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Abstract

We presented in this work a certain class MA(4,a,0,8,m,p) of
a.p

pm

multivalent analytic functions with linear operator D

in the open unit disk U. We study coefficient inequality , distortion
and growth theorems , radii of starlikeness , convexity and close - to

- convexity , weighted mean and arithmetic mean , extreme points .
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Chapter One Basic Definitions

Chapter One
Basic Definitions and Standard Results

Introduction:

In this chapter, we list out all the definitions of the family of functions
from analytic, univalent and multivalent (p—valent) and all related terms used
during the investigation. We also include in this chapter all the standard

theorems and lemmas used in the work.
1.1 Basic Definitions

Definition (1.1.1)[5]: A functionf of the complex variable is analytic at a point
zoif its derivative exists not only at z, but each point z in some neighborhoods of

z,. Itis analytic in region U if it is analytic at every point in U.

Definition (1.1.2)[5]: A function f is said to be univalent (schilcht) if it does not
take the same value twice i.e. f(z;) # f(z,) for all pairs of distinct points
71,2, € U. In other words, f is one — to — one (or injective) mapping of U onto

another domain.

If f assumes the same value more than one, then f is said to be multivalent (p-
valent) inU. We also deal with the functions which are meromorphic univalent in
the punctured unit disk U* = {z € C:0 < |z| < 1}. f is said to be meromorphic if it

1s analytic at every point in Uexcept finite elements inU.

As examples, the function f(z) = z is univalent in U while f(z) = z? is not

. . n . . . “ . .
univalent in U. Also, f(z) =z + Z; 1s univalent in U for each positive integer n.

Example (1.1.1 ) [5]:The function f(z) = (1 + z)? is univalent in U.
Let z,, z, € U and suppose f(z;) = f(z,). Then

(1+2)% =1+ 22
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=142z, +2z2 =1+ 2z, + 7%
=2z2—z2+2(z;—2,) =0
= (zy—2z,)(zy +2z,+2) = 0.

Since|z,|,|z,| < 1, we know that (z; +z, + 2) # 0. Hence z; —z, =0 or z; = z,

Definition ( 1.1.3) [5]: A function fis said to be locally univalent at a pointz, €
Cif it is univalent in some neighborhood ofz,. For analytic functionf, the

conditionf’(z,) # 0is equivalent to local univalent atz,,.

Example (1.1.2)[5]: Consider the domain

3r
D={ze(C:1<|z|<2, O<arg(z)<7},

and the functionf: D — Cgiven byf(z) = z2. It is clear thatfis analytic onDand

local univalent at every pointz, € D, sincef’(z,) # 2z, # 0for allz, € D.

However,fis not univalent onD, since

i) ()2

V2 2V2 V2 242/ 47

Definition (1.1.4)[5]: Let Adenotes the class of functions f of the form:
fz)=z+ ) a,z" neN (1.1

which are analytic and univalent in the open unit disk U.

Definition (1.1.5)[S]: We say that f e A is normalized if f satisfies the
conditions f(0) = 0 and f'(0) = 1.

Definition (1.1.6)[5]: A set E < C is said to be starlike with respect to w, € E if
the linear segment joining w, to every other point w € E lies entirely in E. In a

more picturesque language, the requirement is that every point of Eis visible
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from w,. The set E is said to be convex if it is starlike with respect to each of its

points, that is , if the linear segment joining any two points of E lies entirely in E.

Definition (1.1.7)[5]: A functionf is said to be conformal at a point z, if it
preserves the angle between oriented curves passing through z, in magnitude as
well as in sense. Geometrically, images of any two oriented curves taken with
their corresponding orientations make the same angle of intersection as the
curves at z, both in magnitude and direction. A function w = f(z) is said to be

conformal in the domain D, if it is conformal at each point of the domain.

Definition (1.1.8)[5]: A function f € A is said to be starlike function of order «

if and only if

Re{zf,(z)}>a(O<a<1'zeUf(z)¢0). (1.2)
fay )~ wlosastizel

Denotes the class of all starlike functions of order « in U by S*(a) and S* the
class of all starlike functions of order 0, $*(0) = S*. Geometrically, we can say
that a starlike function is conformal mapping of the unit disk onto a domain
starlike with respect to the origin. For example, the function

f(Z)=m.

is starlike function of order «a.

