and (  )   

(   )   

Theorem 1.1.85[1]: If   is a maximal commutative symmetric sub 

algebra containing a normal element   and if     exists, then      . In 

fact since   and    commute with all elements in  ,     and    (   )  

Definition 1.1.86[1]: The mapping      of a symmetric algebra   into 

the symmetric algebra    is called a symmetric homomorphism if  

 )      is a homomorphism  

 )      implies that        . 

Theorem 1.1.87[1]: The radical of a symmetric two- sided ideal. 

Example 1.1.88[1]: 

1) The algebra  ( ) is a symmetric algebra if we set     ( )̅̅ ̅̅ ̅̅  for 

   ( ) (where the vinculum denotes conjugate complex number) 

2) Suppose   is a Hilbert space. the algebra  ( ) that mean  ( ) with 

    is a symmetric algebra if involution is under stood to be  

passage over to the adjoint operator 

3) The algebra   is asymmetric algebra if we set  

      ̅  
    

     for       
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Chapter one 

Section two 

Definition 1.2.1[1]: (Positive functional) 

A linear functional   in the symmetric algebra   is said to be real- valued 

if   assumes real value on all Hemitian elements of the  algebra  . 

Theorem 1.2.2[1]: Every linear functional in a symmetric algebra can be 

represented in the form          where        are real valued 

functional. Namely it suffices to set 

  ( )  , ( )   (  )̅̅ ̅̅ ̅̅ ̅-,  ( )  
 

  
 , ( )   (  )̅̅ ̅̅ ̅̅ ̅]. 

Then       are real valued functional and  ( )    ( )     ( ) these 

functional       are called the real components. 

Theorem 1.2.3[1]: If   is a real- valued functional then  (  )   ( )̅̅ ̅̅ ̅̅  for 

an arbitrary    . In fact setting          where       are Hermitian 

we have  (  )   (      )   (  )    (  )  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ( )̅̅ ̅̅ ̅̅   

Inasmuch as  (  )  (  ) are real- valued by assumption. A linear 

functional   is said to be positive if  (   )    for an arbitrary element 

  of the algebra  . 

Theorem 1.2.4[1]: For every positive functional   in the symmetric 

algebra  . 

1)  (   )   (   ̅̅ ̅̅ ̅) 

2)   (   )    (   ) (   ) 

3)  ((     ) (     ))    

4)      (   )    ̅ (   )     (   )       (   )     

Theorem 1.2.5[1]: Every positive functional   in a symmetric algebra 

  with identity is real and   ( )    ( ) (   ). 

Theorem 1.2.6[1]: Suppose   is a symmetric algebra without identity 

and that    is the symmetric algebra obtained from   by adjunction of the 
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identity. A positive functional   in   can be extended to a positive 

functional in    if and only if   is real and satisfies inequality 

  ( )     (   ) for all     where   is some constant  

Theorem 1.2.7[1]: If in a symmetric normed algebra    

a)     =    

b) There exists a set *  + approximating the identity, then every 

continuous positive functional in   can be extended to a positive 

functional in     

 

Definition 1.2.8[1]:   is called a normed symmetric algebra if 

a)   is a normed algebra 

b)   is a symmetric algebra 

c)      
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Chapter two 

Section one 

 

 

Definition 2.1.1[2] Let U be a universe and E be a set of 

parameters. Let P (U) denote the power set of U and A be a non-

empty subset of E. A pair (F, A) is called a soft set over U, where 

F is a mapping given by F: A → P(U). In other words, a soft set 

over U is a parametrized family of subsets of the universe U. For e 

∈ A, F (e) may be considered as the set of e-approximate elements 

of the soft set (F, A). 

 

Definition 2.1.2[2] For two soft sets (F,A) and (G,B) over a 

common universe U, we say that (F,A) is a soft subset of (G,B) if 

1. A   B and 

2. for all e ∈ A, F(e)   G(e). 

We write (F,A)⊂˜(G,B). 

(F,A) is said to be a soft superset of (G,B), if (G,B) is a soft subset 

of (F,A). We denote it by (F,A)⊃˜(G,B). 

 

Definition 2.1.3[2] Two soft sets (F,A) and (G,B) over a common 

universe U are said to be equal if (F,A) is a soft subset of (G,B) 

and (G,B) is a soft subset of (F,A). 

 

                            H (e) ={

 ( )                                   ∈    

 ( )                                ∈    

 ( )   ( )                       ∈   
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Definition 2.1.4[2] The complement of a soft set (F,A) is denoted 

by (F,A)c = (Fc,A), where Fc : A → P(U) is a mapping given by 

Fc(α) = U − F(α), for all α ∈ A. 

 

Definition 2.1.5[2] A soft set (F,E) over U is said to be an 

absolute soft set denoted by Uˇ if for all e ∈ E, F(e) = U. 

 

Definition 2.1.6[2] A soft set (F,E) over U is said to be a null soft 

set denoted by Φ if for all e ∈ E, F(e) = ϕ. 

 

Definition 2.1.7[2] The union of two soft sets (F,A) and (G,B) 

   

universe U is the soft set (H,C) , where C = A B and for all e 

∈ C, 

 ˜(G,B) = (H,C) 

. 

Definition 2.1.8[2] The intersection of two soft sets (F,A) and 

(G,B) over the common universe U is the soft set (H,C), where C 

= A B and for all e ∈ C, H(e) = F(e)∩G(e). We write 

(F,A)∩˜(G,B) = (H,C). ∩ 

 

Definition 2.1.9[2] Let X be an initial universal set and E be the 

non-empty set of parameters. The difference (H,E) of two soft sets 

(F,E) and (G,E) over X, denoted by (F,E) − (G,E), is defined by 

H(e) = F(e) − G(e) for all e ∈ E. 

 

Proposition 2.1.10[2] Let (F,E) and (G,E) be two soft sets over X. 

