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Abstract 

A submodule N of a left R-module M is said to be s-essentail in M 

if for each small submodule X of M such that N ∩X= 0, then 

X=0 [5]. 

In this  work, we  give  survey  of  some known  properties and 

results of  s-essentail  submodules and  Socs (M) and   rewrite 

proofs,  with  more details, for  some of  them.  Also,   some  new 

results and examples of  s-essentail  submodule  and  Socs(M) are 

give in this work. 
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Introduction: 

       Throughout this work, all  ring are  associative  with identity 

and all modules are unitary left R-modules. 

       A submodule N of a left R-module M is called essential in M 

if For any submodule X of M such  that  N∩X=0,  then  X=0 [3]. 

several     authors    introduced     generalizations    of    essential 

submodules.For example: sh. Asgari and A.Haghany introrduced 

in   [2]   the    concept   of   t-essential   submodule    as  a proper 

generalizations of essential submodule. Also, N   kh. Abdullah in 

introduced in [1]  the concept of strong essential submodule as  a 

proper generalizations  of essential submodules. 

D. X.  Zohu  and  X. R. Zhang  in [ 5]   introduced    the  concept 

 of     s-essential    submodule   as  a  proper   generalizations   of 

essential submodule.   A submodule  N    of  a left  R-module  M 

is said to be s-essential in M if  for  each   small submodule X of 

such that  N ∩ X=0, then X=0. 

         This  work   consists  of   two  sections. In section one , we 

introduced some basic concept of Module Theory which we will 

need in the second sections. 

           In   section   two,   we   give     survey  of     some   known 

properties and   results  of   s-essentia submodules  and   Socs(M) 

and  rewrite proofs, with more details,  for   some   of  them. For 

examples: Proposition 2-13     wich       state      that     ( 
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If  :M→N     is   an   R-homomorphism and K  is    an s-essential 

submodule  in  N, then   -1
(K)  is  an  s-essential  in M)  is appear 

in [5] but  without  proof.   In  this  work,   we    give  a proof  of 

this  result.  Also,  in Theorem 2-18 we give a   proof with  more 

 details  for  the  result ((Socs(M) = ∩{N M/          which 

appears in [5].  

          Many  new  results  are  given  in  the  work. For examples 

in    Proposition 2-2,    we   prove   that   every   submodule  of  a 

semisimple module is s-essential.  

         Let  { i}  be  a  family  of  submodules of a left   R-module 

M.  We    prove    in     Proposition 2-11     that    ⋂   
   i    is   an  

S-essential   submodule   in   M   if  and only if   is an  S-essential  

Submodule in M, for each. In Corollary 2-19, we  Prove   that  if 

M is a semisimple left R-module, then Socs (M) = 0.   

Finally, in Proposition 2-25, we prove  that   Socs ( Socs (M)) =0,  

For   any   left   R-module   M   and   give   an   example   of   left  

Z-module   M   such  that   Socs (Socs (M)) ≠ Socs (M). 

Also,   we   give   an  example  of   left  R-module  M   such   that  

Socs (N)≠ N ∩ Socs( M ), for some submodule N of M.   
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Section One: Basic Concepts 

 together Ma set is  module-Rleft  A  a ring.  be R  Let ]3[  1):-Definition (1

with: 

(1)  A   binary  operation  +  on   M   under   which   M  is an abelian group. 

(2)  A   mapping   •: R  M   M ( is   called     a   module   multiplication ) 

denoted by rm, for all r    R   and for all m   M which satisfies 

(a)  (r + s ) m = rm  + sm, for all r, s    R , m   M.  

(b)  (rs) m = r(sm) , for all r, s   R and  m   M. 

(C) r(m + n ) = rm  + rn, for all r   R     m,n   M. 

If the ring R has an identity element 1 and 

(d) 1.m = m, for all m   M, then M is said to be a unitary left R-module. 

2):-(1 sExample 

1)  Every  Abelian    group   is    -module,   ( in    particular,  Q    and   are 

 -modules). 

2)  Every left ideal (I, + ,.) of a ring (R,+,.) is a left R-module. 

