Republic of Iraq
Ministry of Higher Education and Scientific Research University of AI-Qadisiyah / College of Education Department of Mathematics

On a Certain Subclass of Multivalent Functions

A Research Submitted by

Muntadher Ali Joudah

To the councll of the department of mathematics /collage of education, University of Al-Qadisiyah in Partial fulfillment of the requirements for bachelor in mathematics

Supervised by

Dr. Najah Ali A1-Ziadi

بسِم الله الِّحِّنِ الرحِيم

صدق الله العلبي العظيم سورة المـائدة آيـة (20)
وعن رسول الله (ص) أنه قال .. ((أن طلبَ العلم فريضة .. ألا أن الهُ يحبُ بغاة العلم .. وأن الثشاخص في طبب العلم كالمجاهد في سبيل الله))

وعن أمير المؤمنين (ع) أنه كان

((أيها الناس أعلموا أن كمال الاين طبب العلم و العمل بهِ ألا وأن طب العلم أوجب عليكم من طلب
 بينكم والعلم مخزون عن أهلِهِ وقد أمرتم بطلبه من أهلهِ فأطلبوه))

Abstract

We presented in this work a certain class $\operatorname{MA}(\kappa, \alpha, \sigma, \beta, m, p)$ of multivalent analytic functions with linear operator $D_{p, m}^{\sigma, \beta}$ in the open unit disk U . We study coefficient inequality, distortion and growth theorems, radii of starlikeness, convexity and close - to - convexity, weighted mean and arithmetic mean, extreme points.

CONTAINS

Subject	Page	1
Chapter One		1
1.1 Basic Definitions	1	1
1.2 Standard Results	9	,
Chapter Two		,
2.1 Introduction	10	,
2.2 Coefficient bounds	11	,
2.3 Distortion and growth theorems	13	1
2.4 Radii of starlikeness, convexity and close-to-convexity	15	1
2.5 Weighted mean and arithmetic mean	18	1
2.6 Extreme points	20	,
References	23	1
	$\therefore \underline{z}$	10

Chapter One

Basic Definitions and Standard Results

Chapter One

Basic Definitions and Standard Results

Introduction:

In this chapter, we list out all the definitions of the family of functions from analytic, univalent and multivalent (p-valent) and all related terms used during the investigation. We also include in this chapter all the standard theorems and lemmas used in the work.

1.1 Basic Definitions

Definition (1.1.1)[5]: A function f of the complex variable is analytic at a point z_{0} if its derivative exists not only at z_{0} but each point z in some neighborhoods of z_{0}. Itis analytic in region \mathbb{U} if it is analytic at every point in \mathbb{U}.

Definition (1.1.2)[5]: A function f is said to be univalent (schilcht) if it does not take the same value twice i.e. $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ for all pairs of distinct points $z_{1}, z_{2} \in U$. In other words, f is one - to - one (or injective) mapping of U onto another domain.

If f assumes the same value more than one, then f is said to be multivalent (p valent) in U. We also deal with the functions which are meromorphic univalent in the punctured unit disk $U^{*}=\{z \in \mathbb{C}: 0<|z|<1\} . f$ is said to be meromorphic if it is analytic at every point in U except finite elements in U.

As examples, the function $f(z)=z$ is univalent in U while $f(z)=z^{2}$ is not univalent in U. Also, $f(z)=z+\frac{z^{n}}{n}$ is univalent in U for each positive integer n .

Example (1.1.1) [5]:The function $f(z)=(1+z)^{2}$ is univalent in U.
Let $z_{1}, z_{2} \in U$ and suppose $f\left(z_{1}\right)=f\left(z_{2}\right)$. Then

$$
\left(1+z_{1}\right)^{2}=\left(1+z_{2}\right)^{2}
$$

$$
\begin{aligned}
& \Rightarrow 1+2 z_{1}+z_{1}^{2}=1+2 z_{2}+z_{2}^{2} \\
& \Rightarrow z_{1}^{2}-z_{2}^{2}+2\left(z_{1}-z_{2}\right)=0 \\
& \Rightarrow\left(z_{1}-z_{2}\right)\left(z_{1}+z_{2}+2\right)=0
\end{aligned}
$$

Since $\left|z_{1}\right|,\left|z_{2}\right|<1$, we know that $\left(z_{1}+z_{2}+2\right) \neq 0$. Hence $z_{1}-z_{2}=0$ or $z_{1}=z_{2}$
Definition (1.1.3) [5]: A function f is said to be locally univalent at a point $z_{0} \in$ Cif it is univalent in some neighborhood of z_{0}. For analytic function f, the condition $f^{\prime}\left(z_{0}\right) \neq 0$ is equivalent to local univalent at z_{0}.

