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Abstract 

 

Metric spaces are inevitably Hausdorff and so cannot, for example, be used to 

 study non-Hausdorff topologies such as those required in the Tarskian approach to  

programming language semantics. This paper presents a symmetric generalised  

metric for such topologies, an approach which sheds new light on how metric tools  

such as Banach‟s Theorem can be extended to non-Hausdorff topologies 
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Introduction 

In the study of the denotational semantics of programming languages a 

topological model is constructed for a programming language defined as a 

system of logic. More often than not this means a T0  model for the lambda 

calculus in the spirit of Scott [12]. However, the necessity in this approach that 

all suitable models must be T0  appears to remove any possibility that the 

theory of metric space (which are of course all T2) can be applied in any way 

to semantics in Computer Science. Rare exceptions to this rule are the use of 

quasi-metrics by Smyth in [11] to describe T0 spaces, or the use of a metric 

super topology for a T0 space by Lawson in [8]. If metrics are to be used at all 

then the more conventional wisdom in Computer Science would dismiss Scott‟s 

T0 approach in favour of a purely metric approach such as that of de Bakker 

and Zucker [1]. Unfortunately, the latter T0 approach pays the price of losing 

the notion of partial ordering inherent in T0 spaces, a concept of fundamental 

importance in any Tarskian approach to fixed point semantics [13]. The 

distinct advantage of using quasi-metrics is that such generalised metrics can 

be used to define T0 topologies with partial orderings, and so allow Tarskian 

semantics. Quasi-metrics are not without their problems though. Being non-

symmetric a quasi-metric is arguably an ”unnatural” notion of distance. A 

more important criticism is that the lack of symmetry sheds little light on how 

to develop tools for reasoning about programs using quasi-metric ideas. The 

title Reconciling Domains with Metric Spaces of Smyth‟s paper [11] indicates 

a much desired long term goal allegedly argued for by Dana Scott that partial 

order semantics should one day have a metric foundation. In All Topologies 

come from Generalised Metrics [5], Kopperman infers that such a foundation 

might just be possible. This may or may not be of interest to topologists in 

general as many of the more pleasant T2 properties usually associated with 

metric spaces may be lost in a process of generalisation.   
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1.1 Some properties of topological space 

1.1.1 Definition:  

Let X be a set. A topology on X is a collection T ⊆ P(X) of subsets of X   

satisfying  

(i) T contains ∅ and X, 

 (ii)T is closed under arbitrary unions, i.e. if Ui ∈ T for i ∈ I then  Ui ∈ T , 

 (iii) T is closed under finite intersections, i.e. if U1, U2 ∈ T then U1 ∩ U2 ∈ T 

For example :(i)  Take any set X and let curlyT = {empty, X}. Then curlyT is a 

topology called the trivial topology or indiscrete topology 

(ii)Let X = {1, 2, 3} and curlyT = {empty, {1}, {1, 2}, X}. Then curlyT is a topology 

 

1.1.2 Definition : 

 A topological space (X,T) is said to be T0 (or to satisfy the T0 axiom ) if for all 

distinct x,y∈X there exists an open set U∈τ such that either x∈U and y∉U or x∉U and 

y∈U 

 

1.1.3 Definition : 

a T1 space is a topological space in which, for every pair of distinct points, 

each has a neighborhood not containing the other. 

 

1.1.4 Definition : 

Points x and y in a topological space X can be separated by neighbourhoods if 

there exists a neighbourhood U of x and a neighbourhood V of y such that U and V 
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are disjoint (U ∩ V = ∅). X is a Hausdorff space if all distinct points in X are 

pairwise neighborhood-separable. This condition is the third separation axiom (after 

T0 and T1), which is why Hausdorff spaces are also called T2 spaces 

for example elmost all spaces encountered in analysis are Hausdorff; most 

importantly, the real numbers (under the standard metric topology on real numbers) 

are a Hausdorff space. More generally, all metric spaces are Hausdorff. In fact, 

many spaces of use in analysis. 

The cofinite topology on an infinite set is a simple example of a topology that is T1 

but is not Hausdorff (T2). This follows since no two open sets of the cofinite topology 

are disjoint. 
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1.2 General definition and metric space 

1.2.1 Definition : 

A function f from a set X to a set Y is defined by a set of ordered pairs (x, y), 

such that x ∈ X and y ∈ Y. This set is subject to the following condition: every 

element of X is the first component of exactly one ordered pair within this set of pairs. 