3)  Every ring ( R,+,.) is a left and right R-module. 

4)  Every F – vector space V is an F- module, where F is a field. 

eft module. A l-Rbe a left   Mand let be a ring   R  Let  3][ :)3-1(Definition  

R-submodule  of  M  is  a subgroup  N  of  M    such   that  r•n   N,   for  all 
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r    R, and  for all n    N,   where • is the module multiplication defined on 

 M.  We will  use  N    M to denote that N is a submodule of M.  

: 4)-1( Examples 

1)  0 ˃ and  M  are trivial submodules of  M. 

2) The R-submodules of a left R-module R are exactly the left ideals of a 

ring R. 

3) Let F be a field. Then    0 ˃ and  F are the only submodules of a  left F- 

module  F. 

4) The submodules of a  -module   are   n ˃, for all  n     

5) The submodules of     module Z4 are   0 ˃,    2 ˃ and Z4. 

6) The submodules of a  -module Z12 are   0 ˃,   2 ˃,   3 ˃,   4 ˃,   6 ˃ 

 and   Z12. 

-Rmodules of a left be a family of sub n,=1,2,…i} iN{ Let :5)-(1Proposition

module    M.    Then⋂   
   
     and ⋂   

 
     are submodules of M. 

.: See[3] Proof 

be a  is said to  Mmodule -Rof a left  Nsubmodule A  3] [ :  6)-Definition (1

direct   summand   of   M    if     there    is   a   submodule  K   of   M    such 

 that  M =N  K.In other word, there is a submodule K of M such that 

M=N+K and N   K =0. 

 ˃ X ˂ then    , M  module-Ris a subset of a left  Xf  I [3]   :7)-(1Proposition

will denote the intersection of all the submodules of M  that contain X. This 



 Basic Concepts Section One 

 

 5 

 

is  called  the  submodule  of  M  generated  by  X,  while  the elements of X 

are called generators of ˂ X ˃.                                       

0  and      Mis said to be simple if  Mmodule -RA left  [3]: )8-1Definition(

the only left  R –submodules of M are 0 and M.                                        

if every   mpleissemito be  said   is  Mmodule -RA left  3][ :9)-1(Definition 

submodule of M  is direct summand of M . 

is denoted by  Mmodule -R  left   a   of  le cso   The  3] [   10):-1(Definition 

Soc(M) and defined as the sum of the simple submodules of M. If M has no 

simple submodule, then we set Soc(M) = 0. 

module and -Rbe a left  Met lbe a ring ,  Ret L (see[3]) : 1)1-1( Proposition

let N be a left submodule of M. The   ( additive, Abelian )   quotient   group 

M/ N can be made into a left R-module  by defining a module 

multiplication • : 

 R  ( M/N)   M/N   by  r • (x + N) = ( rx) + N,   for  all  r   R   and  x   M 

roposition Pis defined in  M/Nmodule -R  left  The   [3]   : )21-1( Definition

(1-11) is called quotient (or factor) module. 

smodule-Rbe left  Mand  NLet [3] : 3)1-1( Definition 

1) A function   f:N   M    is   said   to  be  a left    R-homomorphism  if  for 

all a,b N and r R  then f(a+b) = f(a) + f(b) and f(ra) = rf(a). 

2) A left  R-homomorphism is called a monomorphism  if it injective and is 

an   epimorphism   if   it   is  surjective.  A  left  R-homomorphism  is called 

isomorphism  if  it  is  both  injective  and  surjective.  The modules N and 
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M are said to be isomorphic, denoted by N M, if there is  left isomorphism 

f N:    M 

. 

:4)1-1( sExample 

1) Let N    M .The mapping   𝜋:M     ⁄  defined by 

𝜋(m)= m+N is a left R-epimorphism and is called the natural epimorphism. 

2) Let N  M . The mapping i:N  M defined by i(m) = m for all m  N  is a 

left R-monomorphic. 

3)  If  M = N   K,    then      the  epimorphism     𝜋N :M   N    defined by   

𝜋N (n + k)=n,   n   N, k   K, it is called the projection  epimorphism on N. 