Then 

•• (i) ((F,E) ˜∩(G,E))c = (F,E)c∩˜ (G,E)c 
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(ii) ((F,E)˜(G,E))c = (F,E)c ˜(G,E)c 

. 11[ 

Definition 2.1.11[ 2] Let X be a non-empty set and E be a non-

empty parameter set. Then a function ϵ : E → X is said to be a soft 

element of X. A soft element ϵ of X is said to belong to a soft set 

A of X, which is denoted by ϵ∈˜A, if ϵ(e) ∈ A(e), ∀e ∈ E. Thus for 

a soft set A of X with respect to the index set E, we have A(e) = 

{ϵ(e);ϵ∈˜A}, e ∈ E. 

It is to be noted that every singleton soft set (a soft set (F,E) for 

which F(e) is a singleton set, ∀e ∈ E) can be identified with a soft 

element by simply identifying the singleton set with the element 

that it contains ∀e ∈ E. 

 

Definition 2.1.12[2] Let R be the set of real numbers and B(R), 

the collection of all non-empty bounded subsets of R and A be 

taken as the set of parameters. Then a mapping F : A → B(R) is 

called a soft real set. It is denoted by (F,A). If specifically (F,A) is 

a singleton soft set, then after identifying (F,A) with the 

corresponding soft element, it will be called a soft real number. 

We use notations r,˜ s,˜ t˜to denote soft real numbers whereas r,¯ 

s,¯ t¯will denote a particular type of soft real numbers such that 

r¯(λ) = r, for all λ ∈ A etc. For example 0¯ is the soft real number 

where ¯0(λ) = 0, for all λ ∈ A. 

For two soft real numbers r,˜ s˜ it is defined 

r˜≤˜s˜ if r˜(λ) ≤ s˜(λ), for all λ ∈ A. 

r˜≥˜s˜ if r˜(λ) ≥ s˜(λ), for all λ ∈ A. 

r˜<˜s˜ if r˜(λ) < s˜(λ), for all λ ∈ A. 

r˜>˜s˜ if r˜(λ) > s˜(λ), for all λ ∈ A. 

Let X be an initial universal set and A be the non-empty set of 

parameters. Let us consider the collection of those soft sets (F,A) 

over X for which F (λ)  = ϕ, for all λ ∈ A, which is denoted by 
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S(Xˇ). For any soft set (F,A) ∈ S(Xˇ), the collection of all soft 

elements of (F,A) is denoted by SE (F,A) and let Y be any 

collection of soft elements of (F,A), then SS (Y ) is the soft set 

generated byYsuch that (SS (Y))(λ)= {x˜(λ);x˜ ∈ Y }, ∀λ ∈ A. 

 

Definition 2.1.13[2] (Sums and Scalar products of soft sets) Let 

F1,F2,......,Fn be n soft sets in (V,A). Then F = F1 + F2 + ... + Fn 

is a soft set over (V,A) and is defined as F(λ) = {x1 + x2 + ... + 

xn;xi ∈ Fi(λ),i = 1,2,...,n}, ∀λ ∈ A. Let α ∈ K(R or C) be a scalar 

and F be a soft set over (V,A), then αF is a soft set over (V,A) and 

is defined as follows: αF = G, G(λ) = {αx;x ∈ F(λ)}, λ ∈ A. 

 

Definition 2.1.14[2] Let V be a vector space over a field K(R or 

C) and let A be a parameter set. Let G be a soft set over (V,A). 

Now G is said to be a soft vector space or soft linear space of V 

over K if G(λ) is a vector subspace of V , ∀λ ∈ A. 

Proposition 2.1.15[2]  α(F +G) = αF +αG for all soft sets F,G over 

(V,A) and α ∈ K. 

Definition 2.1.16[2]  (Soft Vector Sub spaces) Let F be a soft 

vector space of V over K. Let G : A →P(V ) be a soft set over 

(V,A). Then G is said to be a soft vector subspace of F if(i) for 

each λ ∈ A, G(λ) is a vector subspace of V over K and (ii) F(λ) ⊇ 

G(λ), ∀λ ∈ A. 

Theorem 2.1.17[2] A soft subset G of a soft vector space F is a 

soft vector sub-space of F if and only if for all scalars α,β ∈ K, αG 

+ βG ⊂ G. 

 

Definition 2.1.18[2] Let G be a soft vector space of V over K. 

Then a soft element of V is said to be a soft vector of G. In a 

similar manner a soft element of the soft set (K,A) is said to be a 

soft scalar, K being the scalar field. 
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Definition 2.1.19[2] A soft vector x˜ in a soft vector space G is 

said to be the null soft vector if x˜(λ) = θ, ∀λ ∈ A, θ being the zero 

element of V . It will be denoted by Θ. A soft vector is said to be 

non-null if it is not a null soft vector 

 

Definition 2.1.20[2] Let x,˜ y˜ be soft vectors of G and k˜ be a 

soft scalar. Then the addition x˜ + y˜ of x,˜ y˜ and scalar 

multiplication k.˜ x˜ of k˜ and x˜ are defined by (x˜ + y˜)(λ) = 

x˜(λ) + y˜(λ), k.˜ x˜ (λ) = k˜(λ). x˜(λ),|k˜|(λ) = |k˜(λ)|,∀λ ∈ A. 

Obviously, x˜ + y,˜ k.˜ x˜ are soft vectors of G. 

 

Theorem 2.1. 21[2] In a soft vector space G of V over K, 

(i). ¯0.α˜ = Θ, for all α˜∈˜G; 

(ii). k.˜ Θ = Θ, for all soft scalar k˜. 

(iii). (−¯1)α˜ = −α˜, for all α˜∈˜G. 