In other words, for every x in X there is exactly one element y, such that the ordered 

pair (x, y) belongs to the set of pairs defining the function f. Sets of pairs violating 

this condition do not define functions. 

 

1.2.2 Definition : 

a (real) interval is a set of real numbers with the property that any number that 

lies between two numbers in the set is also included in the set. 

 For example, the set of all numbers x satisfying 0 ≤ x ≤ 1 is an interval which 

contains 0 and 1, as well as all numbers between them.  

 

1,2.3 Definition : 

An open interval does not include its endpoints, and is indicated with 

parentheses. 

 For example, (0,1) means greater than 0 and less than 1. 

 

1.2.4 Definition : 

  A closed interval is an interval which includes all its limit points, and is 

denoted with square brackets.  

For example, [0,1] means greater than or equal to 0 and less than or equal to 1 
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1.2.5 Definition : 

A lower bound of a subset S of a partially ordered set (P,≤) is an 

element a of P such that 

(i)a ≤ x for all x in S. 

A lower bound a of S is called an infimum (or greatest lower bound, or meet) of S if 

(ii)for all lower bounds y of S in P, y ≤ a (a is larger than any other lower bound) 

for example:)(i).inf{1,2,3,…}=1             (ii).inf{x∈  |0        

 

1.2.6 Definition:  

an upper bound of a subset S of a partially ordered set (P,≤) is an 

element b of P such that 

(i)b ≥ x for all x in S. 

An upper bound b of S is called a supremum (or least upper bound, or join) of S if 

(ii)for all upper bounds z of S in P, z ≥ b (b is less than any other upper bound) 

for example(i).sup{(-1)
n 
-1/n|n=1,2,3,… }=1

 

             (i).sup{x∈  |0         { ∈  |         

1.2.7 Definition:  

 A binary relation is a collection of Sets between two Sets „M‟ and „N‟ which is 

the subset of M * N, or we can say that it is a Set of Ordered Pair m, n Є M*N. Here 

set of „M‟ and „N‟ are known as Domain 

For example Suppose there are four objects {ball, car, doll, gun} and four persons 

{John, Mary, Ian, Venus}. Suppose that John owns the ball, Mary owns the doll, and 
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Venus owns the car. Nobody owns the gun and Ian owns nothing. Then the binary 

relation "is owned by" is given as 

R = ({ball, car, doll, gun}, {John, Mary, Ian, Venus}, {(ball, John), (doll, Mary), 

(car, Venus)}). 

Thus the first element of R is the set of objects, the second is the set of persons, and 

the last element is a set of ordered pairs of the form (object, owner). 

The pair (ball, John), denoted by ballRJohn means that the ball is owned by John. 

Two different relations could have the same graph. For example: the relation 

({ball, car, doll, gun}, {John, Mary, Venus}, {(ball, John), (doll, Mary), (car, 

Venus)}) 

is different from the previous one as everyone is an owner. 

Nevertheless, R is usually identified or even defined as G(R) and "an ordered pair 

(x, y) ∈ G(R)" is usually denoted as "(x, y) ∈ R" 

 

1.2.8 Definition: 

 A metric space is a set X where we have a notion of distance. That is, if x, y ∈ 

X, then d(x, y) is the “distance” between x and y. The particular distance function 

must satisfy the following conditions: 

 (i). d(x, y) ≥ 0 for all x, y ∈ X  

(ii)d(x, y) = 0 if and only if x = y  

(iii)d(x, y)=d(y, x) 

 (iv)d(x, z) ≤ d(x, y) + d(y, z)  
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 for example  for any space X, let d(x, y) = 0 if x = y and d(x, y) = 1 otherwise. This 

metric, called the discrete metric, satisfies the conditions one through four. 

 

1.2.9 Definition : 

In Euclidean n-space, an (open) n-ball of radius r and center x is the set of all 

points of distance less than r from x. A closed n-ball of radius r is the set of all points 

of distance less than or equal to r away from x. 

