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Abstract

In a soft normed linear space we have been able to define a new concept
of convergence of a sequence of soft elements, which we call soft
convergence. We have defined a soft topology [15] generated by a soft
norm and which is also known to be a topology of sets [10]. We are also
able to introduce a definition of soft Banach algebra and study some of its

propertie
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INTRODUCTION

Banach algebra is an important field of functional analysis, which
has many ap- plications

in various branches of mathematics. Many examples of classical
Banach

algebras are known, among them are B (X), the space of bounded
linear operators

on X and C (X), the space of continuous functions on X. When X is
a Hilbert

space, the space of bounded linear operators play a key role in
quantum mechanics

and differential equations. We have introduced fuzzy Banach
algebra in [16, 17].

Thus it is a natural query to extend the concept of Banach algebra
in soft setting.

In this paper we introduce a definition soft Banach algebra and
study some of its

properties. In section 2, preliminary results are given. In section 3, we
introduce a

new concept of convergence of a sequence of soft elements. With this
convergence we

have shown that the condition of finiteness of parameter set is not
required in many

cases like completeness of finite dimensional soft normed linear spaces
etc [3, 6]. In

this section it is also shown that the norm axiom N (5) is redundant,
which was used

frequently to prove most of the theorems on soft normed linear spaces [3,
6] and we
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are also able to define a soft topology generated by a soft norm in a soft
normed

linear space. In section 4, we introduce the concept of soft Banach
algebra and some

of its preliminary properties are studied. Section 5 concludes the paper.
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Definition 1.1.1[1]( linear algebra): We shall say that R is a linear
algebra if R is a linear space. an operation of multiplication (which in
general is not commutative) is in R satisfying the following conditions:-

1) x(xy) = (xx)y = x(ay)

2) x(yz) = (xyz)

A (x+y)z=xz+yz

For arbitrary xeR and any number a.

In the sequel we shall consider only linear algebras and the term
"algebra" will a linear algebra.

Definition 1.1.2[1]: In elements x, y in the algebra R are said to commute
iIf xy = yx an algebra is said to be commutative if any two of its elements
commute. In the sequel we shall in general that the algebra under
consideration are commutative a subset R; € R is called a sub algebra of
the algebra R if the application of the addition scalar multiplication and
multiplication to element of R, elements in R,

Definition 1.1.3[1]: A commutative sub algebra is said to be maximal if
it is not contained in any a commutative sub algebra. It follows from the
preceding discussion that.

Theorem 1.1.4[1]: Every commutative sub algebra is contained in a
maximal commutative sub algebra.

Proof:- The set ) of all all commutative sub algebra of the algebra R,
which can in a given commutative sub algebra. Is a partially ordered set.
Ordered by in which satisfies the condition of zeros lemma: namely. The
least upper bound of any linear ordered set of these sub algebra is simply
their union on the basis of the Zorn lemma. ), contains a maximal
element which will then be the maximal commutative sub algebra
containing x. Since every element x is contained in the commutative sub
algebra R, (x), it follows from proposition | that.

Theorem 1.1.5[1]: Every element x is contains in a maximal
commutative sub algebra.

Example 1.1.6[1]: We denote the set of all continuous complex- value
function on the topological space x by C(x) in C(X) we define operations
of addition- scalar multiplication and multiplication respectively as the
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addition of function, the multiplication of function by a number and the
multiplication of function clearly C(x) will then be an algebra this
algebra is commutative.

Example 1.1.7[1]: Suppose x is an arbitrary linear, we denote the set of
all linear operators in x with domain x by A(X). In A(X) we define
operation of addition, scalar multiplication, and multiplication as the
corresponding operation on operations (see subsection 6.) then A(x) is an
algebra A(X) is commutative only in the case when X is one-
dimensional.

Definition 1.1.8[1]: (Algebra with identity)

An algebra R iscalled an algebra with identity if R contains an elemente
which satisfies the condition: ex = xe = x for all xeR.

The element e itself which satisfies condition (1) is called an identity of
the algebra R.

Theorem 1.1.9[1]: Every algebra R without identity can be considered as
a sub algebra of an algebra R with identity.

Theorem 1.1.10[1]: A maximal commutative sun algebra R, of the
algebra R with identity is also an algebra with identity.

Theorem 1.1.11[1]: If x~1 exists and if x, y commute, then x~1 and y
also commute.in fact multiplication both members of the equality
xy = yx on the left and right by x =1, we obtain yx=1 = x~ 1y,

Theorem 1.1.12[1]: If x is the maximal commutative sub algebra which
contains x and x~1 exists then x1eX.

Theorem 1.1.13[1]: If every element x # 0 in the algebra R with identity
has a left inverse, then R is a division algebra.

Definition 1.1.14[1]: An element yeR is called a left quasi- inverse of the
element e + x in R, e + y is a left inverse of the element e + x in R, that
mean if (e +y)(e +x) =e.

Example 1.1.15[1]: The algebra C(x) is an algebra with identity. The
identity of this algebra is the function which is identically equal to unity
on x.
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Example 1.1.16[1]: The algebra A(x) and A(x) are algebra with identity
which is the identity operator.

Definition 1.1.17[1]: The center of algebra R is the set of those element
aeR which commutative with all the elements of R. The center a
commutative sub algebra of the algebra R.

Definition 1.1.18[1]: A set I, of elements of the algebra R is called a left
ideal R if

1) I, # R.

2) I, is a sub space of the linear space R.

3) If xel, AeR then axel.

Theorem 1.1.19[1]: An element xof an algebra with identity has a left
(right) inverse if and only if it is not contained in any left (right)ideal.

Theorem 1.1.20[1]: Every left (right) ideal of the algebra R with identity
Is contained in a maximal left (right) ideal.

Theorem 1.1.21[1]: An element x of an algebra with identity has a left
(right) inverse if and only if it is not contained in any maximal left(right)
ideal.

Theorem 1.1.22[1]: Every two- sided ideal of an algebra with identity is
contained in a maximal two- sided ideal.

Theorem 1.1.23[1]: Every regular (right, left, two- sided) ideal can be
extended to a maximal (right, left, respectively, two- sided) ideal (which
is obviously regular also).

Theorem 1.1.24[1]: An element x in the algebra R has a left quasi-
inverse if and only if for arbitrary maximal regular left ideal M, there
exists element such that x + y + yx eM.

Theorem 1.1.25[1]: An element x in the algebra R dose not have a left a
quasi- inverse if and only if I, = {z + z,}, zeR.

Definition 1.1.26[1]: An element x,, in the algebra R with identity is said
to be generalized nilpotent if (e + yx,)~?! exists for an arbitrary element
yeR .the set of all generalized nilpotent element in the algebra R is called
its (Jacobson) radical.
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Theorem 1.1.27[1]: The radical of an algebra with identity coincides
with intersection of all its maximal left ideal.

Theorem 1.1.28[1]: An element x, belong to the radical of an algebra
with identity if and only if a two- sided inverse (e + ax,)~?! exists for
every element a of the algebra.

Theorem 1.1.29[1]:

The intersection of all maximal left ideals coincides with the intersection
of all maximal right ideals and is the radical of the algebra.

Definition 1.1.30[1]: An algebra is said to be semi simple if it is radical
consist of only the zero element suppose now that R is an algebra without
identity and that R’ is the algebra obtained form R by adjoining the
identity.

Definition 1.1.31[1]: An element x, is said to be generalized nilpotent
xx, +zx, has a left quasi- inverse for arbitrary zeR and arbitrary
numbers x in this definition R is no large necessarily an algebra with
identity.