 

Definition 2.1.22[2] Let Xˇ be the absolute soft vector space i.e., 

Xˇ(λ) = X, ∀λ ∈ A. Then a mapping ||.|| : SE(Xˇ) → R(A)  is said 

to be a soft norm on the soft vector space Xˇ if ||.|| satisfies the 

following conditions: 

(N1).||x˜||≥˜¯0, for all x˜∈˜Xˇ; 

(N2).||x˜|| = ¯0 if and only if x˜ = Θ; 

(N3).||α.˜ x˜|| = |α˜|||x˜|| for all x˜∈˜Xˇ and for every soft scalar α˜; 

(N4). For all x,˜ y˜∈˜X,ˇ ||x˜ + y˜||≤||˜ x˜|| + ||y˜||. The soft vector 

space Xˇ with a soft norm ||.|| on Xˇ is said to be a soft normed 

linear space and is denoted by (X,ˇ ||.||,A) or (X,ˇ ||.||). 

(N1),(N2),(N3)and (N4) are said to be soft norm axioms. 
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Example 2.1.23[2]  Every parametrized family of crisp norms 

||.||λ : λ ∈ A on a crisp vector space X can be considered as a soft 

norm on the soft vector space Xˇ 

. 

Definition 2.1.24[2] Let (X,ˇ ||.||,A) be a soft normed linear space 

and r˜>˜¯0 be a soft real number. We define the followings; 

B(x,˜ r˜) = {y˜∈˜Xˇ : ||x˜ − y˜||<˜r˜}⊂ SE(Xˇ) B¯(x,˜ r˜) = {y˜∈˜Xˇ 

: ||x˜-y˜||≤˜r˜}⊂SE(Xˇ) 

S(x,˜ r˜) = {y˜∈˜Xˇ : ||x˜ − y˜|| = r˜}⊂SE(Xˇ) 

B(x,˜ r˜), B¯(x,˜ r˜) and S(x,˜ r˜) are respectively called an open 

ball, a closed ball and a sphere with centre at x˜ and radius r˜. 

SS(B(x,˜ r˜)), SS(B(x,˜ r˜)) and SS(S(x,˜ r˜)) are respectively 

called a soft open ball, a soft closed ball and a soft sphere with 

centre at x˜ and radius r˜.  

 

Definition 2.1.25[2] A sequence of soft elements {x˜n} in a soft 

normed linear space (X,ˇ ||.||,A) is said to be convergent and 

converges to a soft element x˜ if ||x˜n−x˜||→ ¯0 as n → ∞. This 

means for every ϵ˜>˜¯0, chosen arbitrarily, ∃ a natural number N 

= N(ϵ˜), such that ¯0≤||˜ x˜n −x˜||<˜ϵ˜ , whenever n > N. i.e., n > N 

⇒ x˜n ∈ B(x,˜ ϵ˜). We denote this by x˜n → x˜ as n →∞ or by 

limn→∞x˜n = x.˜ x˜ is said to be the limit of the sequence x˜n asn 

→∞. 

 

Definition 2.1.26[2] Let τ be the collection of soft sets over X, 

then τ is said to be soft topology on X if 

ϕ, X belong to τ 

the union of any number of soft sets in τ belongs to τ 

the intersection of any two soft sets in τ belongs to τ. 

The triplet (X,τ,E) is called a soft topological space over X. 
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be a soft sets over (U,E). 

 

Define τ(e) 2.1.27[2] = {F(e) : F ∈ τ} for e ∈ E. Then τ is said to 

be a topology of soft subsets over (U,E) if τ(e) is a crisp topology 

on U∀e ∈ E. In this case, ((U,E),τ) is said to be a topological 

space of soft subsets. If τ is a topology of soft subsets over 1(U,E), 

then the members of τ are called open soft sets and a soft set F 

over (U,E) is said to be closed soft set if Fc ∈ τ. 

                 

Chapter two 

Section two 

 

2[. Soft convergence and soft topology 

In this section we discuss about a new type of convergence on a 

soft normed linear space and introduce soft topology generated by 

soft norm on a soft normed linear space and study some of its 

basic properties. 

 

Lemma 2.2.1[2] In a soft normed linear space (X,ˇ ||.||), for any 

x˜∈˜Xˇ   and λ∈ A, ||x˜||(λ) = 0 if and only if x˜(λ) =. θ 

401 

Proof. Let us consider a soft scalar α˜ such that α˜( ) = 1 if   = λ, 

α˜( ) = 0 if   =  λ. Then (α˜x˜)( ) = θ for    = λ, (α˜x˜)( ) = x˜(λ) 

for   = λ. From N 

│ ̃  ̃║=│ ̃│ ║ ̃║ 

 ̃ iff  ̃ (λ)= θ 

 

  (3) we have. This shows that ||x˜||(λ) = 0 iff |α˜|||x˜|| = 0¯ iff 

||α˜x˜|| = ¯0 iff α˜x˜ =□ 
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( 

 

Lemma 2.2.2[2] In a soft normed linear space (X,ˇ ||.||), for each ξ 

∈ X and λ ∈ A, {||x˜||(λ) : x˜(λ) = ξ} is a singleton set. 

Proof. In a soft normed linear space, by N (4), we have,      for all 

˜ 

 ̃   ̃ ∈̃ x││ ̃ ││ ̃││  ̃–││  ̃││-││  ̃││  ̃││ ̃- ̃││.so 

 ̃+ ̃││ ̃││ ̃- ̃││+││ ̃││   ││ ̌││-││ ̃││ ̃││ ̃- ̃││.similarly 

Then  ║│ ̃║( λ) –now if  x-y) (λ)= ̃(λ)  ̃(λ)= θ i.e.oby 

 

Lemma 2.2.3[2] since(˜||x˜||(λ) = ||y˜||(λ), which proves the 

lemma. □ 

Proposition 2.2.([4]) 

(Decomposition Theorem) In a soft normed linear space 

X,ˇ ||.||), if∈ we define|| || for|| ||each λ ∈ A, ∈||.||λ : X → R+ be a 

mapping such that 

˜ ˇ is such that x˜(λ) = ξ. Then for each for each ξ X, ξ λ = x˜ (λ), 

where x˜ X λ ∈ A, (X,||.||λ) is a normed linear space. 

