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Abstract 

We have discussed the basic properties of connected spaces 

regarding subspaces, product spaces, preservation under mappings etc. 

Also we have given several characterizations of these spaces. We begin 

our research paper of topological properties by making the idea of being 

connected that is being in one piece. It turns out to be easier to think 

about the property that is opposite of connectedness, namely the property 

of being in two or more pieces. 
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INTRODUCTION 

Two important and interrelated strands in the practice of the exact 

sciences in the 19th century will be considered in which topological ideas 

came to be relevant for natural philosophy. In this way, light can be 

thrown on a part of the causal weave of events that eventually led to the 

emergence-of topology as a discipline, a part which has largely been 

neglected up until now in-the historical literature. The first of these two 

strands was concerned with topological issues that arose in the context of 

a dynamical theory of physical phenomena, a theory-advocated in 

particular by British natural philosophers during the last third of the 19th 

century. These developments will be discussed in the first part of our 

study. The second strand of events related to speculations about the large-

scale topological structure of space will be the focus of the second part of 

this article.                                              

The emergence of an entirely new discipline within mathematics is 

a rare event-in the history of science. The creation of topology the science 

of properties of spaces-and figures that remain unchanged under 

continuous deformations represents a phenomenon of this kind, but of a 

distinctly modern variety. Topology bears comparison-with the calculus, 

probability theory or number theory in that the first ideas about a new 

field called Analysis Situs or Geometria Situs were communicated among 

a handful of mathematically minded intellectuals in the late seventeenth 

and early eighteenth centuries. However, unlike the calculus and number 

theory, but similar to probability theory, the basic ideas underlying 

Analysis Situs reveal no ancient roots. Notoriously, ancient-authors 

treated questions of continuity hardly at all, and if so, then mainly as 

physical-questions linked to the phenomenon of motion. Moreover, in 

sharp contrast to these three other fields, during the 18th century no 
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clearly defined domain of mathematical-problems was delineated that 

should and could be treated by Analysis Situs. Rather, a vague idea about 

an analysis which dealt not with magnitude, but “position,” left it to-

individual mathematicians to decide what should belong to the new field. 

Only gradually over the course of the 19th century was a consensus 

reached about the nature of-problems in topology. Nevertheless, after 

crossing the threshold to a scientific discipline in the full sense of the 

word in the first decades of this century, topology became one of the core 

research fields of mathematics, and topological arguments have come to 

play a role in virtually every other field in mathematics and the 

mathematical sciences. If one may reasonably speak of genuinely modern 

mathematical disciplines, then topology-certainly belongs among them. 

These late beginnings may be one reason why the emergence of topology 

has only begun to attract historiographical attention comparable to that 

received by fields like the calculus, number theory, or probability theory. 

While the invention of the calculus has long since been the object of 

historical study, and while the emergence of number theory and 

probability theory have recently been treated from a wide variety of 

perspectives, the number of historical monographs devoted to the 

formation of topology remains very small. Apart from these, we have a 

few survey articles and several research papers-dealing with particular 

topics within or closely related to topology.                                                                                                                                                    
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1.1 Basic of Topological space.              

1.1.1Definition : 

 Let X be a set. A topology on X is a collection T ⊆ P(X) of subsets of X 

satisfying         

1. T contains ∅ and X;                                                                                                                 

2. T is closed under arbitrary unions, i.e. if Ui ∈ T for i ∈ I then  Ii  Ui ∈ T;                            

3. T is closed under finite intersections, i.e. if U1, U2 ∈ T then U1 ∩ U2 ∈ T . 

 

1.1.2 Definition : 

A topological space (X, T ) is a set X together with a topology T on it. 

The elements of T are called open subsets of X. A subset F ⊆ X is called closed 

if its complement X \ F is open. A subset N containing a point x ∈ X is called a 

neighborhoods of x if there exists U open with x ∈ U ⊆ N. Thus an open 

neighbourhood of x is simply an open subset containg x.  

Normally we denote the topological space by X instead of (X, T ). 

