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Abstract

A submodule N of a left R-module M is said to be s-essentail in M
if for each small submodule X of M such that N NX= 0, then

X=0 [5].

In this work, we give survey of some known properties and
results of s-essentail submodules and Socs (M) and rewrite
proofs, with more details, for some of them. Also, some new
results and examples of s-essentail submodule and Soc(M) are
give in this work.
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Introduction

Introduction:

Throughout this work, all ring are associative with identity

and all modules are unitary left R-modules.

A submodule N of a left R-module M is called essential in M
iIf For any submodule X of M such that NNX=0, then X=0 [3].
several authors introduced generalizations of essential
submodules.For example: sh. Asgari and A.Haghany introrduced
in [2] the concept of t-essential submodule as a proper
generalizations of essential submodule. Also, N kh. Abdullah in
introduced in [1] the concept of strong essential submodule as a

proper generalizations of essential submodules.

D. X. Zohu and X.R. Zhang in[5] introduced the concept
of s-essential submodule as a proper generalizations of
essential submodule. A submodule N of aleft R-module M
Is said to be s-essential in M if for each small submodule X of
such that N N X=0, then X=0.

This work consists of two sections. In section one , we
introduced some basic concept of Module Theory which we will

need in the second sections.

In section two, we give survey of some known
properties and results of s-essentia submodules and Socy(M)
and rewrite proofs, with more details, for some of them. For

examples: Proposition 2-13  wich  state  that (
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If f:M—N is an R-homomorphism and K is an s-essential
submodule in N, then f*(K) is an s-essential in M) is appear
in [5] but without proof. In this work, we give a proof of
this result. Also, in Theorem 2-18 we give a proof with more
details for the result ((Socs(M)=N{NM/N <*¢ M}) which
appears in [5].

Many new results are given in the work. For examples
in  Proposition 2-2, we prove that every submodule of a
semisimple module is s-essential.

Let {N;} be a family of submodules of a left R-module
M. We prove in Proposition2-11 that NjL;N; is an

S-essential submodule in M if and only if isan S-essential

Submodule in M, for each. In Corollary 2-19, we Prove that if
M is a semisimple left R-module, then Socs (M) = 0.

Finally, in Proposition 2-25, we prove that Socs ( Socs (M)) =0,
For any left R-module M and give an example of left
Z-module M such that Soc (Socs (M)) # Soc, (M).

Also, we give an example of left R-module M such that

Soc, (N)£ N N Socg( M), for some submodule N of M.
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Section One: Basic Concepts

Definition (1-1): [3] Let R be aring. A left R-module is a set M together

with:

(1) A binary operation + on M under which M is an abelian group.

(2) A mapping «:RXxM — M (is called a module multiplication)

denoted by rm, for all r € R and for all m € M which satisfies

@ (r+s)m=rm +sm,forallr,s eR,meM.

(b) (rsym=r(sm),forallr,se Rand me M.

(C)r(m+n)=rm +rn,forallr e Rand mn € M,

If the ring R has an identity element 1 and

(d) 1.m =m, for all m € M, then M is said to be a unitary left R-module.

Examples (1-2):

1) Every Abelian group is Z-module, (in particular, Q andZ are

Z-modules).

2) Every leftideal (I, +,.) of aring (R,+,.) is a left R-module.
3) Everyring (R,+,.) is a left and right R-module.

4) Every F —vector space V is an F- module, where F is a field.

Definition (1-3): [3] Let R bearingand let M be a left R-module. A left

R-submodule of M is asubgroup N of M such that ren €N, for all
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re R,and foralln €N, where ¢ is the module multiplication defined on

M. We will use N & M to denote that N is a submodule of M.

Examples (1-4):

1) <0 >and M are trivial submodules of M.

2) The R-submodules of a left R-module R are exactly the left ideals of a

ring R.

3) Let F be a field. Then < 0>and F are the only submodules of a left F-

module F.
4) The submodules of a Z-module Z are < n>, forall n € Z.
5) The submodules of a Z —module Z, are < 0>, < 2 > and Z,.

6) The submodules of a Z-module Zpare < 0>, <2><3> <4> < 6>
and Zi,

Proposition(1-5): Let{ N; }i-1»...., be a family of submodules of a left R-

module M. ThenN?=!N, and NI~ N; are submodules of M.

Proof : See[3].

Definition (1-6) : [3] A submodule N of a left R-module M is said to be a
direct summand of M if there is a submodule K of M such
that M =N @K.In other word, there is a submodule K of M such that
M=N+K and N n K =0.