A . M module-Rmodule of a left a sub   be   N  Let    [4]  : 5)1-1(Definition 

relative complement of N is denoted by N
 c
 and defined as follows : 

1) N
c  M. 

2) N   N
c  

= 0.  

3) If B  M such that N   B =0 and  N
c     

B , then N
c 
= B. 

 

said to   is  M  module-Rof a left  Nmodule A left sub [3] : )61-1(Definition 

be maximal submodule of M if N   M and for  every  left  submodule  B of 

 M  with N    B   M,  then B = M. 
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 Mof  the Jacobson radical  module-Rbe a left  MLet  3][ 7):1-1(Definition  

is  denoted  by J(M)  and  defined  as  the  intersection  of  all  maximal  left 

submodules  of   M.  If    M   has no maximal left submodules, then  we  set 

 J(M) = M. 

to  said   is   M  module-R  a left  of  N  modulesub  A  [3] ):81-1(Definition

be  small  in  M  and  denoted by N    
o 
M if for  all   submodule   B   of   M 

with N +B=M,  then 

 B = M. A left ideal  I  of  a ring  R  is  said  to be  small  in R  if I is a small 

left submodule in a left R-module R. 

of  a  NWe  will  denote  to any  small  and   simple  submodule   Notation:

module M by  N  s.s.
M. 

19):-(1s lepExam 

1) For every R-module M we have 0 is a small submodule in M. 

2) Let  M  be  any  non-zero  semisimple left  R-module.  Then 0 is the only 

small submodule in M. 

3) The only small submodule in Z6 as  -module is 0. 

4) The only small submodules in Z4 as  -module are 0 and ˂2˃. 

5) Every finitely generated submodule of a   -module   is small. 

 

is said to be  Mmodule -Rof a left  Nmodule A sub [3]   : )20-1(Definition 

essential in M and denoted by  N   e
 M  if for all submodules, B of M with 

 N  ⋂ B= 0,  then  B=0. 
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:) 12-1 (les pExam 

1)For every left R-module M, we have M  e
 M. 

2)  Let  M  be any  non- zero  semisimple  left  R-module. Then   M  is  the 

only essential submodule in M. 

3) The only essential submodule in  6 as  -module is  6. 

4) The only essential submodules in  4 as  -module are  ˂2˃  and   4. 
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Section Two  :  On S-essential Submodules 
 

said  is   M module  -R   a left   of   N   modulesub  A  5] [  1):-2Definition (

to be s-essential (and denoted by    s.e.
 M ) if  for  any small submodule X 

 of   M with  N    X= 0, then X= 0. 

 module-R    left  semisimple  a   of  module sub   Every   ):2-2(Preposition 

 is s-essential. 

in   submodule be a Nand let module  R-left semisimple be a  MLet    .Proof

M. Let  X  be a small   submodule   in  M,   with    N   X =0.   Since    M   is 

semisimple, 0 is the only small submodule in M (  by Example ( 1-21 )  (2) )  

and hence X =0 . Thus N is an s-essential  submodule in M .□ 

 semisimple   a  is   M  ince S  module.-   as    15= Z M   etL  :)3-2(Example 

  -module, it follows  Proposition (2-2) implies  that all  submodules  of  M 

are  s-essential  and  hence  the submodules 0,  ˂  3  ˃ ,  ˂  5 ˃  and  Z15  are 

s-essential  in M = Z15 as  -module. 

 semisimple  a  is  M  inceS   .module-     as  42= Z M    etL  :4)-2(Example 

 -module, it follows Proposition (2-2) implies that all submodules of M are 

s-essential. Thus   the   submodules   0,  ˂   2  ˃ ,  ˂   3  ˃, ˂   7  ˃,  ˂   6  ˃ 

,  ˂   14  ˃, ˂   21  ˃ and  Z42 are s-essential  in Z42 as  -module. 