Proof. Since for λ ∈ A, {||x˜||(λ) : x˜(λ) = ξ} is a singleton set, the 

mapping ||.|o| λ : X → R+ is well defined. Hence from soft norm 

axioms, it follows that (X,||.||λ) is a normed linear space λ ∈ A. □ 

 

 

Definition 2.2.4[2] In a soft normed linear space a sequence    f 

soft elements is said to be soft convergent and  soft converges to a 

soft element x,˜ if for any soft real number ϵ˜>˜¯0 there exists a 

soft natural number N˜ such that ||   − x˜||(λ) < ϵ˜(λ) ∀ n ≥ N˜ (λ), 

∀ λ ∈ A and is denoted by limn→∞     = x˜ or     ,→ x˜, where 

x˜ is called the soft limit of the sequence    
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Proposition 2. 2.5[2]. Soft limit of a sequence of soft elements in 

a soft normed linear space is unique. 

Proof. Let     is sequence of soft elements in a soft normed linear 

space (X,ˇ ||.||) such 

Exist that lim soft n→∞ natural   =˜x numbers andlimN˜n1→∞and 

  N˜=2 y˜such. Thenthatfor   

║  ̃- ̃║( λ) 
∈( )

 
∀    (λ) 

any soft real number ϵ˜>˜¯0 there , 

∀λ∈      ║  - ̃║(λ)
∈( )

       
 ∀    (λ),∀λ∈  .i.e.║    ̃║(λ) 

∈( )

         
 and  

║  - ̃║│( λ) 
∈(   )

 
 ∀   ̃(λ),mam  *        

where maximum of these 

soft natural numbers taken as component wise) ∀ λ ∈ A. Now for 

∀ n ≥ N˜ (λ), ||x˜−y˜||(λ) <||    −x˜||(λ)+|| −  y˜||(λ)< ϵ˜(λ)∀ λ ∈ A, 

which shows that x˜ = y.˜ □ 

 

Proposition 2.2.6[2] A sequence    of soft elements in a soft 

normed linear space (X,ˇ ||.||||)||is soft convergent to x˜ iff x˜n (λ) is 

convergent to x˜(λ) in (X,||.||λ) ∀λ ∈ A, where . λ defined as in 

Proposition 2  .2.([6]) 

Proof. Let    be sequence→ soft converging to the soft element 

x˜ in (X,ˇ ||.||). Take ϵ > 0, then since    , x˜, so there exists a soft 

natural number N˜ such that 

 

║  - ̃ ( λ)  ∈ (λ)=∈  ∀    ̃ (λ),∀ λ∈   which shows that 

   (λ)  ̃ (λ)∀  ∈    
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( 

 But ||   −x˜||(λ)=|   |(λ)−x˜(λ)||λ, Conversely,   (λ) → x˜(λ) ∀λ 

∈ A. Take ϵ˜>˜¯0, since    (λ) → x˜(λ) ∀λ ∈ A, so for each λ ∈ A 

∃Nλ, ||   −x˜||(λ) = ||   (λ)−x˜(λ)||λ < ϵ˜(λ) ∀n > Nλ. Now if we 

define N˜ (λ) = Nλ ∀λ ∈ A then ||   − x˜||(λ) < ϵ˜(λ) ∀ n ≥ N˜ (λ), 

∀ λ ∈ A. This proves the proposition. □ 

 

Definition 2.2.7[2]. Asequence    in a soft normed linear space is 

said to be soft Cauchy if for any soft real number ϵ˜>˜¯0 there 

exists a soft natural number N˜ such that ||   −   ||(λ) < ϵ˜(λ) ∀ 

n,m ≥ N˜ (λ) , ∀ λ ∈ A. 

 

Propositionn 2.2.8[2] Asequence    a soft normed linear space (X,ˇ ||.||) 

is soft 

Cauchy iff x˜ (λ) is Cauchy in (X, . ˇ ||.||) λ A, where . is defined as 

in Proposition 2"  2. 

Proof. Proof is same as in Proposition 2.6 □  

 

Proposition 2.2.9[2] Every soft convergent sequence of soft 

elements is soft Cauchy. 

Proof. Let    ,→ x˜, then the relation ||    −  ||(λ)   ≤||  −x˜||(λ)+||    

−x˜||(λ)∀ λ ∈ A gives the result. □ 

 

Definition 2.2.10[2] Asequence     of soft elements in a soft normed 

linear space 

(    ||.||) is said to be bounded if there exists a soft real number M˜ 

such that ||x˜ ||≤ ˜M˜ , n N (The set of all natural numbers). 

 

Proposition 2.2.11[2] Every soft Cauchy sequence   of soft elements in 

a soft normed linear space (nX,ˇ ||.||) is bounded.   ( ||||) 
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Proof. Let x˜ be a soft Cauchy sequence in X,ˇ . . Then there exists a soft 

 

Real number such that ║       ║(λ)  ̅ ∀ n,m   ̃ (λ),∀ 

λ∈             λ║ ║λ║    ║λ║   ║λ∀   λ ∀ λ A 

 

N˜.    (  − x˜N˜(λ) ( ) + x˜N˜(λ) ( ) < 1 + x˜N˜(λ) ∈ . 

Now if we take 

M˜(λ)= maxn{||||x˜1||(λ),||x˜2||∀(λ)∈,||x˜∀3||(λ∈),......||x˜||N˜(nλ||) ≤1||(λ∀), 

∈1 + ||x˜N˜(λ)||(λ)}, 

then clearly ||x˜ (λ) < M˜ (λ) n N λ A. i.e. x˜ ˜M˜ n N. □ 

Corollary 2.2.11[2] Every soft convergent sequence    of soft elements 

in a soft normed linear space (X,ˇ ||.||) is bounded. λ( ||||) (( ||||) ( ||||) ||||λ 

 

Definition 2.2.12[2]. A soft normed linear space X,ˇ . is said to be soft 

complete if every soft Cauchy sequence in   X,ˇ . is soft convergent in X,ˇ 

. . 