Proposition(1-7): [3] If Xis asubset of a left R-module M, then <X>

will denote the intersection of all the submodules of M that contain X. This
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is called the submodule of M generated by X, while the elements of X

are called generators of < X >,

Definition(1-8): [3] A left R-module M is said to be simple if M # 0 and
the only left R —submodules of M are 0 and M.

Definition (1-9): [3] A left R-module M is said to be semisimple if every

submodule of M is direct summand of M .

Definition (1-10): [3] The socle of a left R-module M is denoted by

Soc(M) and defined as the sum of the simple submodules of M. If M has no

simple submodule, then we set Soc(M) = 0.

Proposition (1-11) : (see[3]) Let R be aring, let M be a left R-module and
let N be a left submodule of M. The (additive, Abelian) quotient group

M/ N can be made into a left R-module by defining a module

multiplication « :
Rx (M/IN) > M/N by re(x+N)=(rx)+N, for all reR and xe M

Definition (1-12) : [3] The left R-module M/N is defined in Proposition

(1-11) is called quotient (or factor) module.

Definition (1-13) :[3] Let N and M be left R-modules

1) A function :N—-M is said to be aleft R-homomorphism if for
all a,peN and reR then f(a+b) = f(a) + f(b) and f(ra) = rf(a).

2) A left R-homomorphism is called a monomorphism if it injective and is
an epimorphism if it is surjective. A left R-homomorphism is called

isomorphism if it is both injective and surjective. The modules N and
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M are said to be isomorphic, denoted by N=M, if there is left isomorphism
fN: > M

Examples (1-14):

1) Let N & M .The mapping m:M — M/N defined by

m(m)= m+N is a left R-epimorphism and is called the natural epimorphism.

2) Let N M . The mapping i:N —M defined by i(m) = m forall me N isa

left R-monomorphic.

3) If M=N@®K, then the epimorphism my:M — N defined by

iy (N + K)=n, ¥ n €N, k € K, it is called the projection epimorphism on N.

Definition (1-15) : [4] Let N be asubmodule of a left R-module M. A

relative complement of N is denoted by N © and defined as follows :

1) N° M.
2) N n N =0.

3) If Bo Msuchthat NN B=0and N° < B, then N°=B.

Definition (1-16) : [3] A left submodule N of a left R-module M is said to
be maximal submodule of M if N #= M and for every left submodule B of
M withN € B < M, then B =M.
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Definition (1-17): [3] Let M be a left R-module the Jacobson radical of M

Is denoted by J(M) and defined as the intersection of all maximal left

submodules of M. If M has no maximal left submodules, then we set
J(M) = M.

Definition(1-18): [3] A submodule N of aleft R-module M is said to
be small in M and denoted by N € °M if for all submodule B of M
with N +B=M, then

B=M.Aleftideal | of aring R is said to be small inR iflisasmall

left submodule in a left R-module R.

Notation: We will denote to any small and simple submodule N of a
module M by N c**M,

Examples (1-19):

1) For every R-module M we have 0 is a small submodule in M.

2) Let M be any non-zero semisimple left R-module. Then 0 is the only

small submodule in M.
3) The only small submodule in Zg as Z-module is 0.
4) The only small submodules in Z, as Z-module are 0 and <2>.

5) Every finitely generated submodule of a Z -module Q is small.

Definition (1-20) : [3] A submodule N of a left R-module M is said to be
essential in M and denoted by N <°®* M if for all submodules, B of M with

N N B=0, then B=0.
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Examples ( 1-21):

1)For every left R-module M, we have M €° M.

2) Let M beany non- zero semisimple left R-module. Then M is the

only essential submodule in M.
3) The only essential submodule in Zg as Z-module is Ze.

4) The only essential submodules in Z, as Z-module are <2> and Z,.
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Section Two : On S-essential Submodules

Definition (2-1): [ 5] A submodule N of aleft R- module M is said
to be s-essential (and denoted by N <** M) if for any small submodule X
of Mwith Nn X=0, then X=0.

Preposition (2-2): Every submodule of a semisimple left R-module

is s-essential.

Proof. Let M be a semisimple left-R module and let N be a submodule in
M. Let X beasmall submodule in M, with NN X=0. Since M is
semisimple, 0 is the only small submodule in M ( by Example (1-21) (2))

and hence X =0 . Thus N is an s-essential submodule in M .o

Example (2-3): Let M=2Z;5 as Z-module. Since M is a semisimple
Z-module, it follows Proposition (2-2) implies that all submodules of M
are s-essential and hence the submodules 0, < 3 >, < 5> and Z;5 are

s-essential in M = Z;5 as Z-module.