 

1.2.10 Definition : 

 A sequence is an enumerated collection of objects in which repetitions are 

allowed. Like a set, it contains members (also called elements, or terms). The number 

of elements (possibly infinite) is called the length of the sequence. Unlike a set, the 

same elements can appear multiple times at different positions in a sequence, and 

order matters. Formally, a sequence can be defined as a function whose domain is 

either the set of the natural numbers (for infinite sequences) or the set of the first n 

natural numbers (for a sequence of finite length n). The position of an element in a 

sequence is its rank or index; it is the integer from which the element is the image. It 

depends on the context or of a specific convention, if the first element has index 0 or 

1. When a symbol has been chosen for denoting a sequence, the nth element of the 

sequence is denoted by this symbol with n as subscript; for example, the nth element 

of the Fibonacci sequence is generally denoted Fn. 

For example, (M, A, R, Y) is a sequence of letters with the letter 'M' first and 

'Y' last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), 

which contains the number 1 at two different positions 
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2.1 BACKGROUND DEFINITIONS AND RESULTS 

2.1.1Definition: 

 A basis β  for a topology is σ-disjoint if there exists B1, B2, ... ⊆ B such that,  

β = ∪{Bn|n ∈ ω} and, ∀n ∈ ω ∀ B, ́ ∈ Bn , B ∩ ́ = υ.  

 

2.1.2 Defintion: 

 A partial ordering is a binary relation  ⊆ U
2
 such that, 

 (i) ∀ x ∈ U, x    x  

(ii) ∀ x,y ∈ U, x   y ∩ y   x ⇒ x = y  

(i) ∀ x,y,z ∈ U, x   y ∩ y   z ⇒ x   z  

Within the field of Computer Science, which originally motivated this work ,  is used 

an information ordering in which x   y is interpreted as all the information 

contained in x is also contained in y. We now establish the usual relationship in 

Computer Science between topology and the information ordering. The topology 

usually placed upon U will at least be T0, and will also be consistent with   in the 

following sense. 

 

2.1.3Definition:  

A weakly order consistent topology is a weaker version of the order consistent 

topology [2] as used in lattice theory for which in addition suprema of directed sets 

are their limits. As the work in this paper requires neither directed sets nor lattices 

we work only with weakly order consistent topologies. An interesting example of a 

weakly order consistent topology is the topology of all upwardly closed sets,  

T(   ={ S ⊆ U|∀x ∈ S, x   y ⇒ y ∈ S}. 

 Thus, for example, for the usual partial ordering ≤⊆ (ω ∪{∞})
2
 on the nonnegative 

integers with infinity, 

 T[≤] = {{n,n + 1,...,∞}|n ∈ ω∪{∞}}.  

Each T0 topology is weakly order consistent if and only if it is a topology of upwardly 

closed sets. Given any T0 topology the information ordering can be recovered using 
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the specialisation ordering defined by x   y ⇒ x ∈ cl({y}), a topic discussed more 

fully elsewhere [3]. In Computer Science we are interested in totally ordered 

sequences X ∈ U
w
 of the form X0  X1   X2   ,called chains, 

of increasing information, the least upper bound lub(X) of which is intended to 

capture the notion of the amount of information defined by the chain. To ensure that 

lub(X) cannot contain more information than can be derived from the members of the 

chain X we insist that our topologies have the following property.  

 

2.1.4 Definition: 

 A Scott-like topology over a partial ordering  ⊆ U
2
 is a weakly order 

consistent topology T over U such that for each chain X ∈ U
w
, lub(X) exists, and, 

 ∀O ∈T, lub(X) ∈ O ⇒∃k ∈ ω ∀n > k,  Xn ∈ O. In other words, the least upper bound 

of a chain must be a limit of that chain. The term Scott-like topology introduced here 

is a weaker version of the term Scott topology [2] used in the study of continuous 

lattices. As the results in this paper do not need the full strength of the Scott topology 

we work only with the weaker Scott-like topology. 