Proposition 2.2.13[2]. Asoft normed linear space (X),ˇ ||.||) is soft 

complete iff (X, . ||.||) is complete ∀λ ∈ A, where defined as in 

Proposition 2.2 

 

Proof. Let (X,ˇ ||.||) is soft complete and λ ∈ A. Consider (X,||.||λ). Let 

{  }{be} 

aCauchy sequence in (X, . ). Now if we construct a sequence of soft 

elements    such that 

 

  ̃( )  {
                

            
             (   

. 
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Then clearly⇒{{x˜nn}} is soft Cauchy. So by soft λ completeness of (X,ˇ 

||.||), {  } is convergent x is convergent. i.e. (X,||.|| ) is complete. 

 

Converse of the proof directly follows from Proposition 3.3, Proposition 

3.6 and Proposition 3.8. □ 

 

Corollary 2.2.14[2] The soft set R(A) over R(set of real numbers) is soft 

complete. 

 

Proposition 2.2.15[2]  In a soft normed linear space (X,ˇ ||.||), 

SS(B(x,˜ r˜))(λ) = 

S ( ̃(λ)), ̃( )∀ ∈          (  ̃  ̃)= { ̃ ∈̃  ̃ : ||  ̃ -  ̃ ||  ̃  ̃}CSE(x) and 

S( ̃(λ)( λ))= z λ :  ̃ (λ)z λ  ̃ (λ) 

r˜{ ∈||− || < } 

Proof. Let λ ∈ A and z ∈ SS(B(x,˜ r˜))(λ). Then there exists a soft 

element y˜ such that 

||  ̃ -  ̃ ||  ̃  ̃ and  ̃( λ))= z,So ||  ̃-  ̃ || ( λ)<  ̃( λ) ||  ̃(λ) || 

i.  ˜ (x) z < ̃ r ()⇒ z S (̃ x () , r̃  ()).  

  

Now let z S (̃ x () , r̃  ()).. Then if we take a soft element z˜ such 

that z˜( ) = z when   = λ, z˜( ) = x˜( ) when   =  λ. Then clearly 

z˜∈˜B(x,˜ r˜). Hence z ∈ SS(B(x,˜ r˜))(λ).  

 

Corollary2.2.16[2](. If S (xλ,rλ) are open balls in (X,||.||λ) ∀λ ∈ 

A. Then the soft set U such that U (λ) = S (xλ,rλ) ∀λ ∈ A is the 

soft∀ open∈ ball in (X,ˇ ||.||) with centre x˜ and radius r˜, where 

x˜(λ) = xλ and r˜(λ) = rλ, λ A. 
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Proof.  Consider the soft element x˜ and soft real number r˜ such 

that x˜(λ) = xλ and r˜(λ) = rλ,∀λ ∈ A. Now if we consider the open 

ball B(x,˜ r˜). Then clearly, by the previous proposition, SS(B(x,˜ 

r˜)) = U. □ 

 

Proposition 2.2.17[2] Let in a soft normed linear space (X,ˇ ||.||), τ 

be the set of all soft sets in X such that( U˜||∈||τ) iff U˜ can be 

expressed as a union of finite intersections of soft open balls of 

X,ˇ . . Then τ forms a soft topology [15] on X. 

 

Proof. The proof is straightforward. □ 

All the members of τ are( said to) be the soft open in (X,||ˇ||||.||). A 

soft set F˜ is said to be the soft closed in X,ˇ ||.|| if F˜c ∈ τ. The 

topology defined as in Proposition 2.16 is called the topology 

generated by the soft norm . on Xˇ. 

 

Proposition 2.2.18[2]. For any α ∈ A the collection τα  { U˜( α) : U˜∈τ} 

is a t opology 

in X. i.e. τ is a topology of soft sets on X. 

 

Proof. Proof directly follows from the Definition of soft topology 

τ and Proposition 

2.16. □ 

 

Corollary 2.2..19[2] (|Let) U be soft set in a soft normed| linear  space 

(X,ˇ ||.||). If  U is soft open in X,ˇthen U (λ) is open in (X, . λ)∀ λ∈  . 

Further, if X = θ , then the converse is also true. 

Proof. Let U be soft open in (X,||.||). Then U =   ∆
 
 =1Gi,j,    
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where n is a positive integer and Gi,j is a soft open ball, i ∈ ∆. Now U () 

=  ∆
 
 =1Gi,j ()  

and Gi,j (λ) is a open ball in (X,||.||λ), so U (λ) is an open ball in 

(X,||.||λ) ∀λ ∈ A. For the converse part consider the following 

Cases: 

• Case-1: Let U ∈S (X). i.e. U (λ) =  ϕ ∀λ ∈ A. Now since for each 

λ ∈ A, 

U (λ) is open in (X,||.||λ). So U (λ) can be expressed as aunion of open 

balls in (X,||.||λ), ∀λ ∈ A. Choose for each λ ∈ A one such open ball 

in((X,ˇ ||.||)) and thereby  construct a soft{set.∈ Then this soft} sets are 

soft  open  balls in   X,ˇand their union is the soft set U. Hence U is soft 

open in 

(X,ˇ||.|| ) 

•   Case-2: If U ∈  (X). Let A1 ={λ A;U (λ) = ϕ }. Since X ≠{θ ,} 

∃ x(≠ θ) ∈ X. Take two disjoint balls B (x,r) and B (θ,r) in X. Now 

construct the soft sets U1 and U2 as in Case-1 by taking U1 (λ) = B (x,r) 

if λ ∈ A1, U1(λ) = U(λ) otherwise and U2 (λ) = B (θ,r) if λ ∈ A1, U2(λ) = 

U(λ) otherwise. Then U1 and U2 are soft open by Case-1. Hence U = 

U1∩U2 is soft open in   X,ˇ . . 

□ 

Definition2 .2.20[2] In a soft normed linear space (X,ˇ ||.||), a soft element 

x˜ is said to be an interior point of a soft set U if there exists a open ball 

B(x,˜ r˜) containing x˜ such that SS(B(x,˜ r˜)) ˜U. 