Example (1.1.2)[5]: Consider the domain

$$
D=\left\{z \in \mathbb{C}: 1<|z|<2,0<\arg (z)<\frac{3 \pi}{2}\right\},
$$

and the function $f: D \rightarrow \mathbb{C}$ given $\operatorname{by} f(z)=z^{2}$. It is clear that f is analytic onDand local univalent at every point $z_{0} \in D$, since $f^{\prime}\left(z_{0}\right) \neq 2 z_{0} \neq 0$ for all $z_{0} \in D$.

However, f is not univalent on D, since

$$
f\left(\frac{3}{2 \sqrt{2}}+i \frac{3}{2 \sqrt{2}}\right)=f\left(-\frac{3}{2 \sqrt{2}}-i \frac{3}{2 \sqrt{2}}\right)=\frac{9}{4} i .
$$

Definition (1.1.4)[5]: Let \mathcal{A} denotes the class of functions f of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad n \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

which are analytic and univalent in the open unit disk U.
Definition (1.1.5)[5]: We say that $f \in \mathcal{A}$ is normalized if f satisfies the conditions $f(0)=0$ and $f^{\prime}(0)=1$.

Definition (1.1.6)[5]: A set $E \subseteq \mathbb{C}$ is said to be starlike with respect to $w_{0} \in E$ if the linear segment joining w_{0} to every other point $w \in E$ lies entirely in E. In a more picturesque language, the requirement is that every point of E is visible
from w_{0}. The set E is said to be convex if it is starlike with respect to each of its points, that is , if the linear segment joining any two points of E lies entirely in E.

Definition (1.1.7)[5]: A function f is said to be conformal at a point z_{0} if it preserves the angle between oriented curves passing through z_{0} in magnitude as well as in sense. Geometrically, images of any two oriented curves taken with their corresponding orientations make the same angle of intersection as the curves at z_{0} both in magnitude and direction. A function $w=f(z)$ is said to be conformal in the domain D, if it is conformal at each point of the domain.

Definition (1.1.8)[5]: A function $f \in \mathcal{A}$ is said to be starlike function of order α if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha,(0 \leq \alpha<1 ; z \in U, f(z) \neq 0) . \tag{1.2}
\end{equation*}
$$

Denotes the class of all starlike functions of order α in U by $S^{*}(\alpha)$ and S^{*} the class of all starlike functions of order $0, S^{*}(0)=S^{*}$. Geometrically, we can say that a starlike function is conformal mapping of the unit disk onto a domain starlike with respect to the origin. For example, the function

$$
f(z)=\frac{z}{(1-z)^{2(1-\alpha)}},
$$

is starlike function of order α.
Definition (1.1.9)[5]: A function $f \in \mathcal{A}$ is said to be convex function of order α if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha,\left(0 \leq \alpha<1 ; z \in U, f^{\prime}(z) \neq 0\right) . \tag{1.3}
\end{equation*}
$$

Denotes the class of all convex functions of order α in U by $C(\alpha)$ and C for the convex function $C(0)=C$.

Definition (1.1.10)[5]: A function $f \in \mathcal{A}$ is said to be close - to - convex of order $\alpha(0 \leq \alpha<1)$ if there is a convex function g such that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{g^{\prime}(z)}\right\}>\alpha, \quad\left(g^{\prime}(z) \neq 0 ; z \in U\right) . \tag{1.4}
\end{equation*}
$$

We denote by $K(\alpha)$, the class of close - to - convex functions of order α, f is normalized by the usual conditions $f(0)=f^{\prime}(0)-1=0$. By using argument, we can write the condition (1.4) as

$$
\begin{equation*}
\left|\arg \frac{f^{\prime}(z)}{g^{\prime}(z)}\right|<\frac{\alpha \pi}{2}, \alpha>0, z \in U . \tag{1.5}
\end{equation*}
$$

We note that $C(\alpha) \subset S^{*}(\alpha) \subset K(\alpha)$.
Definition(1.1.11)[6]:A Möbius transformation, or a bilinear transformation, is a rational function $f: \mathbb{C} \rightarrow \mathbb{C}$ of the form

$$
f(z)=\frac{a z+b}{c z+d},
$$

where $a, b, c, d \in \mathbb{C}$ Cre fixed and $a d-b c \neq 0$.

Example(1.1.3)[5]:Perhaps the most important member of \mathcal{A} is the Koebe function which is given by

$$
k(z)=\frac{z}{(1-z)^{2}}=z+2 z^{2}+3 z^{3}+\cdots,
$$

and maps the unit disk to the complement of the ray $\left(-\infty,-\frac{1}{4}\right]$. This can be verified by writing

$$
k(z)=\frac{1}{4}\left(\frac{1+z}{1-z}\right)^{2}-\frac{1}{4}
$$

and noting that $\frac{1+z}{1-z}$ maps the unit disk conformally onto the right half- plane $\{\operatorname{Re}\{z\}>0\}$; see Fig. (1.1.1).