 

1.1.3 Definition : 

 Let A ⊆ X be a subset of a topological space X. The interior of A is the 

biggest open subset contained in A. One has A˚= UA  open U. Dually the 

closure of A is the smallest closed subset containing A. One has                     

A  =  FA   closed F. 
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1.1.4 Example:  

Consider the following set consisting of 3 points; X = {a, b, c} and 

determine if the set  T = {∅, X, {a}, {b}} satisfies the requirements for a 

topology. 

 This is, in fact, not a topology because the union of the two sets {a} and {b} is 

the set {a, b}, which is not in the set τ 

 1.1.5 Example: 

 Find all possible topologies on X = {a, b} 

1. ∅, {a, b}                                                                                                                                

2. ∅, {a}, {a, b}                                                                                                                             

3. ∅, {b}, {a, b}                                                                                                                    

4. ∅, {a},{b},{a,b} 

1.1.6 Example: 

 When X is a set and τ is a topology on X, we say that the sets in τ are 

open. Therefore, if X does have a metric (a notion of distance ), then  T ={all 

open sets as defined with the ball above} is indeed a topology. We call this 

topology the Euclidean topology. It is also referred to as the usual or ordinary 

topology. 

1.1.7 Example: 

 If Y ⊆ X and τx is a topology on X, one can define the Induced topology 

as  τy = {O ∩ Y |O ∈ τx}. 

 This last example gives one reason why we must only take finitely many 

intersections when defining a topology. 

 

1.1.8 Remark: 

    As promised, we can now generalize our definition for a closed set to 

one in terms of open sets alone which removes the need for limit points and 

metrics 
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1.1.9 Definition:  

 A set C is closed if  X − C is open.  

Now that we have a new definition of a closed set, we can prove what used to 

be definition 1.3.3 as a theorem: A set C is a closed set if and only if it contains 

all of its limit points. 

  

 

Proof: Suppose a set A is closed. If it has no limit points, there is nothing to 

check as it trivially contains its limit points. Now suppose z is a 

limit point of A. Then if z ∈ A, it contains this limit point. So 

suppose for the sake of contradiction that z is a limit point and z is 

not in A. Now we have assumed A was closed, so its complement is 

open. Since z is not in A, it is in the complement of A, which is 

open; which means there is an open set U containing z contained in 

the complement of A. This contradicts that z is a limit point because 

a limit point is, by definition, a point such that every open set about 

z meets A 

 

 Conversely: if A  contains all its limit points, then its complement is 

open. Suppose x is in the complement of A. Then it can not be a 

limit point (by the assumption that A contains all of its limit points). 

So x  is not a limit point which means we can find some open set 

around  x  that doesn’t meet  A. This proves the complement is 

open, i.e. every point in the complement has an open set around it 

that avoids A . 

1.1.10 Remark: 

 Since we know the empty set is open, X must be closed. 

1.1.11 Remark: 

  Since we know that X is open, the empty set must be closed. 
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 Therefore, both the empty set and X and open and closed. 

 

1.1.12 Example :  

When X is a set and τ is a topology on X, we say that the sets in τ are 

open. Therefore, if X does have a metric (a notion of distance), then τ ={all 

open sets as defined with the ball above} is indeed a topology. We call this 

topology the Euclidean topology. It is also referred to as the usual or ordinary 

topology.   

 

1.1.13 Definition: 

 A subset S of topological space (x, T) is said clopen if it is both open 

and closed subset of X. 
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1.1 .Some properties of Topological space. 

1.2.1 Continuity 

  In topology a continuous function is often called a function. There                     

are 2 different ideas we can use on the idea of continuous functions. 

 Calculus Style 

 1.2.2 Definition:  

 f : R n → R m  is continuous if for every  > 0 there exists δ > 0 such 

that when |x − x0| < δ then |f(x) − f(x0)| < . 

 The map is continuos if for any small distance in the pre-image an equally 

small distance is apart in the image. That is to say the image does not jump 

 Topology Style. In topology it is necessary to generalize down the definition 

of continuity, because the notion of distance does not always exist or is 

different than our intuitive idea of distance. 