Proposition 2.2.21[2]. In a soft normed linear space||) (X,ˇ ||.||)||a||soft set 

U ∈S (X) is soft open in   X,ˇ . iff any soft element x˜˜U is an interior 

point of U. 

 

Proof. Let U( (X)) be soft open in X,ˇ . and x˜˜U. Then U (λ) is open in 

(X, . λ) λ A(by first part of Corollary 3.20). Now (X, . λ) is a normed 

linear space so U (λ) can be expressed as a union of open balls in (X,||.||λ) 
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∀λ ∈ A, where at least one of the balls contains the point x˜(λ) ∀λ ∈ A, 

since x˜∈˜U. If we take the soft set whose λ components are these open 

balls containing x˜(λ) in (X,||.||λ) ∀λ ∈ A, by Proposition 2.16, this soft 

set will be soft open ball in   (X,ˇ ||.||) containing x˜ and contained in U, 

which proves that x˜ is an interior point of U. 

Conversely, let any soft element x˜∈˜U be an interior point of U. Then for 

each x˜∈˜U there exists a open ball B(x,˜ r˜) such that SS(B(x,˜ r˜)) ˜U. 

Now if we take all soft elements of U then U = SS ( x˜∈˜U {x˜})  ˜ 

x˜∈˜U { SS(B(x,˜ r˜))} ˜U. i.e. U is a soft open set. □  

 

Proposition 2.2.21[2] Let (X,ˇ ||.||) bea soft normed∈   linear space and  

  be any sequence in a soft closed set F. If    x then x˜˜F. 

 

Proof. Let x˜∈˜/F, then x˜(λ) ∈/ F (λ) for some λ ∈ A ⇒x˜(λ) ∈ X − F (λ), 

where X −F (λ) is open in (X,||.||λ). Now since   ,→ x˜ ⇒    (λ) → x˜(λ), 

so the sequence    (λ) is eventually in X − F (λ), which contradicts that 

the sequence x˜n is in F. 

Hence x˜∈˜F 

 

 

 

 

 

Chapter tow 

Section three 

 

3. Soft Banach algebra and its properties 
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Definition 2.3.1[2] Let V be an algebra over a field C of complex 

numbers and let A be the parameter set and (G,A) be a soft set 

over V . Now (G,A) is said to be a soft algebra of V over C if G(λ) 

is a sub algebra of V ∀λ∈A. 

It is very easy to see that in a soft algebra the soft elements satisfy 

the properties: 

(x˜y˜)z˜ = x˜(y˜z˜) 

x˜(y˜+ z˜) = x˜y˜+ x˜z,˜ (x˜ + y˜)z˜ = x˜z˜+ y˜z˜ 

α˜(x˜y˜) = (α˜x˜)y˜ = x˜(α˜y˜) 

where for all x,˜ y,˜ z˜∈˜Gˇ and for any soft scalar α˜, x˜y˜(λ) = 

x˜(λ)y˜(λ) and α˜x˜(λ) = α˜(λ)x˜(λ). If (G,Aˇ ) is||also||≤||a 

soft||||Banach|| space( with) respect to a soft norm that satisfies the 

inequality x˜y˜ ˜ x˜ y˜ and if G,Aˇ contains an identity e¯ such that 

x˜e¯=¯ex˜=x˜ with ||e¯|| = ¯1, then (G,A) is called a soft Banach 

algebra. In addition, if in a soft Banach algebra (G,A), x˜y˜ = y˜x˜, 

∀x,˜ y˜∈˜Gˇ then (G,A) is called a commutative soft Banach 

algebra. 

 

Proposition 2.3.2[2]. (G,A) is a soft  Banach  algebra iff G(λ) is a 

Banach algebra ∀λ ∈ A. 

 

Proof. Proof follows from the definition of soft algebra and Proposition  

2.14. □ 

Proposition 2.3.3[2]. In a soft Banach algebra if    ,→ x˜ and    ,→ y˜ 

then        ,→ xy˜. i.e. multiplication in a soft Banach algebra is 

continuous. 

 

Proof. Since  ,→ x˜ and   ,→ y in (G,A). So     (λ) → x˜(λ) and    (λ) 

→ y˜(λ) ∀λ ∈ A in (G(λ),||.||λ). Now since G(λ) is Banach algebra ∀λ ∈ A 

(by Proposition 4.2) and in Banach algebra multiplication is continuous 



33 
 

so,    (λ)    (λ) → x˜(λ)y˜(λ)∀λ ∈ A, which proves that   ,→    x˜y˜ ( 

by Proposition 3.6). □ 

 

Proposition 2.3.4[2] Every parametrized family of crisp Banach algebras 

on a crisp vector space V can be considered as a soft Banach algebra on 

the soft vector space 

Vˇ. 

Proof. Let ||.||λ : λ ∈ A be a family of crisp norms on the vector space V 

such that (V,||.||λ) are Banach algebra ∀λ ∈ A. Now let us define ||.|| : Vˇ 

→ R(A)  by ||x˜||(λ) = ||x˜(λ)||λ, ∀λ ∈ A,∀x˜∈˜Vˇ. Then by Example 2.23 

(Vˇ,||.||) is a soft normed linear space. Now to show that (Vˇ,||.||) is a soft 

Banach algebra we have to show that ||x˜y˜||≤||˜ x˜||||y˜|| ∀ x,˜ y˜∈˜Vˇ and 

(Vˇ,||.||) is complete. 

Now ||x˜y˜||(λ) = ||x˜(λ)y˜(λ)||λ ≤ ||x˜(λ)||λ||y˜(λ)||λ ≤||x˜||(λ)||y˜||(λ) ∀λ ∈ A, 

which shows that ||x˜y˜||≤||˜ x˜||||y˜||. 

Now let      be a Cauchy sequence in Vˇ. Then for any ϵ˜>˜0¯ there exists 

a soft natural number N˜ such that 



 

˜  +p    ()< ∈
 
()n N () A⇒  +p() ()  ()<

∈

 
 ()n 

N (), A. i.e    () is a Cauchy sequence in (V,.)  