Theorem 1.1.32[1]: In a non- radical algebra, the radical is the
intersection of all maximal regular left ideal and also the intersection of
all maximal regular right ideal and therefore it is two sides ideal.

Theorem 1.1.33[1]: The quotient algebra module the radical is a semi
simple algebra.

Theorem 1.1.34[1]: Every irreducible algebra R, different form (0), of
linear operators in the vector space x is a semi simple algebra.

Definition 1.1.35[1]: A mapping x — x' of the algebra R into an
arbitrary algebra R’ if x - x',y -y’ imply that yx - y'x",x +y >
x"+y' ,xy > x'y" if R is the image of the algebra R, then the
homomorphism is called a homomorphism of R onto R’.

Definition 1.1.36[1]: Two algebras R and R’ are said to be isomorphic if
there exists isomorphism of R onto R'.

Theorem 1.1.37[1]: Under a homomorphism of the algebra R into the
algebra R’, the inverse image I of the zero of R is a two sides ideal in R.

A S B B B S £ £ £ S £ S £ & 6 4




Theorem 1.1.38[1]: Under a homomorphism mapping of the algebra R.
The inverse image I of the zero element is a two-sided ideal of this
algebra and the homomorphic image itself is isomorphic to the quotient
algebra R modulo I.

Theorem 1.1.39[1]: The quotient algebra R/I is simple if and only if I is
a maximal two-sided ideal in R.

Definition 1.1.40[1]: Algebra is the so- called left regular representation
of the algebra each element aeR is assigned the operator A, of left
multiplication by a A,x = ax.

Theorem 1.1.41[1]: Every primitive algebra is isomorphic to an
irreducible algebra of linear operators in some vector space.

Theorem 1.1.42[1]: Every primitive algebra is semi simple.

Theorem 1.1.43[1]: If I # {0} is a two sided ideal in the primitive
algebra R and if a is an arbitrary nonzero element of the algebra R, then
1, # {0}.

Definition 1.1.44[1]: (topological algebra)

R is called a topological algebra if :

1) R is an algebra

2) R is a locally convex topological linear space.

3) The product xy is a continuous function of each of the factors x,y
provided other factor is fixed.

Definition 1.1.45[1]: A mapping x — x' of the topological algebra R into

the topological algebra R’ is called a continuous homomaorphism if:

1) x — x" is ahomomorphism of the algebra R into the algebra R’.

2) x — x' is a continuous mapping of the topological space R into the
topological space R'.

Definition 1.1.46[1]: A subset R; € R is said to be a closed sub algebra

of the algebra R if

1) R, is a sub algebra of the algebra R.
2) R, is a closed subspace of the topological space R.
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Theorem 1.1.47[1]: If R, is a sub algebra of the algebra R; then it's
closer R; is a closed sub algebra of R.

Theorem 1.1.48[1]: The algebra R,(s) is the closer of the algebra R, (s):
Ro(s) = R, (s).

Theorem 1.1.49[1]: The closer of a commutative sub algebra of a
topological algebra is commutative.

Theorem 1.1.50[1]: A maximal commutative sub algebra of a
topological algebra is closed.

Theorem 1.1.51[1]: The set R, of all elements x of a topological algebra
R; which commute with all elements of some set S € R, is a closed sub
algebra of the algebra R.

Theorem 1.1.52[1]: The center z of a topological algebra R is a closed
commutative sub algebra in R.

Theorem 1.1.53[1]: The closer of a 9left, right, two- sided)ideal in a
topological algebra, which does not coincide with the entire algebra, is
also (left, right, two sided) ideal in this algebra.

Definition 1.1.54[1]: A topological algebra R with identity is called an
algebra with continuous inverse if there exists an neighborhood U, (e)
posseting the following properties:

1) Every element xeU,(e) has an inverse x 1
2) x~tis a continuous function of x at the point x = e.
Definition 1.1.55[1]: (normed algebra): R is called normed algebra if

1) R is an algebra
2) R is a normed space

3) for any two elements x, yeR |xy| = |x| |y| (1)

4) if R is contains an identity e, then |e| = 1. The norm in a normed
algebra R defines a topology in R in a natural manner recall that in

this topology, the open balls |x - X, | < r with center at x, from a
neighborhood basis of the element x,eR.
Proposition 1.1.56[1]: In the norm topology, the product xy is a
continuous function of the variables x, y simultaneous.
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In fact, in virtue of (1)
| xy = %030 | = | (6 = %) (7 = ¥5) + (X = %)Y + X0 (¥ — V) |

= |x_xo| |y_yo| + |x_xo| |yo| + |y_yo| |xo|-

Now, the assertion follows directly from this since a normed space R is a
topological linear space, we conclude from proposition ()

Proposition 1.1.57[1]: In the topology define by the norm, a normed
algebra is a topological algebra a normed algebra R is said to be complete
If R is a complete normed algebra will also be called a Banach algebra.

Proposition 1.1.58[1]: Every non complete normed algebra can be
embedded in a complete normed algebra.

Proof:- suppose R is the completion of the normed space R. Now define
multiplication in R suppose X, yeR and < x, >, < y, > be fundamental
sequences in R. Which define Xx, y respectively. It follows from inequality
(2) with x,,, x,, in place of x,x, and y,,y,, in place of y,y, that
< x,,, ¥, > also is a fundamental sequence. The element in R which it
define will be considered to be the product xy of the elements x, y. Again
applying inequality (2) it it can also be easily verified that xy, does not
depend on the choice of the fundamental sequence.

< x, >,< y, > which define x,y if in particular x = xeR, yeR, then
setting x,, = x, y, =y, we conclude that in this case the product
coincides with the product in R passing to the limit in the relations for the
elements in the algebra R, it is easily shown that R is an algebra and that

the inequality |y | <| % | | # |is satisfy for elements of the ring R
consequently R is a complete normed which contains Ra sub algebra.

The algebra R is called the completion of the algebra R.

Example 1.1.59[1]: The algebra C(T) suppose T is topological space. the
set C(T)of all bounded continuous function x(t) on T forms a Banach

space recall that the norm |x| in C(T) is defined by the formula
| x| =supger | 2(t) |

Multiplication in C(T") can be define as the multiplication of function that
mean (xy)(t) = x(t).y(t)
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1) this easily seen that the condition |xy| < |x| |y| will be satisfied
so that C(T) becomes a Banach algebra. If T is compact then the
boundedness condition on the functions x(t) is redundant in virtue.

2) The algebra B(x). Recall that B(x) denotes the set of all bounded
linear operations in the Banach space x. We saw above that B(x) is

also defined as the multiplication of operator with |AB | < |A | | B |
According to that we proved consequently, B(x) is a Banach algebra
3) The algebra W. We denote by W the set of all absolutely convergent
series x(£) = ¥ _o Che™ withnorm | x|=X%_o. | C, |
We obtain a Banach algebra by defining addition, scalar multiplication as
the corresponding operations on

2. Adjunction of the identity. Suppose R a normed algebra without
identity and let R be the algebra obtained from R upon adjunction of
the identity we may introduce a norm in R by setting

|xe + x| = [x| + | x]

It is easily verified that R then becomes a normed algebra. If R is a

complete algebra without identity, then R’ is also a complete algebra. The

proof is simple and so we shall omit it.

The Radical in a Normed Algebra

Theorem 1.1.60[1]: for every x of the normed algebra R,

lim,,_, o / |x | " < oo exists.