module is-R  a left of    modulesub  essential  Every 5] [  ):5-2(Preposition  

 s-essential. 
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 submodulebe any essential    N  let  nda  module-R  a left  be  M  etL .Proof

in M. Let  X   be   any   small   submodul  in M             N   X =0.  Since 

 N is essential in M, it follows that X = 0 and hence N is s-essential in M.   □ 

general, for   is not true in )5-( 2 ropositionThe convers of P :) 6-2(Remark 

example in Z15 as   -module, we show that ˂ 3 ˃  is s-essential  in Z15 but it 

is not essential in Z15. 

are     4Z    and    ˃2 ˂  inceS  . module-   as   4= Z M   Let   ) :2.7(Example 

 essential submodule  in  M, it  follows  from  Proposition ( 2-5)  that  ˂ 2˃, 

 Z4 are s-essential  in Z4 as   -module  in  Z4.  In  other  hand,  ˂ 0 ˃  is  not 

s-essentail in Z4.  Let  X = ˂ 2 ˃,  it  is  clear  that   X  is   small  in  Z4,   and 

˂ 0˃    X =0, but X 0  Hence  ˂ 0 ˃  is not s-essential  in Z4 as   -module. 

The   following   proposition    gives    an    equivalent    statement    of    an 

 s-essential submodule.  

 N module -R  a left   of  L  modulesub  zero-non A   [5]:   )8-2(Proposition 

is  s-essential  if  and  only if any 0   a   N,  if  Ra   is  a small  submodule 

in  N, then there is r   R such that  0  ra   L. 

. N   of   modulesub   essential-s   an    is    L    that    seuppoS  )   (   .Proof

Let    0   a   N    with   Ra   is  a small   submodule  in  N  and  Ra  0. By 

hypothesis,   L   Ra   0   and  hence  there  is  r   R  such  that  ra   0 and 

ra   L.  

(    )   Let     X     be    a  non-zero    small    submodule    of     N. 

We  will  prove  that  L    X  0.  Since  X    (0),   there   is   0   a   X and 

Ra   X   N.  Since   X   is   a small   submodule   in   N,  it   follows   from 
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[ 3,  Lemma 5.1.3 (a),  p. 108 ]   that   Ra   is   a small  submodule in N.  By 

hypothesis,  there  is   r   R  such that  0  ra  L.  Since  ra   X,  it  follows 

that L   X   0 and hence L is an s-essential  submodule in N.  □ 

module -R   an  of  smodulesub  be  N  and  B ,A  Let  : [5])9-2(Proposition 

M   such that   A     B      N     M. If   A   is an  s-essential  in  M, then   B 

 is an s-essential  in N. 

.Mmodule in sub essential -sis an  Ase that uppoS . Proof 

Let X   N  such that B   X  =0. Since N    M, it  follows   that   N   X = 0 

 Since A is an s-essential  in N,  X = 0  and hence B is an s-essential  in N.  □ 

is    K If   .M  a module of  modules sub  be    N  K  Let : )10-2(Corollary 

an s-essential  in M, then: 

1) K is an s-essential  in N; 

2) N is an s- essential in M. 

   M
.s.e  KSuppose that 

 
 .Proof 

1) By taking   A = B = K   and   applying   Proposition (2-9). 

 2) Consider the following sequence:  

 K    N    M   M.  

Since  K  s.e.
 M, it follows from Proposition (2-9) that N s.e.

M. □ 

modules of a left be a family of sub  n.,,..1,2= i}iN{Let  : )11-2(Proposition 

R-module  M.  Then       
  i   is  an  s-essential   submodule  in  M  if  and 

only if  Ni is an   s-essential  submodule in M, for each  i = 1,2,...,n.  
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. M  in  modulesub  essential -s  an  si   i    
  uppose that  S )   (   .Proof

Since       
  i   Nj   M      = 1,2,…,n,  it  follows  from Corollary (2-10) 

that Nj  is  an  s-essential  in M,    = 1,2,…,n. 

 (   ) Suppose that  Ni   is  an   s-essential  submodule    in   M,   for   each 

 i = 1,2,...,n. 

We will prove   by    induction   on   n.   For      n=1   the   statement   holds 

by hypothesis. Let    N=    
  i     be  an    s-essential    submodule   in   M. 