1.2.3 Definition : 

  A function f : X → Y is continuous if and only if the pre-image of any 

open set in Y is open in X. If for whatever reason you prefer closed sets to open 

sets, you can use the following equivalent definition: 

 1.2.4 Definition : 

  A function f : X → Y is continuous if and only if the pre-image of any 

closed set in Y is closed in X. 

1.2.5 Definition : 

Given a point x of X, we call a subset N of X a neighborhood of X if we 

can find an open set O such that x ∈ O ⊆ N.  

1. A function f : X → Y is continuous if for any neighborhood V of Y there is a 

neighborhood U of X such that f(U) ⊆ V .  

2. A composition of 2 continuous functions is continuous  
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1.2.6 Definition : 

A function f:X Y  between two topological spaces is called continuous 

if every U Y open in Y the inverse image f-1
 (U)  is open in X. 

1.2.7 Proposition : 

  The identity function is continuous. A composition of two continuous 

maps is continuous. Thus topological spaces and continuous maps between 

them form a category, the category of topological spaces. 

 

1.2.8 Definition :(Homeomorphisms) 

 A homeomorphism is a function f : X → Y between two topological 

spaces X and Y that 

1.is a continuous bijection; and  

2.has a continuous inverse function f −1 . 

Another equivalent definition of homeomorphism is as follows.  

1.2.9 Definition : 

 Two topological spaces X and Y are said to be homeomorphic if there 

are continuous function  f : X → Y and g : Y → X such that  f ◦ g = IY and                 

g ◦ f = IX. 

 Moreover, the functions  f and g are homeomorphisms and are inverses of each 

other, so we may write f −1 in place of g and g −1 in place of f. 

 Here, IX and IY denote the identity maps . 

 

1.2.10 Definition: 

  Let and * be two topologies on a given set X. If *then is 

coarser than *. 
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1.2.11 Definition :  

a topological space (X,T) is said to be completely regular space iff 

every closed subset F of X and every point xX-F there exist a 

continuous function f:X→[0,1] such that f(x)=0 , f(F)={1} 

 1.2.12 Definition :(tychonoff) 

  a tychonoff space or space is completely regular T1-space 

1.2.13 Definition : 

  Say that a family of sets A is linked if for every A, B ∈ A, A∩B = ∅. 

1.2.14 Definition :(pathwise) 

  Let X be a topological space, and x, y ∈ X. A continuous function           

p : I → X such that p(0) = x and p(1) = y is called a path from x to y.                   

X is called pathwise.  

1.2.15 Definition : 

 A collection U of open subsets of a topological space X is called an 

(open) cover if its union is the whole of X, i.e.  Ii  U =  U0 ∈U  U = X.              

A subcollection U 0 ⊆ U is called a sub-cover if it is itself a cover. 

1.2.16 Definition : 

 A topological space X is called compact if every open cover admits a 

finite sub-cover 

1.2.16 Definition :(locally compact) 

 A topological space is locally compact if every point x ∈ X has a 

compact neighborhood. 

 1.2.17 Example 1.2. Any compact space is locally compact 
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1.2.18 Definition :  

Product topology Given two topological spaces (X, T) and (Y, T ' ), we 

define the product topology on X × Y as the collection of all unions i  Ui × 

Vi , where each Ui is open in X and each Vi is open in Y .  

1.2.19 Theorem.  

Projection maps are continuous Let (X, T) and (Y, T' ) be topological 

spaces. If X × Y is equipped with the product topology, then the projection map 

p1= : X × Y → X defined by p1(x, y) = x is continuous. Moreover, the same is 

true for the projection map p2 : X × Y → Y defined by                                       

p2(x, y)= y  □ 
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REVIEW OF LITERATURE                                                             

Connectedness plays a very significant role in the study of topological spaces. 