Definition (1.1.9)[5]: A function f € A is said to be convex function of order «

if and only if

zf"(2)

Re {1 + —f’(z)

}>a,(0£a<1;zEU,f’(z)¢0). (1.3)

Denotes the class of all convex functions of ordera in U by C(a) and C for the

convex function €(0) = C.
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Definition (1.1.10)[5]: A function f € Ais said to be close — to — convex of order

a (0 < a < 1) if there 1s a convex function g such that

Re {;Eg} > a, (g'(2) #0; z € U). (1.4)

We denote by K(a), the class of close — to — convex functions of order «a, fis
normalized by the usual conditions f(0) = f'(0) — 1 = 0. By using argument, we
can write the condition (1.4) as

f'@)
e@

am
<7,d>O,ZEU. (1.5)

We note that C(a) c S*(a) c K(a).

Definition(1.1.11)[6]: A Mo6bius transformation, or a bilinear transformation, is

a rational function f: C — C of the form

az+b
f(z)_cz+d

whereaq, b, ¢, d € Care fixed and ad — bc # 0.

)

Example(1.1.3)[5]:Perhaps the most important member ofcA is the Koebe

function which is given by

k(z) = >=2z+22°4+32% + -,

Z
(1-2)
and maps the unit disk to the complement of the ray (—oo,—ﬂ. This can be
verified by writing

1

k() = 7

1+z>2 1
1—2z 4’
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and noting that gmaps the unit disk conformally onto the right half- plane

{Re{z} > 0}; see Fig. (1.1.1).

1+z

,..
1
=
[T
e e

®
|
|
‘J

{Relz} = 0} v Ch(—o2,0] +C\ {_m’_ﬂ

Fig. (1.1.1): The Koebe function maps Uconformally onto C\ (—00, - ﬂ

We note that x,(z) = g x,(2) = ixf(z), x3(z) = x,(2) —i-
Now
1/14+2\% 1 z
x3°x2°x1(z):Z<1—z) 1 (-27

And x;Mobius transformation that maps U onto the right half-plane whose

boundary is the imaginary axis. Also, x, is the squaring function, while x;

translates the image one space to the left and then multiplies it by a factor ofi.

Note that the Koebe function is starlike, but not convex.

Definition (1.1.12)[5]: Let A (p) denote the class of analytic p-valently functions

in U of the form:

f(z) = 22 + Z a2 (zeU,peN={12..1) (1.6)

n=p+1
We say thatf is p-valently starlike of ordera, p-valently convex of order a, and

p-valently close - to - convex of ordera (0 < a < p), respectively if and only if :

zf'(2)
Re{ @) } >a (1.7)
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zf"(2)
Re {1 + 10 } >a (1.8)
Re {j;p(_zl} > a. (1.9

Definition (1.1.13)[5]: Let us denote by A*(p) the class of meromorphic function
f of the form:

f(z2)=z7P + z a,z", p€EN (1.10)
n=p

which are meromorphic and p-valent in the punctured unit disk U* ={z € C:0 <
|z| < 1} = U — {0}. We say that f is p-valently meromorphic starlike of order
a (0 < a < p) if and only if

R { zf'(2)

ed— @ }>afor zeU. (1.11)

Also,f is p-valently meromorphic convex of order a (0 < a < p) if and only if

2@ *

Re {— <1 + m)} >aQ, ze U™ (112)
Note that if p = 1, we have defined univalent meromorphic starlike of order
a(0 < a<1), univalent meromorphic convex of order a(0< a<1)
respectively. Denoted by «A*(1) the class of univalent and meromorphic functions

in U*.

Definition (1.1.14)[S]: Radius of starlikeness of a function f is the largest

R, 0 < R, < 1for which it is starlike in |z| < R;.

Definition (1.1.15)[5]: Radius of convexity of a function f is the largest

R,,0 < R, < 1 for which it is convex in |z| < R,.
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Definition (1.1.16)[9]:The convolution (or Hadamard product) of the
functionsfand g denoted by f * gis defined as following for the functions in

A(p) and A*(p)respectively:

(1) If
f(z) =zP + Z a,z", g(z) =zP + Z b,z",
n=p+1 n=p+1
then
(fx9)(2) =2zF + anbnz".
n=zp+1
(1) If
f(z)=2z"P+ Z a,z", g(z)=z7P+ Z b,z",
n=p n=p

then

(Fx D@ =27+ ) anbys™
n=p

and if p = 1 in (1), then the convolution (or Hadamard product) for the functions
in A. Also, if p = 1 in (i1), then the convolution (or Hadamard product) for the

functions in A*(1).