Theorem 1.1.61[1]: If the element x of the normed algebra R belongs to

the radical of the algebra lim,,_, / |x | n=0

Banach Algebra with identity

Theorem 1.1.62[1]: Every Banach algebra with identity is an algebra
with continuous inverse moreover, every element x; satisfying the

inequality |x - e| < 1is invertible.

Theorem 1.1.63[1]: In a Banach algebra R with identity:
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1) The set of all elements x having a (left, right, two- sided) inverse is an
open set.

2) The inverse x~1 is a continuous function of x at all points for which
x~1 exists.

3) The closure of a (left, right, two- sided) ideal a (left, right)ideal.

4) Maximal (left, right, two- sided) ideal is closed.

5) The set R, of all regular points of the element xeR is open and the
resolve X; = (x — Ae)~ 1 is an analytic function of A.

6) The spectrum of every element xeR is a no avoid set.

Theorem 1.1.64[1]: (Gelfand [1] and Mazur [1]): Every complete

normed division algebra is isomorphic to the field of complex number,

Theorem 1.1.65[1]: In a Banach algebra R the quotient algebra R/I
modulo a closed two- sided ideal I is a Banach algebra.

Theorem 1.1.66[1]: If in the Banach algebra R with identity every
element x # 0 has a left inverse. Then R is isomorphic to the field of
complex number.

Theorem 1.1.67[1]: For |/1| > lim,, 0 f |x | " the resolve X, can be

expended in absolutely convergent Laurent series.

Theorem 1.1.68[1]: For an arbitrary xeR, r(x) = lim,_, n/ |x | n,

Theorem 1.1.69[1]: The spectral radius possesses the following
properties.

1) r(x¥) = [r(x)]*
2) r(xx) = |x|r(x)
3) r(x) < | x|

continuous homomorphism of normed algebra

Theorem 1.1.70[1]: Every continuous homomorphism x — x" of the
normed algebra R into the normed algebra R’ satisfies in the inequality.

x| <clx]
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Theorem 1.1.71[1]: Every continuous homomorphism x — x' of a
normed algebra R into a normed algebra R’ is uniquely extendible to a
continuous homomorphism of the completion R of the algebra R into the
completion R’ of the algebra R’.

Theorem 1.1.72[1]: Every continuous isomorphism of a Banach algebra
R anto a Banach algebra R is a topological isomorphism.

Theorem 1.1.73[1]: Under a continuous homomorphism of the Banach
algebra R’. The kernel I of the homomorphism is a closed two- sided
ideal in R. And the algebra R’ it self is topologically isomorphism to the
quotient algebra R/I. Can certainly every closed two- sided ideal I of the
Banach algebra R induces a continuous homomorphism (the so- called
natural homomorphism) of the algebra R into the algebra R/I.

(regular representation of a normed algebra. Recall that the left and right
regular representations a - A, and a — B,o0f the algebra R are defined
by means of the formulas.)

Theorem 1.1.74[1]: A left (right) regular representation of a normed
algebra Ris a continuous. Homomorphism of the algebra R into the
algebra R(a) of all bounded linear operations in the space R. In fact, the

inequalities

|4.x] < lal |x], |Bx] < |al ||

[4.| < lal, |B.| < ]al.

Theorem 1.1.75[1]: If R is a normed algebra with identity, then a left
(right) regular representation of the algebra R is an isometric
isomorphism (anti- isomorphism) of the algebra R into the algebra R(R).
In fact, for x = e, inequalities (1) go over into equalities, and hence
4. |=lal.|B.| = |a]

Theorem 1.1.76[1]: R is a minimal invariant sub space in R if and only if
it is the annihilator of maximal right ideal in R.

Theorem 1.1.77[1]: If R is an algebra with identity, then every closed
invariant sub space in R, with is distinct from (0) contains a minimal
invariant sub space and consequently, in contains elementary functions.
Theorem 1.1.78[1]: Suppose Ris an algebra with identity and let F # 0
be a function in R there exists an elementary functional which is a weak
contact point of functional of the form f,(x) = f(xa). Regular
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representations of an algebra can also be used in the proof of the
following proposition.
Theorem 1.1.79[1]: Suppose R is a complete topological algebra with

identity in which the topology is defined by the norm |x| Then R is

topologically isomorphic to a Banach algebra.

Definition 1.1.80[1]: R is called a symmetric algebra if:

1) R is an algebra

2) an operation is defined in R which assigns to each element x in R the
element x* in R in such a way that the following conditions are
satisfies:-

Q) Ax+ 1Y) = Ax* + uy”

b) x*™* = x

C) (xy)* = y'x*

An element x is said to be Hermitian if x* = x.

Theorem 1.1.81[1]: Every element x of a symmetric algebra can be
uniquely represented in the form x = x; +ix,, wherex; ,x, are
Hermitian elements.

In fact, if such a representation holds, then x* = x; — ix, consequently

_ Xx+x” x—x"

X, = X, =
1 2 72 2i

Thus, this representation is unique. Conversely, the elements x,,x,
defined by equalities (1) are Hermitian and x = x; + ix,.

These elements x;, x, will be called the Hermitian components of the
element x an element x is called normal if x*x = xx”*.

Theorem 1.1.82[1]: Every element of the form x*x is Hermitian
In fact, invirtueof cand b ). (x*x)" = x™x™ = x"x

Theorem 1.1.83[1]: The identity e is a Hermitian element. In fact
e* = e*e is a Hermitian element. Consequently, e* = e

If R is asymmetric algebra without identity and R’ is the algebra obtained
from R by adjunction of the identity, then setting (le + x)* = le + x*
for xeR.
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Theorem 1.1.84[1]: If x~ 1 exists, then (x*)~1 also exists and (x*)™1 =

(™)

Theorem 1.1.85[1]: If R is a maximal commutative symmetric sub
algebra containing a normal element x and if x~1 exists, then x~1eR. In
fact since x and x* commute with all elements in R, x~! and x* = (x~1)*

Definition 1.1.86[1]: The mapping x — x’ of a symmetric algebra R into
the symmetric algebra R’ is called a symmetric homomorphism if

B) x = x' is a homomorphism

a) x — x' implies that x* — x".

Theorem 1.1.87[1]: The radical of a symmetric two- sided ideal.
Example 1.1.88[1]:

1) The algebra C(T) is a symmetric algebra if we set x* = X(t) for
X = X(t) (where the vinculum denotes conjugate complex number)

2) Suppose R is a Hilbert space. the algebra R(R) that mean R(x) with
X =R is a symmetric algebra if involution is under stood to be
passage over to the adjoint operator

3) The algebra W is asymmetric algebra if we set

x* =Y _C_.e™forx =% _C,e™
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Chapter one
Section two
Definition 1.2.1[1]: (Positive functional)

A linear functional f in the symmetric algebra R is said to be real- valued
If f assumes real value on all Hemitian elements of the algebra R.

Theorem 1.2.2[1]: Every linear functional in a symmetric algebra can be
represented in the form f = f; + if, where f,, f, are real valued
functional. Namely it suffices to set

() = [F@) + FONLL00 = - [F () - FGD]

Then f;, f, are real valued functional and f(x) = f;(x) + if,(x) these
functional f;, f, are called the real components.