The first attempt to give a precise definition of these spaces was made by Weierstrass 

who in fact introduced the notion of arcwise connectedness. However, the notion of 

connectedness which we use today was introduced by Cantor (1883). Since then a 

host of leading toplogists notably Jordan (1893), Schoenfliesz (1902), F. Riesz 

(1906), Lennes (1911), Mazurkiewicz (1920), Vaidyanathaswamy (1947) studies 

these spaces very extensively and also introduced various generalization too of these 

spaces.                                                                                          

2.1 Connected  and Disconnected space. 

2.1.1  Definition:   

Let  x be a topological space and Let A and B be any two sets in X. A 

and B are said to be separated if:  

A ∩ B =  and A ∩B=    

or A ∩ B  = and A ∩B=   

2.1.2 Example: 

 Let R be the set of real numbers with the usual topology. Consider the sets      

A = ]1,2[ , B = ] 2, 3 [ and C = [2, 3[ then clearly  A ∩ B  ]1, 2[∩[2,3] = 

and A  ∩B  [1, 2]∩]2,3[  Showing that A and B are separated. However, 

since A  ∩B [1, 2]∩2,3[  this shows that A and C are not separated.                                                                                                                     
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2.1.3 Definition: 

 Let X be a topological space. By a separation of X we mean the 

existence of a pair of separated subsets of X whose union is X. 

 2.1.4 Definition: 

 Let X be a topological space then X is said to be disconnected if there 

exists two non-empty separated sets A and B such that X A U B  

 2.1.5 Definition:  

A topological space X is said to be connected if it is not disconnected . 

 2.1.6 Example:  

We again consider the interval I = [0, 1] and the set                                 

X [0, 1] U [2, 3]Here X is disconnected since there exist a separation of X 

into [0, 1] and [2, 3] which are non-empty and disjoint. So X is not connected. 

While I = [0, 1] has no such separation. So I is not disconnected. Hence I = [0, 

1] is connected. 

 2.1.7  Theorem: 

 Let X be a topological space then X is disconnected iff X has a non 

empty proper subset which is both open and closed. 

Proof :Let A be a non-empty proper subset of X which is both open and 

closed.  Then (X – A) is also a non-empty proper subset of X 

which is both open and closed.  

So X is the union of two non-empty separated sets, showing that 

X is disconnected. 

Conversely: Let X be a disconnected space then there exists two 

nonempty separated sets A and B such that X AUB 
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 Since A and B are separated, therefore A ∩ B    and c 

 So   A  ∩B  X, A ∩ B   X and A ∩B             (i)                                                                                                 

Now   AB  X, A∩ B    A  X B             (ii)                                                                                             

and   A  B    X, A  ∩ B     A  X B           (iii)                                                                                          

also   A   B  X, A  ∩B    B  X  A             (iv)                                                                                           

Since A , B , it follows from (ii) that A is a non-empty proper 

subset of X and (iii) shows that A is open. (ii) and (iv) both shows 

that A is closed. Thus X has a non-empty proper subset which is both 

open and closed. 

 2.1.8  Theorem:   

Let X be a topological space then X is disconnected iff XA B where 

A and B are non empty disjoint open sets. 

Proof: Let X is disconnected then there exist a nonempty proper subset A of 

X which is both open and closed then X – A is also a non empty 

subset of X which is both open and closed. This shows that X is the 

union of two non-empty disjoint open sets. 

Conversely: Let X be the union of two non-empty disjoint open sets 

A and B, then X – B = A. Since B is open this implies A is closed and 

since B this implies A is non empty proper subset of X that is 

both open and closed. Hence X is disconnected. 

2.1.9  Theorem:  

Let X be a topological space then X is disconnected iff X AUB where 

A and B are non empty disjoint closed sets.                                                                                        

Proof : Let X is disconnected then there exist a non empty proper subset A 

of X which is both open and closed and X – A is also a non-empty 
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subset of X which is both open and closed this shows that X is 

union of two non empty disjoint closed set. 

Conversely: Let X be the union of two non-empty disjoint closed 

sets A and B then   X – B = A. Since B is closed this implies A is 

open and since B this implies that A is a non empty proper 

subset of X that is both open and closed.  Hence X is disconnected. 

 2.1.10 Theorem: 

 Let X be a topological space then X is connected iff the only subsets of 

X that are both open and closed in X are the empty set and X itself. 