Definition (1.1.17)[5]:The weighted mean E,(z) of f and g defined by

N =

Eq2)=5[0-f(@D+1+qg2)], 0<q<L

Also,

1 m
h@) = — > fl@),
k=1

is the arithmetic mean of f,(z)(k = 1,2,3, ..., m).
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Definition (1.1.18)[8]: Let X be a topological vector space over the field C and
let E be a subset of X. A point x € E is called an extreme point ofE if it has no
representation of the form x=ty+(1—-t)z,0<t<1 as a proper convex

combination of two distinct points y and z in E.
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1.2 Standard Results

The following lemmas and theorems are essential and has been used in the

proofs of the our principal results in the next chapter.

Lemma (1.2.1)[3]: Let a > 0. Then, Re(w) >« if and only if |w—-(1+a)|<

lw + (1 — )|, where w be any complex number.

Theorem (1.2.1)[5]: (Distortion Theorem)

For each f € A

m S |Z| =r<l1. (113)

1+r
<1 @< Gy

For each z € U,z # 0 equality occurs if and only if fis a suitable rotation of the

Koebe function. We say upper and lower bounds for |f’(z)| as Distortion bounds.

Theorem (1.2.2)[5]: (Growth Theorem)

For each f € A

(1+ Qi =@ls (1 A ld=r<t (1.14)

For each z € U,z # 0 equality occurs if and only if fis a suitable rotation of the

Koebe function.
Theorem (1.2.3)[5]: (Maximum Modulus Theorem)

Suppose that a function f is continuous on boundary of U(U any disk or region).
Then, the maximum value of |f(z)|, which is always reached , occurs somewhere

on the boundary of Uand never in the interior.
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2.1: Introduction

Let A(p) indicate the class of functions of the form:

£(Z) = 7P + z a,Z"(Z€U,p eN ={1,2,...}),(2.1)

n=p+1
Which are analytic and multivalent in the open unit disk
U={Z€eC:Z| <1}

Let M, denote the subclass of A(p) containing of function of the form:

0

£(Z) = 7P — Z a, 7" (a, > 0,p €N = {12, ...}),(2.2)

n=p+1
Which are analytic and multivalent in the open unit disk U.
Definition (2.1)[7]: leto,f, mE€N,c=>0,=0,m = 0,
p €N and

[00]

f(Z) = ZP + Z aZk.

k=p+1

Then, we wefine the linear operator

DI = A(p) — A(p) by

ZeU. (2.3)

With the help of the integral operator we define the class
MA(4, a, o, 3, m, p).
Definition (2.1): A function f€ M, is said to be in the class

MA(4, a, o, B, m, p) if and only if

(Dgs, f(z))/ +z(Dg, f(z))/ /

(028 ) + 52 (08, 1))
10

Re

>a, (2.4)
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2

Wherep €N ,0 < a <

o> > >
e Ap+p 0=>0,=0andm=0

Some of the following properties studied for other classes in [1,2,4] .
2.2: Coefficient bounds

The following theorem gives a necessary and sufficient condition for
function to be in the class MA(4, a, o, B, m, p).
Theorem (2.1):

Let f(z) € My, . Then f(z) € MA(4, a, 0, B, m, p) if and only if

(00]

(n—p)o )
Z <1+ DE B ) (n — a(An —1{n+n))arl

n=p+1

< p?—a(dp® —4£p +p), (2.5)

2

Wherep €N, 0 < a < ,020,=0andm =>0.

Ap? Ap+p

The result is sharp for the function
2 — a(Lp* — Ap +
f(z) = zP — T p) p p+p) zP,(n=p+1;p
( =P 6) (n2 a(An? — An + n))

EN) (2.6)
Proof: Assume that f(z) € MA(4, o, o, 3, m, p), so we have

(028, 1) +2 (0%, £)"
(Dgﬁl f(z)) + £z f(z))/ /

(05
2( (n P)G) a,z""1
1

Re

=

2 -1 oo
p?zP ™t = T ,uin

Re

(Ap? — Ap + p)zP~1 =Y p+1( + (np+péc) (An? — An + n)z"1

=

or equivalently

11
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(p? — a(Ap? —Ap +p))zP ™t — X pis (1 + - p)c) (n? — a(4n?® — £n + n))a,z

Re

(Ap? —Ap + p)zP~t — X 41 (1 + (n péc) (An? — An + n)z"1

=0.