Theorem 1.2.3[1]: If f is a real- valued functional then f(x*) = f(x) for
an arbitrary xeR. In fact setting x = x; + ix, where x;, x, are Hermitian

we have f(x*) = f(x; — ixz) = f(x1) +1f (x2) = f(x)

Inasmuch as f(x;), f (x,) are real- valued by assumption. A linear
functional f is said to be positive if f(x*x) > 0 for an arbitrary element
x of the algebra R.

Theorem 1.2.4[1]: For every positive functional f in the symmetric
algebra R.

1) fy'x) = f(x*y)

2) |foro |2 < fForm e

3) f((Ax +uy).(Ax +uy)) >0

) [2[2f ) + Aaf o) + auf (x'y) + |u |2 (ry) 2 0

Theorem 1.2.5[1]: Every positive functional f in a symmetric algebra

R with identity is real and | £(x)? | < F(e)f(x*x).

Theorem 1.2.6[1]: Suppose R is a symmetric algebra without identity
and that R’ is the symmetric algebra obtained from R by adjunction of the
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identity. A positive functional f in R can be extended to a positive

functional in R" if and only if f is real and satisfies inequality

| f(x) | 2 < cf (x*x) for all xeR where ¢ is some constant

Theorem 1.2.7[1]: If in a symmetric normed algebra R

a) | x| =]x|

b) There exists a set {e, } approximating the identity, then every
continuous positive functional in R can be extended to a positive
functional in R’

Definition 1.2.8[1]: R is called a normed symmetric algebra if

a) R is a normed algebra
b) R is a symmetric algebra

c) |x*|

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)







Chapter two

Section one

Definition 2.1.1[2] Let U be a universe and E Dbe a set of
parameters. Let P (U) denote the power set of U and A be a non-
empty subset of E. A pair (F, A) is called a soft set over U, where
F 1s a mapping given by F: A — P(U). In other words, a soft set
over U is a parametrized family of subsets of the universe U. For e
€ A, F (e) may be considered as the set of e-approximate elements
of the soft set (F, A).

Definition 2.1.2[2] For two soft sets (F,A) and (G,B) over a
common universe U, we say that (F,A) is a soft subset of (G,B) if

1.Ac Band
2.foralle € A, F(e) < G(e).
We write (F,A)c™(G,B).

(F,A) is said to be a soft superset of (G,B), if (G,B) is a soft subset
of (F,A). We denote it by (F,A)D>7(G,B).

Definition 2.1.3[2] Two soft sets (F,A) and (G,B) over a common
universe U are said to be equal if (F,A) is a soft subset of (G,B)
and (G,B) is a soft subset of (F,A).

f(e)
H (e) =y G(e)
fle)ua(e)
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Definition 2.1.4[2] The complement of a soft set (F,A) is denoted
by (F,A)c = (Fc,A), where Fc : A — P(U) is a mapping given by
Fc(a) =U — F(a), for all a € A.

Definition 2.1.5[2] A soft set (F,E) over U is said to be an
absolute soft set denoted by U™ if for all ¢ € E, F(e) = U.

Definition 2.1.6[2] A soft set (F,E) over U is said to be a null soft
set denoted by @ if for all e € E, F(e) = ¢.

Definition 2.1.7[2] The union of two soft sets (F,A) and (G,B)
over the common [ U

universe U is the soft set (H,C) , where C=A B and for all e
€ C,

We express! it as (F,A)U™(G,B) = (H,C)

Definition 2.1.8[2] The intersection of two soft sets (F,A) and
(G,B) over the common universe U is the soft set (H,C), where C
= A B and for all e € C, H(e) = F(e)NG(e). We write
(F,A)N*(G,B)=(H,C). N

Definition 2.1.9[2] Let X be an initial universal set and E be the
non-empty set of parameters. The difference (H,E) of two soft sets
(F,E) and (G,E) over X, denoted by (F,E) — (G,E), is defined by
H(e) =F(e) — G(e) for all e € E.

Proposition 2.1.10[2] Let (F,E) and (G,E) be two soft sets over X.
Then

s (1) (F,E)U"N(G,E))c = (F,E)cN"U(G,E)c
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(ii) (F,E)(G.E))c = (F,E)c “(G,E)c
|

Definition 2.1.11[ 2] Let X be a non-empty set and E be a non-
empty parameter set. Then a function € : E — X is said to be a soft
element of X. A soft element € of X is said to belong to a soft set
A of X, which is denoted by €€”A, if €(e) € A(e), Ve € E. Thus for
a soft set A of X with respect to the index set E, we have A(e) =
{e(e);e€"A}, e € E.

It is to be noted that every singleton soft set (a soft set (F,E) for
which F(e) is a singleton set, Ve € E) can be identified with a soft
element by simply identifying the singleton set with the element
that it contains Ve € E.

Definition 2.1.12[2] Let R be the set of real numbers and B(R),
the collection of all non-empty bounded subsets of R and A be
taken as the set of parameters. Then a mapping F : A — B(R) is

called a soft real set. It is denoted by (F,A). If specifically (F,A) is
a singleton soft set, then after identifying (F,A) with the
corresponding soft element, it will be called a soft real number.
We use notations r,” s,” t"to denote soft real numbers whereas r,
s, t will denote a particular type of soft real numbers such that
r (\) =r, for all L € A etc. For example 0 is the soft real number
where O(A) =0, for all A € A.

For two soft real numbers r,” s™ it 1s defined
r<sTif (M) <s7(h), forall A € A.
>"sTif r"(A) > s7(A), for all A € A.
r<s"if r"(A) <s“(A), for all A € A.
r>"s"1f 1" (M) > s7(A), for all A € A.

Let X be an initial universal set and A be the non-empty set of
parameters. Let us consider the collection of those soft sets (F,A)
over X for whichF (W) E ¢, for all L € A, which is denoted by
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S(X"). For any soft set (F,A) € S(X"), the collection of all soft
elements of (F,A) is denoted by SE (F,A) and let Y be any
collection of soft elements of (F,A), then SS (Y ) is the soft set
generated byYsuch that (SS (Y))(A)= {x"(A);x" €Y }, VA E A,

Definition 2.1.13[2] (Sums and Scalar products of soft sets) Let

,Fn be n soft sets in (V,A). Then F = F1 + F2 + ... + Fn
is a soft set over (V,A) and is defined as F(A) = {x1 + x2 + ... +
xn;xi € FiA),i = 1,2,..,n}, VA € A. Let a € K(R or C) be a scalar
and F be a soft set over (V,A), then oF is a soft set over (V,A) and
1s defined as follows: oF = G, G(A) = {ax;x € F(A)}, A € A.

Definition 2.1.14[2] Let V be a vector space over a field K(R or
C) and let A be a parameter set. Let G be a soft set over (V,A).
Now G is said to be a soft vector space or soft linear space of V
over K if G(A) is a vector subspace of V, VA € A.

Proposition 2.1.15[2] o(F +G) = oF +aG for all soft sets F,G over
(V,A) and a € K.

Definition 2.1.16[2] (Soft Vector Sub spaces) Let F be a soft
vector space of V over K. Let G : A —P(V ) be a soft set over
(V,A). Then G is said to be a soft vector subspace of F if(i) for
each A € A, G(A) is a vector subspace of V over K and (ii) F(A) 2
G(L), VA € A

Theorem 2.1.17[2] A soft subset G of a soft vector space F is a
soft vector sub-space of F if and only if for all scalars a,p € K, aG
+BG c G.