We   will  prove   that       
  Ni    is   an  s-essential   in M. Let  B be a small 

submodule of M such that (    
   i     B =0.                                        

Thus      (      
   i )   ( Nn    B) = 0.  Since    B  o 

M,   it    follows     from 

[ 3, lemma 5.1.3 (a), p. 108 ] that Nn B  o
M. 

Since          
   i   is   an    s-essential  in   M   (by assumption), Nn   B = 0. 

Since    Nn  
s.e.

M,  B=0  and  hence      
   i   is  an  s-essential  in M. □ 

 2N  and  1N   Let  p. 1054]  ,b)-7) (1-,   Proposition (2[ 5   12):-Corollary (2 

be  two  submodules of a module M.  Then  N1   N2 
s.e. 

M  if  and  only  if 

N1  
s.e. 

M and 
 
N2  

s.e.
 M. 

□ 11).-n (2Propositio and applying taking n=2 By   Proof.  

 

 The following result appear in [5,p.1054]  but without proof. 
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, N
.s.e  K If  .homomorphism-R an  be   N   M: f   Let  13):-Proposition (2

then f 
-1

 (K)   s.e.  
M. 

     .N
  .s.e K     that   Suppose   Proof . 

Let    X  o
 M    such     that    f 

-1
 (K)   X=0.   By  [ 3,   Exercise 3(b), p.78], 

f ( f 
-1

 (K)   X) =  f ( f 
-1

(K))   f (X)     and   hence    f (  f 
-1

 (K) )    f (X) =0. 

Since K  f ( f 
-1

(K)  [ 3, Lemma 3.1.8, p.44 ]  it   follows  that K   f (X) =0. 

Since    X  o
 M,    f (X)  o

N      (  by [ 3,  Lemma  5.2.3 (c),  p.10]. 

Since X  s.e.
M  ( by hypothesis ),   f (X) =0   and   hence   

X   ker ( f )   f
  -1

(K). 

 Thus X  = f 
-1

(K)   X =0 and hence f 
-1

 (K)   s.e.
M.    □ 

The   following  proposition was stated  in [ 5, p. 1054] but  without   proof.  

of  submodules   be    2N 
.s.e   2K and 1N 

.s.e  1K    Let  : 14)-Proposition (2

a module M.   

Then  K1 K2 
s.e.

N1 N2                        K1 
s.e.

N1  and  K2 
s.e

N2.            

               .2N 
.s.e  2K      and     1N 

.s.e  1K       that    Suppose   )   (  Proof.

Let         
: N1 N2  N1     and        

: N1 N2   N2    be   the     projection 

epimorphism.   By     Proposition (2-13),           

   (K1)  
s.e.

 N1   N2      and 

   

  (K2)  
s.e.

 N1
   

N2.   Since       

    1) =K1   N2  and       

  (K2 ) N1 K2, 

 it    follows        that    K1  N2  
s.e.

N1   N2    and     N1   K2   
s.e.

 N1   N2.  

K1 K2 = ( K1 N2 )   ( N1 K2). It   is   clear   that   
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Since     (  K1   N2 )   ( N1  K2 )  
s.e.

 N1   N2    (  by   Corollary  (2-12)), 

 it follows that  K1  K2   
s.e.

 N1   N2.   

(   ) Let    
:N1   N1    N2   and       

: N2   N1    N2   be  the   injection 

R-monomorphisms.   Since     K1  K2  
s.e.

 N1  N2  (   by   hypothesis ),   it 

follows   from   Proposition (2-13). That            

   (K1   K2)  
s.e.

 N1       and 

   

   ( K1   K2)  
s.e.

 N2.   Since    

   (K1  K2) = K1  and      

   (K1  K2) = K2, 

then K1  
s.e.

 N1 and K2  
s.e.

 N2. □   

, M     module   a   of     ssubmodule   be    iN   iK     Let   :15)-Corollary (2

  i = 1,2,3,...,n. Then        
  Ki   

s.e.
     

 Ni    if  and  only  if    Ki  
s.e.

 Ni , 

    i = 1,2,…,n.  

Proposition    By   .iN    
  

.s.e  iK      
    that         uppose S    )  . (Proof

(2-14),  K1  
s.e.