 

2.1.5 Definition:  

A metric is a function d : U
2
 →R such that, 

 (i) ∀ x,y ∈ U, x = y ⇔ d(x,y) = 0 

( ii) ∀ x,y ∈ U, d(x,y) = d(y,x)  

(iii) ∀ x,y,z ∈ U, d(x,z) ≤ d(x,y) + d(y,z) 
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2.2 THE PARTIAL METRIC 

2.2.1Definition: 

 A partial metric or pmetric [9] (pronounced ”p-metric”) is a function 

p:U
2
→R such that,  

(i) ∀ x,y ∈ U, x = y ⇔ p(x,x) = p(x,y) = p(y,y)  

(ii) ∀ x,y ∈ U, p(x,x) ≤ p(x,y) 

 (iii) ∀ x,y ∈ U, p(x,y) = p(y,x) 

 (iv) ∀ x,y,z ∈ U, p(x,z) ≤ p(x,y) + p(y,z)−p(y,y) 

The pmetric axioms (i) thru (iv) in (2.2.1 difinition ) are intended to be a minimal 

generalisation of the metric axioms(i)  thru (iii))  in (2.1.5 difinition )such that each 

object does not necessarily have to have zero distance from itself. In this 

generalisation we manage to preserve the symmetry axiom(ii) in (2.1.5 definition) to 

get(iii) in (2.2.1 difinition) , but have to ”massage” the transitivity axiom (iii) in 

(2.1.5definition)  to produce the generalisation (iv) in (2.2.1difinition) (originally 

suggested to the author in [16]). Consequently a metric is precisely a pmetric  

p : U
2
 →R such that,  

∀ x ∈ U, p(x,x) = 0. 

 ”Half” of the metric axiom M1 is preserved as,  

∀ x,y ∈ U, p(x,y) = 0 ⇒ x = y  

However, the converse implication does not generally hold. p(x,x), referred to as the 

size or weight of x, is a feature used to describe the amount of information contained 

in x. The smaller p(x,x) the more defined x is, being totally defined if p(x,x) = 0. 

 

2.2.2 Example: 

 In Computer Science a flat domain is a partial ordering of the form  ⊆

 S∪{⊥})
2
 consisting of a set S of totally defined objects together with the special 

undefined object ⊥∉ S (pronounced ”bottom”), and ordering defined by, ∀ x,y ∈ S 

∪{⊥}, x    y ⇔ x = ⊥∨ x = y ∈ S. Such a domain can be defined by the flat pmetric p 

: (S ∪{⊥})
2
 →{0,1} where, 
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∀ x,y ∈ S ∪{⊥}, p(x,y) = 0 ⇔ x = y ∈ S  

Note how the condition p(x,x) = 0 precisely captures the flat domain notion x ∈ S of 

total definedness. 

 

2.2.3 Definition: 

 An open ball for a pmetric p : U
2
 →R is a set of the form,   

 (x) ::= {y ∈ 

U|p(x,y) <  } 

 for each   > 0 and x ∈ U.  

Note that, unlike their metric counterparts, some pmetric open balls may be empty. 

 For example, if p(x,x) > 0 then B
p

p(x,x)(x) = υ.  

 

2.2.4Theorem: 

 The set of all open balls of a pmetric p : U
2
 →R is the basis of a topology T[p] 

over U.  

Proof: As, U =∪ ∈          
 (x) and, for any balls   

 (x) and   
 (y),  

  
 (x) ∩   

 (y) = ∪{  
 (z)|z ∈   

 (x)∩  
 (y)}  

where, η ::= p(z,z) + min{ −p(x,z),δ−p(y,z)}.  

  

2.2.5 Theorem:  

For each pmetric  p, open ball    
 (a), and x ∈   

   (a), there exists δ > 0 such 

that x ∈   
 (x) ⊆   

  (a). 

 Proof: Suppose x ∈   
  (a). 

 Then p(x,a) <  . 

 Let δ ::=  −p(x,a) + p(x,x). 

 Then δ > 0 as   > p(x,a).  

Also, p(x,x) < δ as  > p(x,a).  
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Thus x ∈   
 (x).  

Suppose now that  y∈   
 (x).  

∴ p(y,x) < δ.  

∴ p(y,x) <  −p(x,a) + p(x,x).  

∴ p(y,x) + p(x,a)−p(x,x) <  .  

∴ p(y,a) <   (by P4). 

 ∴ y ∈   
  (a). 

 Thus   
 (x) ⊆   

 (a).  

Using the last result it can be shown that each sequence X ∈ U
w
 converges to an 

object  a ∈ U if and only if, 

            ,a) = p(a,a).  