Definition 2.1.18[2] Let G be a soft vector space of V over K.
Then a soft element of V is said to be a soft vector of G. In a
similar manner a soft element of the soft set (K,A) is said to be a
soft scalar, K being the scalar field.
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Definition 2.1.19]2] A soft vector x~ in a soft vector space G is
said to be the null soft vector if x"(A) = 6, VA € A, 6 being the zero
element of V . It will be denoted by ®. A soft vector is said to be
non-null if it is not a null soft vector

Definition 2.1.20[2] Let x,” y~ be soft vectors of G and k™ be a
soft scalar. Then the addition x~ + y~ of x,” y~ and scalar
multiplication k.” x™ of k™ and x™ are defined by (X~ + y)(A) =
XA + y), k™ x () = K). xAW),K)A) = [KQ),VL € A,
Obviously, x™ +y,” k.” x™ are soft vectors of G.

Theorem 2.1. 21[2] In a soft vector space G of V over K,
(i). 0.0” =0, for all a"€°G;
(i1). k.” ® = O, for all soft scalar k".

(iii). (— 1)~ =—0a", for all a”€"G.

Definition 2.1.22[2] Let X" be the absolute soft vector space i.e.,
X'(AM) = X, VA € A. Then a mapping ||.|| : SE(X") — R(A)* is said
to be a soft norm on the soft vector space X" if ||.|| satisfies the
following conditions:

(N1).|x7|>~ 0, for all x"€"X";

(N2).]x7]|= 0ifand only if x™ = ©;
(N3).||o.” x7|| = |a7]|[x"|| for all x"€"X" and for every soft scalar o;

(N4). For all x,” y"€'X,” |lx™ + y7I<|” x7[| + [ly’ll. The soft vector
space X~ with a soft norm ||.|| on X is said to be a soft normed
linear space and is denoted by (X,” ||.||,A) or (X,” [|.|])-

(N1),(N2),(N3)and (N4) are said to be soft norm axioms.
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Example 2.1.23[2] Every parametrized family of crisp norms
I : A € A on a crisp vector space X can be considered as a soft
norm on the soft vector space X~

Definition 2.1.24[2] Let (X, ||.|l,A) be a soft normed linear space
and r™>" 0 be a soft real number. We define the followings;

B(x,” 1) = {y€X" : X — y|<T}e SEX) B (x,7 1) = {y’€X
XY= ESE(X)

S(x,"17) = {y €X": X" —y|| = 1"} SE(X)

B(x,” r’), B (x,7 r") and S(x,” r") are respectively called an open
ball, a closed ball and a sphere with centre at x~ and radius r".
SS(B(x,” 17)), SS(B(x,” r7)) and SS(S(x,” r7)) are respectively
called a soft open ball, a soft closed ball and a soft sphere with
centre at x~ and radius r”.

Definition 2.1.25[2] A sequence of soft elements {x™n} in a soft
normed linear space (X,” |.|,A) 1is said to be convergent and
converges to a soft element x™ if |x'n—=x"||—> 0 as n — oo. This
means for every €>" 0, chosen arbitrarily, 3 a natural number N
= N(€), such that 0<||” x™n —x7||<¢” , whenever n > N. i.e., n > N
= xn € B(x,” €). We denote this by xn — x~ as n —o or by
limn—oox™ = x.” x™ is said to be the limit of the sequence x™n asn

—00,

Definition 2.1.26[2] Let t be the collection of soft sets over X,
then 7 is said to be soft topology on X if

¢, X belong to 1
the union of any number of soft sets in T belongs to t

the intersection of any two soft sets in t belongs to .

The triplet (X,t,E) is called a soft topological space over X.
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be a soft sets over (U,E).

Define t(e) 2.1.27[2] = {F(e) : F € 1} for e € E. Then 1 is said to
be a topology of soft subsets over (U,E) if t(e) is a crisp topology
on Uve € E. In this case, ((U,E),r) is said to be a topological
space of soft subsets. If T is a topology of soft subsets over 1(U,E),
then the members of t are called open soft sets and a soft set F
over (U,E) is said to be closed soft set if Fc € 1.

Chapter two

Section two

2[. Soft convergence and soft topology

In this section we discuss about a new type of convergence on a
soft normed linear space and introduce soft topology generated by
soft norm on a soft normed linear space and study some of its
basic properties.

Lemma 2.2.1[2] In a soft normed linear space (X,” |.||), for any
x"€"X" and A€ A, ||X7||(A) = 0 if and only if X"(X) =. 6

401

Proof. Let us consider a soft scalar o™ such that o™(p)=11fp =2,
a(p)=0if u <A Then ("x")(p) =0 forp=2, (@xH)p) = xR
for p =A. From N

laz|=]a] ||

0 iff ¥ (W)=10

(3) we have. This shows that |x7[(A) = 0 iff |o7||x7|] = 0 iff
x| = 0 iff o™x™ =0
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Lemma 2.2.2[2] In a soft normed linear space (X,” |.||), for each &
€ Xand A € A, {||x7]|(A) : x"(A) =&} is a singleton set.

Proof. In a soft normed linear space, by N (4), we have, for all

~

~ ~

Jex||z||[=] [z [y ||-[[x]|=]|z5]]s0

gy | [Z =g |+ 5] [-> [ []|-| 7] 2] |%5] | similarly
Then || | %] (%) —now if ~x-y) W)=%(W)=y(L)= 0 i.c.oby

Lemma 2.2.3[2] since("|x7||(A) = ||y7||(A), which proves the
lemma. O

Rroposition 2.2.([4])
(Decomposition Theorem) In a soft normed linear space

X, ., ife we define|| || for|| |leach A € A, €[|JA : X — R+ be a
mapping such that

" 1s such that x"(A) = & Then for each for each & X, § A = x™ (D),
where x” X A € A, (X,||.|[A) is a normed linear space.

Proof. Since for A € A, {|Xx7|(A) : x"(A) = &} is a singleton set, the
mapping ||.lo] A : X — R+ is well defined. Hence from soft norm
axioms, it follows that (X,]|.||A) is a normed linear space A € A. O

Definition 2.2.4[2] In a soft normed linear space a sequence x, f
soft elements is said to be soft convergent and soft converges to a
soft element x,” if for any soft real number €>" 0 there exists a
soft natural number N~ such that ||x,, — X7||(A) < €(A) V n > N~ (D),
V A € A and is denoted by limn—w x,, = x" or x,, ,— X", where
X" is called the soft limit of the sequence x,,
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Proposition 2. 2.5[2]. Soft limit of a sequence of soft elements in
a soft normed linear space is unique.

Proof. Let x,, is sequence of soft elements in a soft normed linear
space (X,” ||.||) such

Exist that lim soft n—oo natural x,,="x numbers andlimN™n1—ooand
X, N"=2 y“such. Thenthatfor

|zl (< Z2vn = n, )

any soft real number €>~ 0 there ,

eQ)

VA€ A and ||, 7| WZ2 ¥n 2 ny (1), VA€ Adie. || x,-% ]| )< < and

|71l | (< E2 vn 2 7y, mam { 0y,

where maximum of these

soft natural numbers taken as component wise) V A € A. Now for
V2N Q) K=yl <l xp XTQ)H| =2,y I(M< €Q)V L € A,
which shows that x™=y.” O

Proposition 2.2.6[2] A sequence x, of soft elements in a soft
normed linear space (X,” ||.|[|)|]is soft convergent to X~ iff x™n (A) is
convergent to x"(A) in (X,||.|A) VA € A, where . A defined as in
Proposition 2 .2.([6])

Proof. Let x, be sequence— soft converging to the soft element
x"in (X,” ||.||). Take € > 0, then since x,, x~, so there exists a soft
natural number N~ such that

|x.-%[|C < € W)= vn> N (M),v A€ A which shows that
X, ()= X WVA € A.
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But |lx, —X7|(AM)=]x,|M)—=x"(QV)|A, Conversely, x,(A) — x(A) VA
€ A. Take ¢€>7 0, since x,, (A\) — x"(A) VA € A, so for each A € A
ANN, || x,—X7|A) = ||x, W)X QM)A < €(X) Yn > NA Now if we
define N™ (A) = NA VA € A then || x,— X7|(A) < €X) V n > N~ (A),
Vv A € A. This proves the proposition. o

Definition 2.2.7[2]. Asequence x,, in a soft normed linear space is
said to be soft Cauchy if for any soft real number €>" 0 there
exists a soft natural number N~ such that ||x, — x,|]|(A) < €QX) V
nm=>N"(A),VAEA.