Proof: Let X is connected and let A be a non empty proper subset of   X 

which is both open and closed in X. Then the sets A and X – A form 

a separation of X. Since they are disjoint and nonempty and their 

union is X. This gives that X is disconnected. Which is a 

contradiction. 

Conversely: Let X be a disconnected space. Let A and B form a 

separation of X. Then A is non empty and different from X and it is 

both open and closed in X. 

 2.1.11 Theorem: 

 Let X be a topological space. Then X is connected iff one of the 

following condition hold : 

(i) There does not exist a separation of X.                                                                         

(ii) X can not be decomposed into two disjoint, non empty open 

sets.                                                                                                   

(iii) There does not exist a proper non-empty subset of X which is 

both open and closed in X.                                                                                                                  

Proof : Follows from the definition (4), (5) and theorem (10). 
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 2.1.12 Example: 

 Every indiscrete space is connected. Let X be an indiscrete space. Since 

empty set and X are the only subset of X which is both open and closed in X. 

So X is connected.  

 2.1.13 Example: 

 Every singleton set is connected .                                                                                      

Let X be a topological space and let xX. Then {x} can not be expressed as 

the union of two non-empty disjoint sets. So {x} has no separation and is 

therefore connected. 

 

 2.1.14 Example:  

Every discrete space which contain more than one point is disconnected.                                                                                                                           

Let X be discrete space and let xX . Then {x} is a non empty proper subset of 

X which is both open and closed in X. Hence X is disconnected. 

2.1.15 Example: 

 The rational Q are not connected.                                                                                  

If Y is a subspace of Q containing two points p and q we can choose an 

irrational number a lying between p and q such that Y can be written as the 

union of two disjoint open sets. 

 

 2.1.16 Theorem: 

 Let X be a topological space. Let Y be a subspace of X and let                 

Y AUB where A and B are non empty and disjoint sets neither of which 

contain limit point of other, is a separation of Y. Then the space Y is 

connected if there exists no separation of Y. 
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           Proof: Let Y AB is a separation of Y. Then A is both open and 

closed in Y. Let A  is the closure of A in X. Then closure of A 

in Y is the set A   ∩ Y . Since A is closed in Y then       A= A   

∩ Y or A  ∩B  . Since A = A  ∩ Y , where D (A) is set of all 

limit points of A. So B contains no limit point of A. In same 

way we can show that A contains no limit point of B.                                                                              

Conversely : Let A and B are disjoint non-empty sets whose 

union is Y and neither of which contain a limit point of other 

then A  ∩B   and A  ∩ B   . So we have  A = A  ∩ Y and B 

= B ∩ Y . Thus  both A and B are closed in Y and since   A = 

Y – B and           B = Y – A. So they are open in Y 

.                                                                                                                                                   

2.1.17  Example:  

  Consider the following subset of the plane R2 where R 2 is enclosed with 

the product topology.                                                                                                                                       

A ∩ Y = A and B  ∩ Y =B                                                                                                                                

Then X is not connected. Since the two sets form a separation of X, because 

neither contain a limit point of other. 

 2.1.18  Theorem: 

 Let X be a topological space and let X CD   where C and D are non 

empty disjoint open sets in X. Let Y is a connected subset of X then either  Y 

C or Y D. 

Proof : Since C and D are open in X. So the sets C ∩ Y and D ∩ Y are open in 

Y and since C and D are disjoint therefore                                                                                    

C ∩ Y and D   Y are disjoint                                                                                    

and Y C or Y D. if C ∩ Y                                                                              
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and D ∩ Y then C ∩ Y and D ∩ Y form a separation of Y but Y is 

connected therefore either either Y∩  C or Y ∩ D                                

Hence either Y C or Y D. 

 2.1.19 Theorem: 

 Let X be a topological space and let A CI collection of 

connected subsets of X with the property A CI is connected.                                                                                                       

                    Proof: Let p be any point of ∩ A. We prove that A CIis 

connected.  Let  Y C UD is a separation of Y and p is in one of 

the sets C or D. Let   p C . Since the set Ais connected so 

either A C or A D, it cannot lie in D because it contain the 

point p of C.  Hence A=C I 

 

2.1.20 Theorem :  

 Let X be a topological space and let A be a connected set in X. If B is 

any subset of X such that  A B A  then B is also connected subset of X. 