∀λ ∈ A . Since (V,||.||λ) are Banach algebra ∀λ ∈ A, so there exist xλ such 

that x˜n(λ) converge to xλ, ∀λ ∈ A. Hence there must exist some Nλ(> N 

(λ)) such that 

   ()x<(
∈

 
)nN,A .Now  x() =(  )x <(  )  

   ()+̃ xN
x ()< (̃)n > N (), A, where x() = x. This  

 

shows that (V,||.||) is a soft Banach space. Hence (V,||.||) is a soft Banach 

algebra. 

□ 

Definition 2.3.5[2] Asoft element x˜∈˜Gˇ is said to be invertible if it has 

an inverse in Gˇ i.e. if there exists a soft element y˜∈˜Gˇ such that x˜y˜ = 
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y˜x˜ = e¯ and then y˜ is called the inverse of x˜, denoted by x˜−1. 

Otherwise x˜ is said to be non-invertible soft element of Gˇ. 

 

Remark 2.3.6[2] Clearly e¯ is invertible. If x˜ is invertible, then we can 

verify that the inverse is unique. because if y˜x˜ = e¯ = x.˜z˜ Then y˜ = 

y˜e¯ = y˜(x˜z˜) = (y˜x˜)z˜ = e¯z˜ = z.˜ Further, if x˜ and y˜ are both 

invertible then x˜y˜ is invertible and (x˜y˜)−1 =(       )(. For (x˜y˜ 

(       ) = x˜(y    )x˜   )  = x˜e¯    )  = e¯ and similarly 

((       )(x˜y˜)= e¯ . 

 

Definition 2.3.7[2] Let (G, ) be a group and (F,A) be a soft set over G. 

Then (F,A) is said to be a soft group over G if and only if F(λ) is a 

subgroup of (G, ) for all λ ∈ A. 

Proposition 2.3([8]). Let (G, ) be a group and (F,A) be a soft set 

over G. If for any 

x˜, y˜ ∈˜(F,A) 

x˜˜ y˜∈˜(F,A) 

x˜−1∈˜(F,A), where x˜˜ y˜(λ) = x˜(λ)   y˜(λ) and x˜−1 (λ) = 

(x˜(λ))−1. Then (F,A) is a soft group over G. 

Proof. Proof is obvious. □ 

Note 3.9. This shows that in a soft algebra, the soft set generated 

by the all invertible elements is a soft group with respect to the 

composition defined as in Proposition ??. 

 

Definition 2.3.10.[2] A series    
 
   of soft elements is said to 

be soft convergent if the 

partial sum of the series sk=    
 
   ˜ is soft convergent. 
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Proposition 2.3.11[2]. Let (G,A) be a soft Banach algebra. If 

x˜∈˜Gˇ satisfies ||x˜||<˜¯1, 

then (¯e − x˜) is is invertible and  ( ̃- )  =e+   
 
    

Proof. Since (G,A) is soft algebra, so we have ||x˜j||≤||˜ x˜||j for 

any positive integer j, so that the infinite series    ║x║
 
 is soft 

convergent because ||x˜||<˜1.¯ So the sequence sk=    
 
    

of partial sum ˜   is a soft Cauchy sequence since ||∑x˜n|| <˜ 

∑||x˜||n. 

n=k     
 
    

Since ( G,A) is soft complete sois soft convergent. 

 Now let s˜ = e¯+ ∑ x˜ . 

n=1 Now it is only we have to show that s˜ = (¯e − x˜)−1. 

We have 

(3.1) (¯e − x˜)(¯e + x˜ +    + ...   ) = (¯e + x˜ +  +   .. )(e˜− 

x  ˜) = e¯−   +1 

Now again since ||x˜||<˜¯1 so      ,→ θ¯ as n→ ∞. Therefore 

letting n→ ∞ in and remembering that multiplication in G is 

continuous we get, 

(¯e − x˜)s˜ = s˜(¯e − x˜) = e˜ 

. So that s˜ = (¯e − )       This proves the proposition. □ 

 

Corollary 2.3.12[2] Let  G be a soft Banach algebra. If x˜ ∈ G 

and ||e¯− x˜|| < ¯1, then     = ̅+ (     ̅- )  

     exists and . 

 

Corollary 2.3.13[2] Let G be a soft Banach algebra. Let x˜ ∈ G 

and  ˜ be a soft scalar 
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such that | ˜|>˜||x˜||. Then ( ˜e¯− )   exists and 

 ( ̃   ̅-¯− )  =           (    )̃ 

Proof. y˜ ∈ G be such that y˜−1exists in G and α˜ be a soft scalar 

such that α˜(λ) =  0 , 

∀λ ∈ A. Then it is clear that 

(α˜y˜)−1 = α˜−1y˜−1. 

Having noted this we can write 

 ˜e¯− x˜ =  ˜(¯e −  ˜−1x˜) 

and now we show that (¯e−  ˜−1x˜)−1 exists. We have ||e¯− (¯e 

− ˜−1x˜)|| = || ˜−1x˜|| = | ˜|−1||x˜|| <˜¯1 by hypothesis. So, By 

Corollary 3.12 (¯e −    x˜)−1 exists and hence ( ˜e¯− x˜)−1 

exists. For the infinite series representation, using the Proposition 

3.11 we have 

( ˜e¯− x˜)−1 =  ˜−1(¯e −  −1x˜)−1  

    ( ̅+ ,  (  〗   〖 )-  
   ,   〖 )-  

    ( ̅+ ,     〖 )-  
    

=         
    

This proves the corollary. 

 

Proposition..2.3.14[2] Let G be a soft Banach algebra. The soft 

set S generated by the set of all invertible soft elements of G is a 

soft open subset in G. 

Proof. x˜0∈˜S. We have to show that x˜0 is a soft interior point of 

G. Consider the open sphere)  (  
 

   
  
 

 with centre at x˜0 and 

radius . 
 