Propositionn 2.2.8[2] Asequence x,, a soft normed linear space (X,” ||.||)
is soft

Cauchy iff x™ (A) 1s Cauchy in (X, . ” ||.||) A A, where . is defined as
in Proposition 2" 2.

Proof. Proof is same as in Proposition 2.6 O

Proposition 2.2.9[2] Every soft convergent sequence of soft
elements is soft Cauchy.

Proof. Let x,, ,— X", then the relation || x,, —x,,,||(A) x,<|| —X7[[(M)H| %,
—x"[[(MV A € A gives the result. o

Definition 2.2.10[2] Asequence x,, of soft elements in a soft normed
linear space

( x, |I]) is said to be bounded if there exists a soft real number M~
such that ||[x™ ||< ™™™, n N (The set of all natural numbers).

Proposition 2.2.11[2] Every soft Cauchy sequence x,,0f soft elements in
a soft normed linear space (nX,” ||.||) is bounded. (||||)
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Proof. Let x™ be a soft Cauchy sequence in X,” . . Then there exists a soft

Real number such that ||xn— xn||(k)<i vV nm>= N (L),V
re Al < Al vz Navaa

N~ x, (x,—~xN" Q) ()+xN Q) ()<1+xN' (V) €.
Now if we take

M™ ()= maxn {{[[[x"1{|(),[[x"2[[V (V) &, X V3|(AE),......[x”|[N"(nA[]) <1]|(AV),
€1+ XN WA,

then clearly [[x" (M) <M" (M) nNAA.i.e.x” "M nN. O

Corollary 2.2.11[2] Every soft convergent sequence x,, of soft elements
in a soft normed linear space (X,” ||.||) is bounded. A( ||[|) (C|IID CIID [I[|A

Definition 2.2.12[2]. A soft normed linear space X, . is said to be soft
complete if every soft Cauchy sequence in X, . is soft convergent in X,”

Proposition 2.2.13[2]. Asoft normed linear space (X),” ||.||) is soft
complete iff (X, . ||.|[) is complete VA € A, where defined as in
Proposition 2.2

Proof. Let (X, ||.||) is soft complete and A € A. Consider (X,]|.]|A). Let
{xn Hbe}

aCauchy sequence in (X, . ). Now if we construct a sequence of soft
elements x,, such that

Xn ifu=A

Xn(w) = {

0 if(ueA
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Then clearly= {{x"nn}} is soft Cauchy. So by soft A completeness of (X,”
Il.ID, {x,} is convergent x is convergent. i.e. (X,||.|| ) is complete.

Converse of the proof directly follows from Proposition 3.3, Proposition
3.6 and Proposition 3.8. o

Corollary 2.2.14[2] The soft set R(A) over R(set of real numbers) is soft
complete.

Proposition 2.2.15[2] In a soft normed linear space (X,” ||.||),
SS(B(x," 1)(M) =

S (X(\),F(MVA € A, where B(X,7)={y E¥: || % - 7 || < #}CSE(x) and
SEO(V)=zA: X W)z AT (\)

r{€l-l< }

Proof. Let A € A and z € SS(B(x,” r"))(A). Then there exists a soft
element y~ such that

1% -3 I <7and F(1)=zSo | %- F [ (W< F( M)~ ZQ) |

T =2 <TO)=2eSCXM),r (V).

Now let ze S (x (A) , © (A)).. Then if we take a soft element z~ such
that zZ°(n) =z when p = A, Z°(n) = x"(n) when p <A Then clearly
z €"B(x,” 17). Hence z € SS(B(x,” 17))(A).

Corollary2.2.16[2](. If S (xA,rA) are open balls in (X,|.|A) VA €
A. Then the soft set U such that U (A) = S (xA,fA) VA € A is the
softy opene ball in (X, ||.||) with centre x~ and radius r”, where
x"(A) =xAand r"(A) = 1A, A A.
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Proof. Consider the soft element x™ and soft real number r~ such
that x(A) = xA and r"(A) = rA,VA € A. Now if we consider the open
ball B(x,” r7). Then clearly, by the previous proposition, SS(B(x,”
) =U. O

Proposition 2.2.17[2] Let in a soft normed linear space (X,” |l.||), T
be the set of all soft sets in X such that( U"||€|r) iff U™ can be
expressed as a union of finite intersections of soft open balls of
X,” .. Then 1 forms a soft topology [15] on X.

Proof. The proof is straightforward. o

All the members of t are( said to) be the soft open in (X,[|]|||.|)). A
soft set F~ i1s said to be the soft closed in X,” ||.|| if FF’c € 1. The
topology defined as in Proposition 2.16 is called the topology
generated by the soft norm . on X".

Proposition 2.2.18[2]. For any o € A the collection ta. { U™( ) : U et}
is at opology

in X. i.e. T is a topology of soft sets on X.

Proof. Proof directly follows from the Definition of soft topology
T and Proposition

2.16. O

Corollary 2.2..19[2] (|Let) U be soft set in a soft normed| linear space
(X, |l.ID- I# U 1s soft open in X, then U (X) is open in (X, . A)V AE A.
Further, if X =0 , then the converse is also true.

:1Gi,jl

l
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where n is a positive integer and Gi,j is a soft open ball, i € A. Now U (A)
= Ui eAnnzlGiaj (}\‘)

and Gi,j (A) is a open ball in (X,|.][A), so U (A) is an open ball in
X,|l.Ir) YA € A. For the converse part consider the following
Cases:

» Case-1: Let U eS(X).i.e. UM o VL € A. Now since for each
LEA,

U (&) is open in (X,].]]A). So U (A) can be expressed as aunion of open
balls in (X,]|.||A), VA € A. Choose for each A € A one such open ball
in((X,” |.|})) and thereby construct a soft{set.€ Then this soft} sets are
soft open balls in X,"and their union is the soft set U. Hence U is soft
open in

L)
o Case-2: IfU e S(X). Let AL ={A A;U (A)=¢ }. Since X #{0 ,}
3 x(# 0) € X. Take two disjoint balls B (x,r) and B (6,r) in X. Now

construct the soft sets U1 and U2 as in Case-1 by taking Ul (A) =B (x,r)
if L € A1, UI(X) = U(A) otherwise and U2 (A\) =B (0,r) if L € A1, U2(A) =

U()) otherwise. Then U1 and U2 are soft open by Case-1. Hence U =
UlNU2 is softopenin X,”..

O

Definition2 .2.20[2] In a soft normed linear space (X, ||.||), a soft element
x" 1s said to be an interior point of a soft set U if there exists a open ball
B(x,” 1) containing x™ such that SS(B(x,” r7))<"U.