This inequality is correct for all z € U. lettingz — 17 yields

Re { (p? — a(Ap? — £p + p))

= (n—p)o\"
- 2 (1 " W) (n? — a(4n? — £n + n))ay,

n=p+1
>0.
Therefore

z (1 + (n - p)6> (n? — a(4n® — £n + n))a,

p+B

<p?—a(fp?>—4p+p).
Conversely , let (2.5) hold. We will prove that (2.4) is correct and then
f(z) € MA(4, a, 0,3, m,p) .
By lemma (1.2.1) it is enough , show that
lw—(p+a)| <|w+ (p—a)| where

(D;f:?n f(z))/ +z (Dg;f; f(z))/ /

W= / /7
(Dg;fn f(z)) + £z (Dg;f; f(z))

or show that

e ) 25 €0 -0 5 10

-+ (02 @) |

12
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< INEZ)I |(Dgfn f(z))/ +z (Dgfn f(z))// +(p—a) (D;’fn f(z))/

+ (p — 04z (Dgfn f(z))//| —

where N(z) = (Dgfn f(z))/ + Az (Dgfn f(z))// and it is easy to verify
that Q — T > 0 and so the proof is complete.
Finally, sharpness follows if we take
p* — a(4p* — 4p + p)
( + o p)c) (n2 a(An? — An + n))

f(z) = zP — z\ (n=p+1;p

EN ).
Corollary (2.1): Let f € MA(4, a, 6, 3, m, p). Then

2 — a(Ap* — Ap +
2, < p (Ap* — Ap + p) (=p+Lp

(1 + M) (n2 — a(An? — An + n))

EN ). (2.7)
2.3: Distortion and growth theorems
We introduce here the distortion and growth theorems for the functions in
the class MA(4, a, 6, 3, m, p).
Theorem (2.2): Let the function f(z) defined by (2.2) be in the class
MA(4, a, 0,3, m,p). Then, for |z]| =r(0 <r < 1)
(p? — a(4p® — 4p + p))rP*!

P —
(1 + —) (P+D2—ald(p+ 12 —£(p+ 1D+ (p+1)
< [f(2)]
<rP
+ (p — a(Ap” — 4p + p))rp+ ,(2.8)

(1+-2)" (@ + D2 a(Ap+ D2 = 4p + D + (b + D))

for z € U. The result (2.8) is sharp .

13
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Proof: Since f(z) € MA(4, o, 0,3, m,p), in view of theorem (2.1), we

have

(1 + p%‘ﬁ)m ((p +D2—a(d(p+ 12> — L+ +(+ 1)))

< z (1 + %) (n? — a(An? — £n + n))a,

< p?—a(dp* —4Lp+p),

which immediately yields

o

Y o

n=p+1
p* — a(Ap® — £p + p)

(1+2)" (@+ 12 - a4+ D? - £p + D) + (b + 1))

Consequently, for |z] = r (0 < r < 1), we obtain

(0]

|f(z)| < rP + rP*1 z ap

n=p+1

(p? — a(Ap? — £p + p))rP*?

<rP+ —
S 2 _ 2 _
(1+-5) (e+D2—akp+ 12 - 4p+ D+ (@ + 1))
and
If(z)| = rP — rP*1 z a,
n=p+1
2 2 p+1
. (p® — a(4p? —4p + p))r

(1) (e D2l + D2 - AR+ D) + 0+ D))

This completes the proof of theorem (2.2). Finally, by taking the function.

14
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2 2
f(Z) =P _ p“—a(Ap~—Ap+p) Zp+1 , (29)

(1+ﬁ)m((p+1) 2—a(A(p+1)2-A(p+1)+(p+1)) )

we can show that the result of theorem (2.2) is sharp.
Theorem (2.3): If f(z) € MA(4, «, 6, 3, m, p), then

(p + 1)(p? — a(&p® — £p + p))rP

prP=t — -
(1455) (@+D2-a&p+ D2 = 4G+ D + (¢ + D))
< |t/
< prp~1
+ (p + 1)(p2 — a(Ap? — Ap + p))rp

o

(1+-2)" (P + D2~ alAp + 17 — A + D+ (p + 1))

The result is sharp for the function f is given by (2.9)
Proof: The proof is similar to that of theorem (2.2).