             Proof: Let A be a connected set in X and let A B A   .                                                          

Now let B CD is a separation of B. Since A is connected.                                               

So A must lie either in C or in D. Let A C then A   C , since            

C   D . So B can not intersect D. contradiction gives that                

D and hence B is a connected subset of X.  □  
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2.2. Functions of Connected and Disconnected Space  

 2.2.1  Definition : 

  Let X and Y be topological spaces and let f: X Y be a function from X 

into Y. Then  f  is said to be continuous if any of the following condition is 

satisfied: 

 (i)For each open subset V of Y, the set f : X Y is an open subset of X.                             

(ii) For each closed subset B of Y, the set f : X Y is closed in X.                                     

(iii) For every subset A of X, we have f : XY 

2.2.2 Theorem: 

 Let f : XY be a continuous function from a connected space X into a 

topological space Y. Then f : XY is connected. 

Proof:  Let f : XY be a continuous function and let X be connected. We 

have to prove that Z = f(X) is connected. Since the function obtained 

from f  by restricting its range to the space Z is also continuous. So 

we consider only the case of continuous subjective function g : X 

Z. Let Z AB is a separation of Z into two disjoint non empty 

sets open in Z. Then g : X Z are disjoint sets such that                        

X = g : X Z .They are open in X because g is continuous and non 

empty as g is subjective, therefore they form a separation of X. This 

gives a contradiction to the fact that X is connected. Therefore f(X) is 

connected.  

 2.2.3 Theorem: 

 Let X be a connected topological space with topology and * is 

coarser than . Then the space X with topology * is also connected.                                                                                                           
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Proof:  Let the space X with topology * is disconnected then there exist a 

non empty proper subset A of  X which is both open and closed, 

then  A and  X – A are both open in *, Since *, this implies 

that  A  and X– A are both open in . This shows that A is a non 

empty proper subset of X which is both open and closed with 

respect to . So space X with topology is disconnected which 

gives a contradiction. So space X with topology * is connected. 

 

 2.2.4 Theorem: (Connected sets in the real line). 

 Let E be a subset of the real line R containing at least two points. Then E is 

connected iff  E is an interval.                                                                                                           

Proof:  Let E be any subset of real line containing at least two points and 

let E is not an interval. Let  a, b E and p E  such that a < p < b. 

Let A E  ∩G and B E ∩ H then a G and b H, therefore               

E ∩ G and E ∩ H are non empty disjoint sets whose union is E 

therefore E is disconnected. Now let E is an interval and let E is 

disconnected. Let G and H form a seperation of E and let A E ∩ 

G and B E ∩ H , then E A U B, where A and B are non empty 

sets. Let a A and b B such that a < b. Let p A E ∩ G , since 

[a, b] is a closed set therefore pa, b] .  Let p A E   G then p 

< b and p G. Since G is an open set therefore there exists 0 

such that p G and p b. Hence p E,                                  

then p A. This gives a contradiction to the definition of  p  

therefore p A . Now let p B E  H then p H and H is an 

open set therefore there  exist * 0 such that [p *, p] H and 
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a p * therefore [p *, p] E and so [p *, p] B Hence 

[p *, p]   A but then p * is an upper bound for                           

A ∩ [a, b] which is not possible by definition of p therefore p B. 

But this is a contradiction to the fact that p E. Hence E is 

connected. 

2.2.5 Theorem:  

A continuous image of a connected space is connected. 

 Proof: Let f : X → Y be a continuous surjection. Suppose Y is 

disconnected. Then there are disjoint non empty clopen sets Y1, 

Y2 ⊂ Y such that  Y = Y1 ∪ Y2. Put X1 = f -1 (Y1) and X2 = f −1 

(Y2). Then X1 and X2 are disjoint non empty clopen sets in X, and 

X = X1 ∪ X2. So X is disconnected.  

                                                                                                                                                                                                                                                                                                            

2.2.6 Theorem: 

 Every Tychonoff space of cardinality more than 1 but less than c is 

disconnected. 