Proposition 2.2.21[2]. In a soft normed linear space||) (X, ||.||)||al|soft set
U eS (X) is soft openin X,” . iff any soft element XU is an interior
point of U.

Proof. Let U( (X)) be soft open in X,” . and x™"U. Then U (1) is open in
(X, . A) & A(by first part of Corollary 3.20). Now (X, . A) is a normed
linear space so U (1) can be expressed as a union of open balls in (X,]].|[A)
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VA € A, where at least one of the balls contains the point x”(A) VA € A,
since X"€"U. If we take the soft set whose A components are these open
balls containing x"(A) in (X,||.|[A) VA € A, by Proposition 2.16, this soft
set will be soft open ball in (X,” ||.||) containing x™ and contained in U,
which proves that x™ is an interior point of U.

Conversely, let any soft element x"€~U be an interior point of U. Then for
each x"€7U there exists a open ball B(x,” r") such that SS(B(x,” r))S"U.
Now if we take all soft elements of U then U =SS (Ux"e"U {x"})cU”~

x €U { SS(B(x," 1))} €7U. i.e. U is a soft open set. O

Proposition 2.2.21[2] Let (X,” ||.||) bea soft normede linear space and
x,be any sequence in a soft closed set F. If x,, X then x™°F.

Proof. Let x"€7/F, then x"(\) €/ F (L) for some A € A =x"(A) € X — F (M),

where X —F () is open in (X,|[.|[A). Now since x,,,— x~ = x,, (A) — xX"(A),

so the sequence x,, () is eventually in X — F (A), which contradicts that
the sequence xn is in F.

Hence x"€"F

Chapter tow

Section three

3. Soft Banach algebra and its properties
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Definition 2.3.1[2] Let V be an algebra over a field C of complex
numbers and let A be the parameter set and (G,A) be a soft set
over V . Now (G,A) is said to be a soft algebra of V over C if G(L)
Is a sub algebra of V VAEA.

It is very easy to see that in a soft algebra the soft elements satisfy
the properties:

(XY)Z =x(y'Z)

X(Y+2)=xy+xz, X +y)Z =x"7+y7Z

a”(xX7y") = (aX7)y” =x(a7y")

where for all x,” y,” Z7€°G” and for any soft scalar o7, X'y"(A) =
XMy (A) and ox"(A) = oAM)xXA). If (GA" ) is|alsol|<|la
soft||[|Banach|| space( with) respect to a soft norm that satisfies the
inequality x”y~ ~ x™ y~ and if G,A” contains an identity e such that
xe = ex"=x" with |le || = 1, then (G,A) is called a soft Banach
algebra. In addition, if in a soft Banach algebra (G,A), Xy~ = y'X",

vx,” y'€°G" then (G,A) is called a commutative soft Banach
algebra.

Proposition 2.3.2[2]. (G,A) is a soft Banach algebra iff G(A) is a
Banach algebra Vi € A.

Proof. Proof follows from the definition of soft algebra and Proposition
2.14. o

Proposition 2.3.3[2]. In a soft Banach algebra if x,, ,— x"and y,, ,— ¥~
then x,, y, ,— Xy". i.e. multiplication in a soft Banach algebra is
continuous.

Proof. Sincex,,,— x™ and y,,,— y in (G,A). So x,, (A) — x"(A) and y,, (1)
— vy (M) VA € A in (G(L),||.||A). Now since G(A) is Banach algebra VA € A
(by Proposition 4.2) and in Banach algebra multiplication is continuous
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SO, X, (A) yn (A) = X" (M)y"(M)VA € A, which proves that y,,,— x,, Xy (
by Proposition 3.6). O

Proposition 2.3.4[2] Every parametrized family of crisp Banach algebras
on a crisp vector space V can be considered as a soft Banach algebra on
the soft vector space

V.

Proof. Let ||.||A : A € A be a family of crisp norms on the vector space V

such that (V,||.||A) are Banach algebra VA € A. Now let us define ||.|| : V~

— R(A)* by ||X7||(A) = [|[xX"(V)||A, VA € AVXx"€7V". Then by Example 2.23
(V7,|l.]]) 1s a soft normed linear space. Now to show that (V7,]|.||) is a soft
Banach algebra we have to show that ||x™y"||<||” x7||[y7]| V x,” y"€"V™ and
(V7,|l.]) 1s complete.

Now [[xX7y7|(A) = X"y WA < [ )My ML <[ XTIy [I(A) VA € A,
which shows that ||X™y™||<|[” x7|[[y7]I-

Now let x,, be a Cauchy sequence in V™. Then for any €>70" there exists
a soft natural number N~ such that

Xt = Xall0)< () ¥ 2 N )V € Al ()~ Wlen Gy () V>
N (A), VA € A. i.e x,, (A) isa Cauchy sequence in (V, |I))

VA € A . Since (V,]|.||A) are Banach algebra VA € A, so there exist XA such
that x™n(A) converge to xA, VA € A. Hence there must exist some NA(> N
(1)) such that

[ (K)—Xk||x<(§K) Vn2Nj, VA €A .Now || x5, —XI(A) =[x )= A <[[(Axz)— 5,
Xy () IDHIXN =i M) <) Vn>N (L), VA € A, where X(A) =x). This

shows that (V,||.||) is a soft Banach space. Hence (V,]|.||) is a soft Banach
algebra.

O

Definition 2.3.5[2] Asoft element x"€”G" is said to be invertible if it has
an inverse in G” 1.e. if there exists a soft element y"€"G” such that X"y™ =
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y'x"=e and then y” is called the inverse of x~, denoted by x™—1.
Otherwise x™ 1s said to be non-invertible soft element of G”.

Remark 2.3.6[2] Clearly ¢ is invertible. If X™ is invertible, then we can
verify that the inverse is unique. because if y'x™=¢ =x."zZ" Theny™ =
ye =y (xXz2)=(yx")z"=e¢ z"=z" Further, if x” and y~ are both
invertible then x™y™ is invertible and (x"y")—1 =(y~! x 1)(. For (X’y"
Y lx H=x(yy Hxx™1) =xe¢ x71) =e and similarly

(T x HEY)=e .

Definition 2.3.7[2] Let (G,*) be a group and (F,A) be a soft set over G.
Then (F,A) is said to be a soft group over G if and only if F(X) is a
subgroup of (G,*) for all A € A.

Proposition 2.3([8]). Let (G,*) be a group and (F,A) be a soft set
over G. If for any

X7,y €7°(F,A)

x"xy €7(F,A)

x—1€7(F,A), where x™*y"(A) = x"(A) * y(A) and x—1 (A) =
(X"(\))—1. Then (F,A) is a soft group over G.

Proof. Proof is obvious. o

Note 3.9. This shows that in a soft algebra, the soft set generated
by the all invertible elements is a soft group with respect to the
composition defined as in Proposition ??.

Definition 2.3.10.[2] A series )., x,0f soft elements is said to
be soft convergent if the

partial sum of the series sk= 251:1 X~ Is soft convergent.
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Proposition 2.3.11[2]. Let (G,A) be a soft Banach algebra. If
X"€"G" satisfies ||x7]|<7 1,

then ("e — x") is is invertible and (&-x) " 1=e+) 2, X,

Proof. Since (G,A) is soft algebra, so we have ||x7j|[<|” x7||j for

any positive integer j, so that the infinite series Yoo ||x||™is soft

convergent because ||x7||<"1.  So the sequence sk= 25=1 Xn

of partial sum ~ 1s a soft Cauchy sequence since D xn| <

21X In.

n=K Yn=1%Xn

Since ( G,A) is soft complete sois soft convergent.