2.4: Radii of starlikeness, convexity and close — to -

convexity

Using the inequalities (1.7) , (1.8) , (1.9) and theorem (2.1), we can
compute the radii of starlikeness, convexity and close — to — convexity.
Theorem (2.4): Let f(z) € MA(4, a, 0, 3, m,p). Then f(z) is p — valently
starlike of order p(0 < p < p) in the disk |z| < R; , where

1

(P—P)(”—(n_p)c)m(nz—“(‘“2_Anm)}ﬁ' (m=p+1LpeN).

p+B
(n-p)(p?—a(&p?-4p+p))

R1 = lnfn {

The result is sharp for the function f(z) given by (2.6).

Proof: It is sufficient to show that

zf/(z)
f(z)

for |z| < R;, we have

—p‘Sp—p(OSp<p).

15
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‘Zf/(z)_ ‘< din=p+1(N — p)ay [z[*7P
f(z) 1= ¥paanlztP
Thus
2£/(z)
@ —p‘ <p-p,
if
801:8 a,|zZ"P<1 . (210)

n=p+1

Hence, by Theorem (2.1), (2.10) will be true if

=9, s ( + &= p)o) (n? — a(4n? — £n + 1))
(p—p)|| a p* — a(Ap* — 4p + p)

and hence

(p—1p) (1 + - p)c) (n? — a(4n? — £n + 1)) "

2l < (n—p)(p — a(4p? — Ap + p))

>p+1L,peEN).
Setting |z| = R,, we get the desired result.
Theorem (2.5): Let f(z) € MA(4, a,0,3, m,p). Then f is p — valently
convex of order p(0 < p < p) in the disk |z| < R, , where

1

f (p—p) (1+(rl pﬁ)c) (n — Aan + Aa — a) P
R, =i
2 = M (n—p)(p— Aap + Ao — @)

,(n

>p+1LpeEN).
The result is sharp with the extermal function f given by (2.6).
Proof: It is sufficient to show that
zf// (z)

1 —
T P

<p-p (0=p<p),

for |z| < R, , we have

16
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f// - — n-p
‘1 4@ _p‘  Zipsr 0o = p)ay ol
f/(z) P~ Zn=p+113p |z|"~P
Thus
14 zf//(2) -
f/(Z) p —_— p p )
if
n(n —
2 nn=P) . et (2.11)
Zu p(p—p)
n=p+1

Hence, by Theorem (2.1), (2.11) will be true if

_ m
(1+w) (n — Lan+ Aa — a)

(n—p) 2P < p+B '
(p—p) (p — Lap + Ao — a)
and hance
1
_ m n-p
(p—p) (1 + (np:g(y) (n — Aan + Aa — a) ’
|z| < ,(n=p+1Lp

(n—p)(p—Lap+ Aa — )

EN).
Setting |z| = R, , we get the desired result.
Theorem (2.6): Let a function f(z) € MA(4, o, 0,3, m,p). Then f is p —
valently close — to convex of order p (0 < p < p) in the disk |z| < Rj,

where

1
_ m n-p
(p—p)(1+w) (n — Aan + Ao — a) ’

p+ (n

p(p — Aap + La — a)

R3 = lnfn

>p+1LpeEN).
The result is sharp, with the extermal function f(z) given by (2.6) .
Proof: It is sufficient to show that

f/(z)
T~ P|sp-p(0=<p<p),

Z

17
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for |z| < R, we have that

f/(z) N
(CHNS STy

n=p+1
Thus
f/(z)
-1 _P[SP—p,
if
O naglz["P
z fﬁ 1. (2.12)
n=p+1 p P

Hence, by Theorem (2.1) , (2.12) will be true if

m-p)o\™ 3
(1+ p+B) (n — Aan + Aa — a)

p(p — Ao p + Lo — a)

|z["7P <

)

(p—p)
and hence

1
_ m n-p
(p—p) (1 + (np:g(y) (n — Aan + Aa — a)

p(p — Aap + Lo — )

|z| <

,(n=p+1p

EN).
Setting |z| = R, we get the desired result.