Example (2-4): Let M =24, as Z-module. Since M is a semisimple
Z-module, it follows Proposition (2-2) implies that all submodules of M are
s-essential. Thus the submodules 0, < 2 >, < 3 >< 7> < 6 >

, < 14 > < 21 >and Z,, are s-essential in Z4, as Z-module.

Preposition (2-5): [5] Every essential submodule of aleft R-module is

s-essential.
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Proof. Let M be aleft R-module and let N be any essential submodule
in M. Let X be any small submodul in M such that N n X =0. Since

N is essential in M, it follows that X = 0 and hence N is s-essential in M. o

Remark (2-6) : The convers of Proposition ( 2-5) is not true in general, for

example in Z;5 as Z -module, we show that <3 > is s-essential in Z;5 but it

is not essential in Zs.

Example (2.7) : Let M=2Z, as Z-module. Since <2> and Z, are

essential submodule in M, it follows from Proposition ( 2-5) that <2>,
Z, are s-essential in Z, as Z-module in Z,. In other hand, <0> is not
s-essentail in Z,. Let X=<2>, it is clear that X is small in Z,, and

<0>nN X =0, but X0 Hence <0 > is not s-essential in Z, as Z -module.

The following proposition gives an equivalent statement of an

s-essential submodule.

Proposition (2-8): [5] A non-zero submodule L of aleft R-module N

Is s-essential if and onlyifanyO=+#a€N, if Ra is asmall submodule

in N, then there isr € R such that 0+ ra € L.

Proof. ( =) Suppose that L is an s-essential submodule of N.
Let 0+aeN with Ra is asmall submodule in N and Ra #0. By
hypothesis, L nRa# 0 and hence there is r € R such that ra + 0 and

raeL.
(<) Let X be anon-zero small submodule of N.

We will prove that L n X #0. Since X # (0), there is 0=+ ae€ Xand

Rac XS N. Since X is asmall submodule in N, it follows from
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[3, Lemma5.1.3 (a), p.108] that Ra is asmall submodule in N. By
hypothesis, there is r € R suchthat 0+ ra €L. Since ra € X, it follows

that L n X %= 0 and hence L is an s-essential submodule in N. o

Proposition (2-9): [5] Let A,B and N be submodules of an R-module
M suchthat A B & N < M.If A isan s-essential in M, then B

Is an s-essential in N.

Proof . Suppose that A is an s-essential submodule in M.

Let X < N suchthat BN X =0.Since N € M, it follows that NN X=0
Since Ais an s-essential in N, X =0 and hence B is an s-essential in N. o

Corollary (2-10) : Let K €N be submodules of a module M. If K is

an s-essential in M, then:

1) K is an s-essential in N;
2) N is an s- essential in M.

Proof. Suppose that K €**M
1) By taking A=B =K and applying Proposition (2-9).

2) Consider the following sequence:
KSENcMcM
Since K <** M, it follows from Proposition (2-9) that NS**M. o

Proposition (2-11) : Let {N;}i=1,2,...,n be a family of submodules of a left

R-module M. Then niL; N; is an s-essential submodule in M if and

only if Njisan s-essential submodule in M, for each i=1,2,...,n.
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Proof. (=) Suppose that N, N; is an s-essential submodule in M.
Since N, NiSN;SM Vj=1.2..n, it follows from Corollary (2-10)

that N; is an s-essential inM, Vj=1,2,...,n.

(<) Suppose that N; is an s-essential submodule in M, for each
1=1,2,..,.n.

We will prove by induction on n. For n=1 the statement holds
by hypothesis. Let N=n!, N; be an s-essential submodule in M.
We will prove that n; N; is an s-essential in M. Let B be a small
submodule of M such that ( N}L, N; ) N B =0.
Thus  (NE=MNi)N(N,n B)=0. Since B<°M, it follows from
[ 3, lemma5.1.3 (a), p. 108 ] that N,NB S°M.

Since NXMN; is an  s-essential in M (by assumption), N, n B = 0.
Since N, <**M, B=0 and hence N}, N; is an s-essential in M. o

Corollary (2-12): [5, Proposition (2-7) (1-b), p. 1054] Let N; and N,

be two submodules of a module M. Then N; N N,&** M if and only if
N; €**Mand N, <> M.

Proof. By taking n=2 and applying Proposition (2-11). o

The following result appear in [5,p.1054] but without proof.
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Proposition (2-13): Let f: M —> N be an R-homomorphism. If K &**N,
then f * (K) <** M.

Proof . Suppose that K <&** N.

Let X<S°M such that f*(K)nX=0. By [3, Exercise 3(b), p.78],
fF(FPK)NX)=F(fFK)NTf(X) and hence f(f™*(K))n f(X)=0.
Since KS f (f *(K) [3, Lemma3.1.8, p.44] it follows that K n f (X) =O0.