 N1  and       
  Ki   

s.e.     
  Ni.  By  applying   Proposition 

(2-14)  again ( n-times ), we get that Ki  
s.e.  

Ni ,   =1,2,...,n.                    

(   )   Suppose   that      Ki  
s.e. 

Ni ,    =1,2,...,n.   By    Proposition (2-14), 

 K1 K2 
s.e.

N1  N2. 

By applying Proposition (2-14)  ( n- times),   we get      
  Ki   

s.e.     
 Ni.  

owing hen the follT  .M  K  et and l   iM      
 M =   etL  16):-Corollary (2

statements are equivalent: 

1)  K   Mi   
s.e. 

Mi     =1,2,…,n. 

2)      
  ( K   Mi )   

s.e.   
M. 

3)  K   s.e.  
M . 
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 Proof . 

(1   2). By Corollary  (2-15). 

(2   3).   Since   K  Mi  
s.e.

K,  it   follows   that       
 (K   Mi ).    

Since       
 (K   Mi )  s.e.  

M ( by hypothesis ),  

it follows from Corollary (2-10) that K  s.e. 
M.  

3   1). Let 0   mi   Mi ,     =1,2,…,n  with Rmi  
o  

Mi.                        ) 

Thus  Rmi  
o 
M (  by [3, 5.1.3, p.108 ]). 

Since   B  s.e. 
M    ( by   hypothesis ),   there     is    r  R    0   rm   B  (by 

Proposition (2-8)). Since rmi   Mi,  thus   rmi   B     Mi ,     =1,2,…,n.  

By Proposition (2-8), B   Mi  
s.e.  

Mi,    =1,2,…,n. □        

 

. module-R    left  a     be    M       Let  ) ] (See [5  17):-Definition (2 

 Define  Socs (M) = Ʃ {N     | N is small and simple submodule of M },if 

M has a small  simple  submodule. 

 If    M    has  no  small  simple  submodule,  then define Socs (M) = 0. 

.module-Rbe left  MLet  )] ( See [5 18) :-Theorem (2 

Then Socs (M) =   { N     | N  s.e.  
M }. 

be    K  let  and    M submodule of   simple   small  any    be   S   Let  Proof. 

any s-essential submodule in M ( i.e., K  s.e.
M ). Since  S  is  simple, S 0. 

Since K  s.e. 
M, it follows that K   S   0 ( since S  o 

M ). 

Since S is simple and  K  S   S, thus K   S =S. 

Since K   S   K , it follows S   K. 

Hence S     { | K  s.e. 
M }, for any small simple submodule S  of  M. 
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By Definition (2-17) , Socs(M)     { | K  s.e. 
M }.  

Conversely,   since     {N     | N  s.e. 
M }     { | N  e 

M}    and   since 

Soc ( M) =   {N     | N  e  
M }       (by [ 3,    Theorem 9.1.1 (b), p .213 ], 

thus      {N    | N  s.e.  
M }  Soc (M)     and      hence  

  {M    | N  s.e.  
M }     and     Soc (M)     are     semisimple      modules.  

Assume   that   { N  s.e.  
M }     Socs (M).   Thus  

       Socs (M)    and    hence   there is a simple  submodule    { N  s.e.  
M }      

  such          {N  s.e. 
M ) and B is not small in M. 

Let    C    be     a  proper      submodule    of    M     such     that   B + C = M.  

  If  B   C    0,   then   B   C = B  ( since    B     is     simple     module ) (i 

and   hence  B   C. Thus  C =M and this is  a contradiction.   

If  B   C = 0, then  M = B   C. (ii  

We will prove that C  s.e.  
M.   Let   H  o 

M    such    that  C   H = 0,   then 

H + C     M ( since C   M ). Since H   C =0, thus   
          

  
   H. 

Since 
          

  
   
 
 

  
 

 
 , it  follows that H 

 
 

   
 

 
 . Since  

 

 
 =  

          

  
   B  and 

B is simple, thus 
 

 
 is simple R-module and hence H =0. 

Thus C   s.e. 
M and hence  B     {N  s.e.