2.5: Weighted mean and arithmetic mean

Theorem (2.7): Let f and g be in the class MA(4, a, o, 3, m, p). Then the
weighted mean of f and g is also in the class MA(4, o, o, 3, m, p).
Proof: By Definition (1.1.17) , we have

1
Eq(2) =511 - 9)f(@) + (1 + 9)g(2)]
=% (1-q)|zP - Z anz" |+(1 +q)| zP - 2 b, z"
n=p+1 n=p+1

18
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o 1
=22 = > Z[(1 = Dan+ (1 + by 2"

n=p+1

Since f and g are in the class MA(4, , o, B, m, p) so by Theorem (2.1), we

get
i (1 + (n - p)0> (n a(I{rIZ — £n + n))a
n=p+1 p+B n
< p? — a(4p® — £p + p)
and
i (1 + (n - p)0> (n a([{nz — £n + n))b
n=p+1 p'+'B n
<p* —adp* —4p+p),
hence
nzzp;rl <1 + (np—_i_pﬁ)ﬁ) ( a(An® — An + n)) ( (1—-qa,
3 1+ q)bn)
:l(l — 9 i <1 +w>m(nz — a(An® —£n+n))a
g ! n=p+1 p'+'B n
! 1
+ E(

oo}

+q) z <1 + (np— p)o ) (n? — a(4n? — £n + n)) by,

n=p+1

1
<5;0- Q) (p? — a(Ap? — £p + p))

1
+5 1+ q)(p? — a(£p? — £p + p))
= (p* — a(dp* —£p +p)) .

19
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This shows Eq € MA(4, o, 0, 3, m, p).

In the following theorem , we shall prove that the class
MA(4, a, o, B, m, p) is closed under arithmetic mean.

Theorem (2.8): let f, (z),f,(2), ..., fs(z) defined by

fi(z) =2z° = Yo anz”, (ane = 0,k=12,..,s, n=p+

1) (2.13)

be in the class MA(4 «a, 0,3, m,p). Then the arithmetic mean of
fi(z) (k=1,2,...,s) defined by

S
1
h(z) = ;Z f(2),
k=1

is also in the class MA(4, o, o, 3, m, p).
Proof: by (2.13) and (2.14) , we can write

S o 00 S
1 1
h@ =< > @ = ) anaM=7P— ) () anz".
k=1 n=p+1 n=p k=1

Since fy(z) € MA(4, o, 0, B, m,p) for every k =1,2,....,s, So by using

theorem (2.1), we prove that

co S
— 1
z <1 + (n p) ) (n? — a(4n? — £n + n)) (Ekz ank)
n=p+1 =1
- %Z z <1 (np— pB) ) (n? — a(An® — £n + n)) an
k=1 \n=p+1

1
< EZ(pZ — a(Ap? — £p + p)) = p> — a(Ap? —Ap + p) .

This ends the proof of theorem (2.8).
2.6: Extreme points
In the following theorem, we obtain the extreme points of the class

MA(4, a, o, 3, m, p).

20
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Theorem (2.9): Let f,(z) = zP and

p? — a(4p* — Ap + p)
(1 + o p)o) (nz — a(An? — An + n))

2

f,(z) = zP — z", (2.15)

wherep EN ,0 < a<

e A+ ,0=20,=0andm = 0.

Then the function f is in the class MA(4, o, 6, 8, m, p) if and only if it can

be expressed in the form:

f(z) = 0,zP + Z 0,f,(2), (2.16)

n=p+1
where (6, >0, 8, > 0,n > p+ 1)and 6, + YL 41 6y
Proof: Suppose that f is expressed in the form (2.16). then

(0]

f(z) = 0,zP + z 0, |zP

n=p+1

p? — a(Ap® — Ap + p) n
(1 + o p)c) (nz — o(An? — An + n))

_ Z p® — a(4p® — Ap + p) o n
- n
n=p+1 (1 + M) (n2 — a(An? — An + n))

hance

d ( + o p)c) (n? — a(4n?® — £n + n))
Z p? — a(Ap? — £p + p)

p+1

=
1l

p® — a(Ap® — £p + D)6,
( + o p)o) (n2 a(An? — An + n))

(ee)

= ) O =1-0,<1.

n=p+1

Then fe€ MA(4 a,0,, m,p).

21
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Conversely , suppose that f € MA(4, «, 0, 3, m, p). We may set

( + - p)c) (n? — a(An? — £n + n))

0, = an,
" p? — a(4p? — £p + p) "
where a,, is given by (2.7). then
f(z) = zP — z apz"
n=p+1
c 2 — a(Ap? — £p +
=Zp_z — p) m(p p+p) 6, 2"
n=p+1( —E G) (n2 — a(4n? — £n + n))
=zP — z [zP — £, (2)] 64
n=p+1
—{1- Z e+ z 0,f, (2)
n=p+1 n=p+1
= 0,2 + z 0,f.(2)
n=p+1

This completes the proof of theorem (2.9).
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