 

2.2.6Theorem: 

 Each pmetric topology is T0. 

 Proof: Suppose p : U
2
 → R is a pmetric, and suppose x   y ∈ U, then, from P1 & P2 

(wlog) p(x,x) < p(x,y), and so, 

 x ∈   
  (x) ∧ y ∉    

  (x), 

 where,  ::= (p(x,x) + p(x,y))/2 

So far we have shown that a partial metric p can quantify the amount of information 

in an object  x using the numerical measure p(x,x), and also that  p  has an open ball 

topology. This would not be of much use in Computer Science without a partial 

ordering.  

 

2.2.7Definition: 

 For each pmetric p : U
2
 →R,    ⊆ U

2
 is the binary relation such that,  

∀ x,y ∈ U, x    y ⇔ p(x,x) = p(x,y). 
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2.2.8 Theorem:  

For each pmetric p,    is a partial ordering. 

Proof: We prove (i) thru (iii) in (2.2.1difinition).  

(i) ∀ x ∈ U, x    x  as  p(x,x) = p(x,x). 

 (ii) ∀ x , y ∈ U, x    y ∧  y    x  

⇒ p(x,x) = p(x,y) = p(y,y) (by P3)  

⇒ x = y (by P1). 

 (iii) ∀ x,y,z ∈ U, x    y ∧  y    z  

⇒ p(x,x) = p(x,y) ∧  p(y,y) = p(y,z). 

 But by P4, p(x,z) ≤ p(x,y) + p(y,z)−p(y,y)  

∴ p(x,z) ≤ p(x,x) 

 ∴ p(x,z) = p(x,x) (by P2)  

∴ x    z. 

 

2.2.9 Example:  

The concept of a vague real number might be constructed as a nonempty 

closed interval on the real line. The function p : {[a,b]|a ≤b}
2
 → R over all such 

intervals where,  

∀ [a,b],[c,d],  p([a,b],[c,d]) ::= max{b,d}−min{a,c} 

 is a pmetric such that [a,b]    [c,d] ⇔ [c,d] ⊆ [a,b], read as [c,d] is a more 

precise version of [a,b]. Also we can use p([a,b],[c,d]) to measure the degree of 

vagueness of a vague number [a,b]. 
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2.2.10 Theorem: 

 For each pmetric  p, T[p] ⊆ T[  ], that is, T[p] is a weakly order consistent 

topology over   . 

Proof: It is sufficient to show that, ∀ x ∈ U ∀  >0  

  
 
 (x) = ∪{{z|y    z}|y ∈   

 (x)}. Suppose x,y,z ∈ U and   > 0 are such that y ∈   
 
 

(x) and y    z. Then, 

 p(x,z) ≤ p(x,y) + p(y,z)−p(y,y) (by P4)  

= p(x,y) as y    z 

 <    as y ∈   
 
(x). 

 Thus, z ∈   
 
(x).  

Thus T[p] is a Scott-like topology over    if each chain X has a least upper bound 

and if,  

               = p(lub(X), lub(X)) 

  

2.2.11 Theorem: 

 For each pmetric p : U
2
→R, T[p] = T[  ], if and only if,  

∀x ∈ U,∃    > 0    
 
 (x) = {y|x    y} 

 Proof: Suppose first that, ∀x ∈ U ∃   > 0 ,   
 
(x) = {y|x    y}. Then, ∀O ∈T[  ], 

 O = ∪ ∈  {y|x    y} = ∪ ∈   
 
(x) ∈ T[p]  

∴ T[  ] ⊆  T[p]  

∴ T[p] = T[  ] (by Theorem 3.5)  

Suppose now that, T[p] = T[  ]. Then, ∀ x ∈ U,{y|x    y} ∈ T[p]. Thus by  

(2.2.5Theorem) ∀ x ∈ U ∃   > 0, x ∈   
  (x) ⊆{y|x     But, if x ∈   

 
 (x) then {y|x 

   y} ⊆    
 
 (x). Thus, ∀ x ∈ U ∃  > 0 ,  

 
(x) = {y|x    y}.  

Having now established the relationship of the open ball topology T[p] to both the 

upward closure T[  ] and the weakly order consistent topology. 
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