Proof: Suppose X is Tychonoff space such that 1 < |X| < c. Fix distinct 

points p, q ∈ X. There is a continuous function f : X → R such that 

f(p) = 0 and f(q) = 1. Since |X| < c, |f(X)| < c. Since |[0, 1]| = c 

there is a ∈ (0, 1) such that a  f(X). Then X 2  = f −1 ((−∞, a)) and 

X2 = f −1 ((a,∞)) are disjoint non empty clopen subsets of X, and X 

= X1 ∪ X2. So X is disconnected.  

2.2.7 Theorem: 

 Let X be a topological space, and Y and Z subsets of X such that            

  Y ⊂ Z ⊂ Y  . If Y is connected then Z is connected. 
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 Proof: Suppose Z is disconnected. Then there are non empty disjoint 

subsets Z1=, Z2 ⊂ Z such that Z = Z1 ∪Z2 and Z1 and Z2 are clopen 

in Z. Put Y1 = Z1 ∩Y and Y2 = Z2∩Y . Then Y1 and Y2 are 

disjoint clopen subsets of Y , and Y = Y1∩Y2. Since Y is dense in 

Z, the sets Y1 and Y2 are non empty. So Y is disconnected. A 

contradiction.  

2.2.8 Corollary: 

 The closure of a connected set is connected. 

2.2.9 Definition: 

  Say that a family of sets A is linked if for every A, B ∈ A, A∩B = ∅. 

 2.2.10 Theorem: 

 Suppose A is a linked family of subsets of a topological space X. If each 

element of A is connected, then S A is connected. 

 Proof: Put Y = A. Suppose Y is disconnected. Then there are non 

empty disjoint sets Y1, Y2 such that Y = Y1 ∪ Y2 and Y1 and 

Y2 are clopen in Y . Pick y1 ∈ Y1, y2 ∈ Y2. There are A1, A2 ∈ 

A such that y1 ∈ A1 and y2 ∈ A2. Since A is linked we can pick 

z ∈ A1 ∩ A2. Then either z ∈ Y1 or z ∈ Y2. In the case     z ∈ 

Y2 the sets Y '1 = Y1∩A1 and Y ' 2 = Y2∩A1 are non empty 

disjoint clopen subsets of A1 such that A1 = Y ' 1 ∪ Y ' 2 . This 

contradicts the connectedness of A1. In the case z ∈ Y1 we 

arrive to a contradiction with the connectedness of A2 

similarly. So Y is connected.  
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2.2.11 Theorem: 

 Suppose A is a family of subsets of a topological space X such  that     

 A= ∅. If each element of A is connected, then S A is connected. 

2.2.12 Theorem:  

A (Tychonoff ) product of any family of connected spaces is connected.  

Proof: First we prove that the product of two connected spaces, say X and 

Y is connected. For every x ∈ X and y ∈ Y denote                                 

Tx,y = ({x} × Y )∪(X × {y}). Then ({x} ×Y ) and (X × {y}) are 

homeomorphic to Y and X, respectively, and thus are connected. 

Next, the intersection ({x} × Y ) ∩ (X × {y}) contains point (x, y) 

and thus is non empty. Thus by Theorem(2.2.11) Tx,y is connected. 

Next, note that: 

 1. The family {Tx,y : x ∈ X, y ∈ Y } is linked. (Indeed, for every x, x' , 

y, y' , (x,y')   Tx,y ∩ T x' ,y' )                                                                                       

2. {Tx,y : x ∈ X, y ∈ Y } = X × Y .                                                                    

Therefore by Theorem(2.2.10), X × Y is connected.                                               

Second, by induction the statement extends to any finite product of 

connected spaces.                                                                                                                       

Last, let X =  Aa  Xa be an arbitrary (possibly infinite) product of 

connected spaces Xa. Fix a point p =( pa : a ∈ A) ∈ X. For a finite 

subset  F ⊂ A, put     PF =   Aa   Xa,F    where 

 Xa,F =




}{pa

Xa if
  

otherwise

Fa
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Remark: 

 • Each Xa,F is homeomorphic it a finite product of connected spaces, and thus, 

by the previous step, connected.                                                                         • 

The family {PF : F is a finite subset of A} has non empty intersection (point p 

is in each element). Hence by Corollary 9,  {PF : F is a finite subset of A} is 

connected.                                                                                                                                 

•   {PF : F is a finite subset of A} is a σ-product in X =  Aa   Xa. As we 

know from the previous lectures, it follows that it is dense in X. 