   
  
 

 Every soft element x˜ 

of this sphere satisfies the inequality║     x║   
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Let y˜ =    1x˜ and z˜ = e¯ − y˜ then we have ||z˜|| = ||y˜ − e¯|| = || 1x˜    

−     − 1x˜0|| ≤||˜  1||||x˜ −   -    ||<˜¯1 . So by Proposition 3.11, e¯− z˜ is 

invertible i.e. y˜ is invertible. 

Hence y˜∈˜S. Now x˜0∈˜S, y˜∈˜S and so by Remark3.6, x˜0y˜ ∈ S. But 

   y˜ =    x˜−0 1x˜ = x˜ 

So any x˜ satisfying the inequality (3.2) belongs to S. This shows 

that S is a soft open subset of G. □ 

Corollary 2.3.15[2] The soft set P(= Sc) of G is soft closed subset 

of G. 

 

Definition 2.3.16[2] Amapping T from a soft normed linear space 

G onto G is said to be continuous if for any sequence   ,→ x˜ 

implies T(  ) ,→ T(x˜). 

 

Proposition 2.317[2]. In a soft Banach algebra G, the mapping x˜ 

,→ x˜−1 of S onto S is continuous. 

Proof. Let    ∈ S and let {  } be a sequence of soft elements in S 

such that    ,→    as n →∞. To prove x˜ ,→ x˜−1 is continuous, 

it is enough to show that   
    ,→   

  . Now 

||   
   −   

  || = |  
  | (   −   )   

  || 

(2.3) ≤||˜ |  
  |||||    −   ||  

  ||||. 

Since    ,→    , for any given ϵ˜>˜0¯, there exists N˜ such that for all n ≥ 

N˜(λ) , 

║       ║( λ )   
 

    
  
 

(λ∈ 
 

      
¯ 

4))where we have taken Now 

(3.5) ||e¯−    
    || = ||  − 1(  

   −  )||≤||˜   
   1||||(x˜ −   || 

Using (3.4) and (3.5) we get    
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║ ̃-  
     ( )  

 

 
(λ)=

 

 
∀   ̃(λ 

   
      

So by Corollary is invertible and its inverse is given by =  
     

(  
    )

    ̅+ ( ̅-  
    )

  

   
  
               

     
 
 

 

  ║    
      

. Thus 

≤˜¯2 by (3.6). This gives ||x˜−n1x˜0||<˜¯2 so that we have 

(3.7) ||  
   || = |  

  |  
   ||≤|| ||  

    |||  
     ||≤˜¯2|| |  

  | 

From (3.3))and (3.7) we get 

||   
  −   

   ||(λ)≤˜2||  
   ||(λ)||       ||(λ)|   

  |||(λ) → 0asn →∞. 

This proves that   
     

  ,→   as n → ∞. So the mapping x˜ ,→    of S 

onto S is continuous. □ 

 

 Corollary 2.3.18.[2] In a soft Banach algebra G, the mapping x˜−1 ,→ 

x˜ of S onto S is continuous. 

 

Definition 2.3.19[2] Let G be a soft Banach algebra. A soft element z˜ ∈ 

G is called a soft topological divisor of zero if there exists a sequence 

{  },    ∈ G, |  ||| = ¯1 for n = 1,2,3..... and such that either z˜   ,→ Θ 

or   z˜ ,→ Θ. 

 

Proposition 2.3.20.[2] The soft set Z is a soft subset of P, where Z 

denotes the set of all soft topological divisors of zero. 

 

Proof. Let z˜ ∈ Z. The there exists a sequence {  } such that ||  || 

= ¯1 for n = 1,2,3..... and either z˜   ,→ Θ or   z˜ → Θ as n → ∞. 

Suppose that z˜   ,→ Θ. 
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If possible, let z˜  ∈ P. Then z˜(λ)−1 exists for some λ. Now as 

multiplication is continuous operation, we should have 

   (λ) = z˜(λ)−1 (z˜   )(λ) → z˜(λ)−1 Θ(λ) = θ asn →∞. 

This contradicts the fact that ||   || = ¯1 for n = 1,2,3..... . Hence Z 

is a soft subset of P. □ 

 

Definition 2.3.21[2] Let (X,ˇ ||.||) be a soft normed linear space and Y ∈ S 

(X). A soft element α˜ Xˇ is called a soft boundary elements of Y if there 

exist two sequence    and     of soft elements in Y and Y c respectively 

such that    ,→ α˜ and    ,→ α˜. Proposition 3.22. The boundary of P is 

a soft subset of Z. 

 

Proof. Let z˜ be a boundary point of P. So there exist two sequences of 

soft elements     in S and     in P such that 

(3.8)    ,→ z˜and    ,→ z.˜ 

Since P is soft closed so z˜∈˜P. Now let us write r˜n−1z˜ − e¯ = r˜n−1 

(z˜−   ). The sequence∈ {   
   (λ)} given above|| is unbounded− || ∀λ ∈ 

A.If not, then∀ ∈there exists some λ A and n(λ) such that   
    z˜ e¯ (λ) 

< 1 n n(λ), λ A. So that by 

Corollary 3.12,   
  z˜(λ) is regular| and hence  z˜(λ)∀ =    (λ)( 

  
  z˜)(λ) is regular, contradicting ∈ z˜˜P. Hence  {   

   (λ)} is regular 

unbounded λ A so that 

(3.9) ║   
      ,¯  as     . 

Now let us define     
  
  

   
  
 
˜. From the definition of   , we 

have(3.10.        Further 

   =
  
  

   
  
 

=
     

    

   
   

 
  (    )  

  

   
   

(3.11).But 
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  (    )  
  

  
   

 ̅

   
   

 ( ̃-  )  (3.12).From (3.11) and (3.12), we 

get 

    
 ̅

   
   

 ( ̃-  )  (3.13) . 

Using (3.8), (3.9) and (3.10) in (3.13) we see that z˜   ,→ Θ as n → ∞. 

Hence z˜ □is a topological divisor of zero. 
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