M }   C. Since B + C = M,  then 

C =M   and    this   is    a   contradiction   from    i)   and    ii),  we have that 

B   C  = 0 and  B    C    0  and this is a contradiction.  
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 □ Thus   { N  s.e.
M }  = Socs (M). 

.) = 0M( sSoc  , thenmodule-R   a semisimple   is   M   If  :19)-Corollary (2 

 ,2)-Propsition (2  By module.-R  semisimple a  is   M   Suppose that .Proof 

0   is   s-essential   submodule   of   M.      Since    Socs (M) =   { N  s.e.
M } 

(by Theorem (2-18) ) , it follows that Socs (M) = 0. 

 

) MSoc (  ) M( sSoc  have   we   M  module-RFor any left  20) :-Remark (2

(by Theorem (2-18)). The    other    inclusion  is  not   true   in   general, for 

example: 

if   M = Z6   as    -module,   then   from   Corollary (2-19)   we   have   that  

 Socs (M) =0   Soc(M) =Z6. 

21) :-(2Examples  

1) Socs ( z) = 0  and this from Remark (2-20) (because Soc ( z) =0. 

2) Socs (Z4) =     (by theorem (2-18) and Example (2-7)    

homomorphism. -Rbe a left   N  M  :   Let  22) :-Lemma (2 

If S is a simple submodule of M, then either   (S) = 0  or   ( S )  is a simple 

submodule of N.   

)  is  a simple S(  0.  We   will  prove  that     ) S(  Suppose that    Proof .

submodule of N.  Assume   that    ( S ) is not   simple   submodule  of   N, 

thus there is a submodule  B  of  N  such that    0  
 
 

  B    
 
 

       (S). 
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Define     f : S     (S)     by    f(x) =   (x),          S.   It  is clear that f is 

an epimorphism (i.e. f (S) =   (S)). 

Thus    f ( f 
-1

(B)) = B. Since S  is  simple, either  f 
-1

(B) = 0  or    f
- -1

 (B)=S. 

1) If     f 
-1

 (B) =0,  then  B = f ( f 
-1

(B)) = f (0) = 0 and this is contradiction. 

2)  If  f 
-1

 (B) = S, then  B = f ( f 
-1

(B)) =  f (S) =   (S)    and        this        is 

contradiction. 

homomorphism. -Rbe  a left     N   M:  Let      [5]  23):-(2Proposition 

Then   (Socs(M))   Socs(N). 

17) )-( by   Definition (2                        ) ∑       (    ) ) =M(s(Soc   Proof .  

  (Socs(M) )  =( ∑                .     Since     (if     A       M,       then   from 

 Lemma  (2-22) and [ 3, Lemma 5.1.3(c) ]  we    have     either        (A) = 0 

or     (A)     N),    it  follows  that 

∑                     ∑            ) = Socs (N).  

Therefore,  (Socs (M) )    Socs (N). 

 

) .M( sSoc   ) N( s, then  SocM   NIf :  24)-Corollary (2 

homomorphism.-R,  be  the  inclusion  M   N:  iLet     Proof. 

By Proposition (2-23), i (Socs (N)   Socs (M). 

 Thus Socs (N)    Socs (M). □  
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.M module  -R ) = 0,     for   any    left  )M(s (Socs Soc    25):-(2 Proposition 

20))   and   Soc (M) -Soc (M)   ( by   Remark (2  (M)  sSince   Soc    Proof.

is   semisimple      module,   it   follows   that   Socs (M)      is     semisimple 

module. By Corollary (2-19), Socs (Socs(M) ) = 0. □ 

 ,)M( s) = SocM( s(Socs In general, it  is  not  true that Soc  26) :-Remark (2

for example,  if  M= Z4 as  -module, then  

Socs (Socs(M))=0 ≠Socs(M)=  2   

that         necessary     not         is   it   then      , M  N If  Remark (2.27) : 

Socs(N) =N Socs(M). 

 For example: 

 Let   M = Z4  as    -module   and   N =   2 ,  then   Socs (N)  = 0 ( since N 

is semisimple  -module ), but N   Socs (M) =   2      2 =  2  . 
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