Therefore by Corollary 6, X is connected since it has a dense connected 

subspace.  

2.2.14 Example : 

 Suppose R is represented as the union of two non empty disjoint sets:   

R = H1 ∪ H2. Pick a ∈ H1 and b ∈ H2. Without loss of generality we can 

assume that a < b. Put z = inf([a, b] ∩ H2). Note that z ∈ 1H = ∩ 2H . So 

(since z must belong to either H1 or H2) it is not possible that both sets H1 and 

H2 are closed. Thus R is connected.  The same argument shows that any 

interval of the real line is connected. 

2.2.15 Theorem:  

 Every pathwise connected space is connected. 

 Proof: Fix  x ∈ X. For every y ∈ X fix a path py from x to y and denote                   

Ay = py(I). Then by Theorem(2.2.5), Ay is a connected 

subspace of X. The family A = {Ay : y ∈ X} consists of 

connected subsets of X and has a common point x. So by 

Corollary 9,  A  is connected. But clearly  A  = X.  
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2.2.16 Theorem: 

 A continuous image of pathwise connected space is pathwise connected.  

 Proof: Let X be a pathwise connected space, f : X → Y a continuous 

surjection, and x, y ∈ Y . Pick a ∈ f -1 (x) and b ∈ f −1 (y). Since 

X is pathwise connected there is a path p : I → X such that p(0) 

= a and p(1) = b. Then f ◦ p is a path between x and y in Y .  

2.2.17 Theorem: 

 Any product of pathwise connected spaces is pathwise connected.  

Proof: Let X =  Aa  Xa be a product such that each Xa is pathwise 

connected. Let x, y ∈ X. For each a ∈ A, there is a path pa : I → 

Xa such that pa(0) = x(a)                        and pa(1) = y(a). Then 

the diagonal product p = ∆{pa : a ∈ A} is a pass between x and 

y.  

2.2.18 Example:  

The Topological Sin Curve is connected but not locally connected. (And 

of course any more than one point discrete space is locally connected but not 

connected.) 

 

 2.2.19 Theorem: 

  The following conditions are equivalent:                                                                

i. X is locally connected;                                                                                                   

ii. Components of open subspaces of  X are open. 

 Proof: (i) (ii) Let U be an open set in X. Then X is locally connected. 

Let C be a component of U and let x ∈ C. Since U is locally 

connected there is a connected open set V such that x ∈ V ⊂ U. 
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By the definition of component, V ⊂ C. So C contains every 

point together with some neighborhood, i.e. C is open.  

(ii) ⇒ (i) Let x ∈ U ⊂ X where U is open, and let C be a 

component of   x in U. Being a component, C is connected; by 

(2), C is open in U and thus in X.  

2.2.20 Theorem: 

 In a locally connected space, components are equal to quasicomponents. 

 Proof: Let X be locally connected x ∈ X; let C be the component of x, 

and Q the quasicomponent of x. By Proposition 29, C is open. 

But also for every  y ∈ X \ C, the component of y in X is open and 

is a subset of X \ C. Thus X \ C is open. So C is closed and thus 

clopen. Thus Q \ C, and so by Proposition 16,     Q = C.  

 2.2.21 Remark: 

 A continuous image of a locally connected space does not have to be 

locally connected.  

 2.2.22 Example: 

 Take X0 from Example(2.2.18) and put X' 1 = {(−1, y) : y ∈ [−1, 1]} and          

X' = X0 ∪ X' 1 ⊂ R 2 . Then X' is locally connected and  X  from Example 

(2.2.18) is a continuous image of X' (under a condensation); we know that X is 

not locally connected.  □   
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