Since X<c°M, f(X)S°N ( by[3, Lemma 5.2.3 (c), p.10].
Since X €**M ( by hypothesis ), f(X)=0 and hence

X C ker (f) < f Y(K).
Thus X =f*(K) n X =0 and hence f * (K) <**M. @
The following proposition was stated in [ 5, p. 1054] but without proof.

Proposition (2-14): Let K; &** N;and K, ** N, be submodules of
a module M.
Then Ki@K,S**N:i®N, if and only if KiS**N; and K,S**N,.

Proof. (<) Suppose that K;<**N; and K,Z* N,.

Let my, NN, —>N; and 7y, :Ni@®N, >N, be the projection
epimorphism. By  Proposition (2-13), my, (K) €N @ N, and
Ty, (K) € N1 @®N,. Since  my! (K1) =Ki @ N; and  my (K, ) Ni©DKo,
it follows that K@ N, S*N; N, and N; DK, S** N; ® N,.

It is clear that KleaKg = ( K]_@Nz) N ( Nl@Kz)
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Since (Ki®N)N(N:DKy,)S* N, ®N, ( by Corollary (2-12)),
it follows that K;® K, ** N; @ N,.

(=) Letiy,:Nt—N;@® N, and iy,:N,— N; @ N, be the injection
R-monomorphisms. Since K@ K, €** N.:@® N, ( by hypothesis), it
follows from Proposition (2-13). That iny (Ki®K) €Ny and
iny (Ki @ K;) €N Since iy (Ki K) =Ky and iyl (Ki® Kp) =K,

then K, e N and K, e N,. O

Corollary (2-15): Let Ki© N; be submodules of a module M,
vi=123,..,nThen @, K <**@®~,N; if and only if K;<**N;,
Vi= 1,2,...,n.

Proof. (=) Suppose that L Kic* @ N;. By Proposition
(2-14), Ky <**N; and @, K; <** @, Ni. By applying Proposition
(2-14) again ( n-times ), we get that K; €% N; , Vi=1,2,...,n.

(<) Suppose that K;<**N;,vi =1,2,...,n. By Proposition (2-14),
Ki®DK,S** N1 N,.

By applying Proposition (2-14) ( n- times), we get &, K; <** @ ,N..

Corollary (2-16): Let M=@®, M; and let K < M. Then the following

statements are equivalent:

1) Kn Mi gs'e'Mi Vi =1,2,...,n.
2) O, (KNM) S M.
3) K S** M.
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Proof .

(1 = 2). By Corollary (2-15).

(2=3). Since Kn M; c**K, it follows that @®™,(Kn M;).

Since @ ,(K N Mi) c** M ( by hypothesis ),

it follows from Corollary (2-10) that K <** M.

(3=1).Let0O=m; € M;, Vi=1,2,....,n with Rm; €° M.

Thus Rm; €°M ( by [3, 5.1.3, p.108 ]).

Since B<**M (by hypothesis), there is reR 20#rmeB (by
Proposition (2-8)). Since rm; € M;, thus rm;e B n M;, Vi=1_2,...,n.
By Proposition (2-8), B N M; €** M;, Vi =1,2,...,n. O

Definition (2-17): (See[5]) Let M be a left R-module.
Define Soc, (M)=ZX {N < M| N is small and simple submodule of M },if

M has a small simple submodule.

If M has no small simple submodule, then define Socs (M) =0.

Theorem (2-18) : ( See [5]) Let M be left R-module.

Then Socs M) =N {N > M|Nc* M }.

Proof. Let S be any small simple submodule of M and let K be
any s-essential submodule in M (i.e., K €**M). Since S is simple, S#0.
Since K €** M, it follows that K n'S = 0 ('since SS°M).

Since Sissimpleand KNS c S, thusKn S =S.
Since KNS c K, it follows S € K.

Hence S € N {K| K €** M }, for any small simple submodule S of M.
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By Definition (2-17) , Socs(M) € n {K| K &**M }.

Conversely, since N{N © M|Nc*M}cn{N|Nc®*M} and since
Soc(M)=n{N o M|Nc*M} (by[3, Theorem9.1.1(b), p.213],
thus N{No M|NcS* M}< Soc(M) and hence

N{Mo M|Nc* M} and Soc(M) are semisimple modules.
Assume that N{N <** M} # Socs (M). Thus

N{NCS*M}&Z Socs(M) and hence thereisasimple submodule
B such that B € N {N <** M) and B is not small in M.