Now lets™=¢e +Y x™.

n=1 Now it is only we have to show that s = ( ¢ —x")—1
We have

Bl (e—x)e+x"+x, +..x)=(e+x+ +x, .. )(e—
Xx,)=e —x, +1

Now again since [|x7||<" 1 so X,4; ,— 0 as n— oo. Therefore
letting n— o in and remembering that multiplication in G 1is
continuous we get,

(e—x)s"=s(e—x")=¢

.Sothats™=("e—x)"! This proves the proposition. o

Corollary 2.3.12[2] Let G be a soft Banach algebra. If x™ € G
and |l — x7|| <1, then x ™! =g+};_,( &-x)’

x~ 1 exists and .

Corollary 2.3.13[2] Let G be a soft Banach algebra. Let x™ € G
and p” be a soft scalar
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such that |u~[>"||x"||. Then (n"e —x)~! exists and
i ) s (g = 3

Proof. y € G be such that y"—lexists in G and o™ be a soft scalar
such that o”"(A) =0,

VA € A. Then it is clear that

(y)-1=a—1y™—1.

Having noted this we can write

e —x"=p"(e—p—Ix)

and now we show that (e— p™—Ix")—1 exists. We have |le — (e
—p =10 = |lwIx7 = LT <71 by hypothesis. So, By
Corollary 3.12 (e — wux")-1 exists and hence (ne — x")-1

exists. For the infinite series representation, using the Proposition
3.11 we have

(We —x)-1=p=1(e—p-Ix)-1

pt (@+Xnmle — (e =Ju O™ [t )™
T Gt VT €9

Y

This proves the corollary.

Proposition..2.3.14[2] Let G be a soft Banach algebra. The soft
set S generated by the set of all invertible soft elements of G is a
soft open subset in G.

Proof. x"0€™S. We have to show that x™0 is a soft interior point of

G. Consider the open sphere) s(x, with centre at x"0 and

1
—
(BN

. 1 ~
radius . m Every soft element x
X0

of this sphere satisfies the inequality || x,_ x || < " 1_1”
Xo
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Lety"=x, Ix"and z"=e¢ —y then we have ||z7]|=|ly" —¢ || = 1x™ xq
—xo — IX70|| <|I” 1J|IIX™ —x - %o ||[<~ 1. So by Proposition 3.11, e — z~ is
invertible i.e. y™ is invertible.

Hence y"€7S. Now x"0€”S, y"€"S and so by Remark3.6, x"0y~ € S. But
XoY =Xo X —01x"=x"

So any x~ satisfying the inequality (3.2) belongs to S. This shows
that S is a soft open subset of G. O

Corollary 2.3.15[2] The soft set P(= Sc) of G is soft closed subset
of G.

Definition 2.3.16[2] Amapping T from a soft normed linear space
G onto G is said to be continuous if for any sequence x,,— X~
implies T(x,,) ,— T(x").

Proposition 2.317[2]. In a soft Banach algebra G, the mapping x~
,— X —1 of S onto S is continuous.

Proof. Let x, € S and let {x,,} be a sequence of soft elements in S
such that x,, ,— x, as n —o. To prove x~ ,— X"—1 is continuous,
it is enough to show that x,,”! ,— x,71. Now

[ e [ e N A E |
(2.3) <II™ e llll 20 =l I

Sincex, ,— x, , for any given €>"0 , there exists N~ such that for all n >
N,

| e %o || (A) < ﬁ(ke:

0 "l

_ 1
2[l x|

4))where we have taken Now
(35) lle = xo ™ xoll = llrto— 1o ™~ 2™ 1lI(x™ = x|

Using (3.4) and (3.5) we get
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l6-x0 722, | ) < S W)= ¥n = N(u

xo 1x,
So by Corollary is invertible and its inverse is given by =x,,~1x,

_1 - — - _
(xo xn) 1 =e+2(e—x0 1xn)n

1
1- || e—xo lxp ||

||x0_1x0 | <1+ 30 [le —x0 x| < . Thus

<" 2 by (3.6). This gives ||[x™—n1x"0||[<” 2 so that we have

(3-7) llen™ 11 = len ™ o™ Il floen ™ Hllxo ™ o [1<7 21 o ™

From (3.3))and (3.7) we get

126, = %07 V=200 ™ IV X X0 ll(M)] X0 7 {[|(R) — Oasn —oo.

This proves that x,, " x,71,— asn — oo. So the mapping x~ ,— x " 1of S
onto S is continuous. O

Corollary 2.3.18.[2] In a soft Banach algebra G, the mapping x™—1 ,—
x~ of S onto S is continuous.

Definition 2.3.19[2] Let G be a soft Banach algebra. A soft element z~ €
G is called a soft topological divisor of zero if there exists a sequence
{z,}, z, €G, |z,|| = 1forn=1,23..... and such that either z°z,, ,— @
orz, z~,— 0.

Proposition 2.3.20.[2] The soft set Z is a soft subset of P, where Z
denotes the set of all soft topological divisors of zero.

Proof. Let z© € Z. The there exists a sequence {z,} such that ||z,]|
= 1 forn=1,23.... and either 2"z, ,— ©® or z,2” — O as n — .
Suppose that 7" z,, ,— ©.
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If possible, let z”/ P. Then z°(A)—1 exists for some A. Now as
multiplication is continuous operation, we should have

Z, W) =2 MV)-1 (72, YO) — 27()—~1 O() = 0 asn —.

This contradicts the fact that ||z, || = 1 for n = 1,2,3..... . Hence Z
Is a soft subset of P. O

Definition 2.3.21[2] Let (X,” ||.]|) be a soft normed linear space and Y € S
(X). A soft element o X" is called a soft boundary elements of Y if there
exist two sequence x,, and y,, of soft elements in Y and Y c respectively
such that x,, ,— o~ and y,, ,— a". Proposition 3.22. The boundary of P is
a soft subset of Z.

Proof. Let z~ be a boundary point of P. So there exist two sequences of
soft elements r, in Sand s, in P such that

(3.8) n,,— 7z ands, ,— 2z~

Since P is soft closed so Z"€P. Now let us write r'n—12"—e =1r"n—1
(z—1,). The sequencee { Tn_l (M)} given abovel| is unbounded— || VA €

A.If not, thenV Ethere exists some A A and n()) such that Tn_l ze (A
<1nn(A), A A. So that by

Corollary 3.12, Tn_lz~(k) is regular| and hence zZ"(A)V =1, (A)(
Tn_lz~)(K) is regular, contradicting € z~"P. Hence { Tn_l (A)} is regular
unbounded A A so that

(3.9) || ™ || — 00, asn — o

-1
Now let us define z,, = ﬁi From the definition of z,,, we
Tn

have(3.10. || Zn || = —1Further

Tt _etzry l-e  e+(z—rp)rn”

TN EE S

1
(3.11).But

ZZ,=
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e+(z-rp)rn”~t

e__l ” + (z-1,)2,,(3.12).From (3.11) and (3.12), we

ot i

get

e

ZZy = m + (Z-Tn)Zn(3.l3)

Using (3.8), (3.9) and (3.10) in (3.13) we see that 2~ z,,,— ® as n — oo.
Hence z™ ois a topological divisor of zero.
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