Let C be a proper submodule of M such that B+C=M.
) If BNC #0, then BNC=B (since B is simple module)
and hence B € C. Thus C =M and this is a contradiction.

i If BNC=0,then M=B & C.

We will prove that C =** M. Let H<E°M such that CNH=0, then

H @ C

H+C # M (since C# M). Since H N C =0, thus = H.

H @ C
Cc

H @ C
(o

Since =B and

o . 3N ]
ﬂ, it follows that H M Since X =
+ C + C c

B is simple, thus % is simple R-module and hence H =0.

Thus C c**Mand hence BS N {N €**M } € C. Since B+ C = M, then

C=M and this is a contradiction from i) and ii), we have that

BNC =0and B N C == 0 and this is a contradiction.
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Thus N { N €**M } = Socs (M). O

Corollary (2-19): If M is asemisimple R-module, then Socs (M) = 0.

Proof. Suppose that M is a semisimple R-module. By Propsition (2-2),
0 is s-essential submodule of M. Since Socs(M)=N{Nc<*M}
(by Theorem (2-18) ), it follows that Soc, (M) = 0.

Remark (2-20) : For any left R-module M we have Socs (M) € Soc (M)

(by Theorem (2-18)). The other inclusion is not true in general, for

example:
if M=2Z; as Z-module, then from Corollary (2-19) we have that
Socs (M) =0 € Soc(M) =Z.

Examples (2-21) :

1) Soc;s (Z,) = 0 and this from Remark (2-20) (because Soc (Z,) =0.
2) Socs (Z4) = < 2 > (by theorem (2-18) and Example (2-7) ).

Lemma (2-22) : Letx: M — N be a left R-homomorphism.

If S is a simple submodule of M, then either « (S) =0 oro« (S) isasimple

submodule of N.

Proof . Suppose that « (S) = 0. We will prove that o (S) is asimple

submodule of N. Assume that o« (S)isnot simple submodule of N,

thus there is a subomodule B of N suchthat 0 : B : o (S).
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Define f:S—«x(S) by f(X)=«(X), V x3S. It isclearthatfis
an epimorphism (i.e. f (S) = « (9)).

Thus f(f™(B))=B.SinceS is simple, either f *(B)=0 or f ™ (B)=S.
1) If £ (B)=0, then B=f(f*(B))=f(0)=0and this is contradiction.

2) If f1(B)=S,then B=f(f*(B))= f(S)= (S) and  this is

contradiction.

Proposition (2-23): [5] Let o«:M — N be aleft R-homomorphism.
Then « (Socs(M)) € Socs(N).

Proof . « (Socs(M) ) = o (Y css. A) (by Definition (2-17) )

x (Socs(M)) =(Xacssm < (A)). Since (if Ac*SM, then from
Lemma (2-22) and [ 3, Lemma 5.1.3(c) ] we have either o (A)=0
or o« (A)c%*N), it follows that

ZA gS.S.M (08 (A) g o6 CC(ZA cSs M B) = SOCS (N).
Therefore, «(Socs (M) ) <€ Soc, (N).

Corollary (2-24) : If N - M, then Socs (N) £ Socs (M) .

Proof. Let i:N < M, be the inclusion R-homomorphism.
By Proposition (2-23), i (Socs (N) € Soc (M).

Thus Socs (N) € Socs (M). o
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Proposition (2-25): Socs(Socs(M)) =0, for any left R-module M.

Proof. Since Socs (M) < Soc (M) (by Remark (2-20)) and Soc (M)
Is semisimple  module, it follows that Soc, (M) is semisimple
module. By Corollary (2-19), Socs (Socs(M) ) =0. o

Remark (2-26) : In general, it is not true that Socs (Socs (M) = Socs (M),

for example, if M= Z, as Z-module, then
Soc (Socs(M))=0 £Socs(M)= <2>.

Remark (2.27) : If N M, then it is not necessary that

Socs(N) =NNSocs(M).
For example:

Let M=2Z, as Z-module and N =< 2>, then Socs(N) =0 (since N
Is semisimple Z-module ), but N n Soc, (M) = < 2> N <2>=< 2>,




Reference

References:

[1] N. kh. Abdullah, strong essential submodules and strong uniform
modules, Tikrit J of pure science 21 (1) (2016), pp.112-117.

[2] Sh. Asgari and A. Haghany, t-Extending modules and t-Baer
Modules, Comm. Algebra, 39 (2011), pp. 1605-1623.

[3] F. Kasch, Modules and rings, Academic Press, London, New York,
1982.

[4] T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New
York, 1999.

[5] D. X. Zhou and X. R. Zhang, small- essential submodules and Morita
duality, Southeast Asian Bull. Math., 35 (2011), pp. 1051-1062.