Fig. (1.1.1): The Koebe function maps \mathbb{U} conformally onto $\mathbb{C} \backslash\left(-\infty,-\frac{1}{4}\right]$.
We note that $x_{1}(z)=\frac{1+z}{1-z}, \quad x_{2}(z)=\frac{1}{4} x_{1}^{2}(z), \quad x_{3}(z)=x_{2}(z)-\frac{1}{4}$.
Now

$$
x_{3} \circ x_{2} \circ x_{1}(z)=\frac{1}{4}\left(\frac{1+z}{1-z}\right)^{2}-\frac{1}{4}=\frac{z}{(1-z)^{2}} .
$$

And x_{1} Möbius transformation that maps \mathbb{U} onto the right half-plane whose boundary is the imaginary axis. Also, x_{2} is the squaring function, while x_{3} translates the image one space to the left and then multiplies it by a factor of $\frac{1}{4}$.

Note that the Koebe function is starlike, but not convex.
Definition (1.1.12)[5]: Let $\mathcal{A}(p)$ denote the class of analytic p-valently functions in U of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n},(z \in U, p \in \mathbb{N}=\{1,2, \ldots\}) . \tag{1.6}
\end{equation*}
$$

We say that f is p-valently starlike of order α, p-valently convex of order α, and p-valently close - to - convex of order $\alpha(0 \leq \alpha<p)$, respectively if and only if :

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \tag{1.7}
\end{equation*}
$$

$$
\begin{gather*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \tag{1.8}\\
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>\alpha \tag{1.9}
\end{gather*}
$$

Definition (1.1.13)[5]: Let us denote by $\mathcal{A}^{*}(p)$ the class of meromorphic function f of the form:

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{n=p}^{\infty} a_{n} z^{n}, \quad p \in \mathbb{N} \tag{1.10}
\end{equation*}
$$

which are meromorphic and p-valent in the punctured unit disk $U^{*}=\{z \in \mathbb{C}: 0<$ $|z|<1\}=U-\{0\}$. We say that f is p-valently meromorphic starlike of order $\alpha(0 \leq \alpha<p)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{-\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \text { for } z \in U^{*} \tag{1.11}
\end{equation*}
$$

Also, f is p-valently meromorphic convex of order $\alpha(0 \leq \alpha<p)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\alpha, \quad z \in U^{*} \tag{1.12}
\end{equation*}
$$

Note that if $p=1$, we have defined univalent meromorphic starlike of order $\alpha(0 \leq \alpha<1)$, univalent meromorphic convex of order $\alpha(0 \leq \alpha<1)$ respectively. Denoted by $\mathcal{A}^{*}(1)$ the class of univalent and meromorphic functions in U^{*}.

Definition (1.1.14)[5]: Radius of starlikeness of a function f is the largest $R_{1}, 0<R_{1}<1$ for which it is starlike in $|z|<R_{1}$.

Definition (1.1.15)[5]: Radius of convexity of a function f is the largest $R_{2}, 0<R_{2}<1$ for which it is convex in $|z|<R_{2}$.

Definition (1.1.16)[9]:The convolution (or Hadamard product) of the functions f and g denoted by $f * g$ is defined as following for the functions in $\mathcal{A}(p)$ and $\mathcal{A}^{*}(p)$ respectively:
(i) If

$$
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}, \quad g(z)=z^{p}+\sum_{n=p+1}^{\infty} b_{n} z^{n},
$$

then

$$
(f * g)(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} b_{n} z^{n} .
$$

(ii) If

$$
f(z)=z^{-p}+\sum_{n=p}^{\infty} a_{n} z^{n}, \quad g(z)=z^{-p}+\sum_{n=p}^{\infty} b_{n} z^{n},
$$

then

$$
(f * g)(z)=z^{-p}+\sum_{n=p}^{\infty} a_{n} b_{n} z^{n} .
$$

and if $p=1$ in (i), then the convolution (or Hadamard product) for the functions in \mathcal{A}. Also, if $p=1$ in (ii), then the convolution (or Hadamard product) for the functions in $\mathcal{A}^{*}(1)$.

Definition (1.1.17)[5]:The weighted mean $E_{q}(z)$ of f and g defined by

$$
E_{q}(z)=\frac{1}{2}[(1-q) f(z)+(1+q) g(z)], \quad 0<q<1 .
$$

Also,

$$
h(z)=\frac{1}{m} \sum_{k=1}^{m} f_{k}(z),
$$

is the arithmetic mean of $f_{k}(z)(k=1,2,3, \ldots, m)$.

Definition (1.1.18)[8]: Let X be a topological vector space over the field \mathbb{C} and let E be a subset of X. A point $x \in E$ is called an extreme point of E if it has no representation of the form $x=t y+(1-t) z, 0<t<1$ as a proper convex combination of two distinct points y and z in E.

1.2 Standard Results

The following lemmas and theorems are essential and has been used in the proofs of the our principal results in the next chapter.

Lemma (1.2.1)[3]: Let $\alpha \geq 0$. Then, $\operatorname{Re}(w)>\alpha$ if and only if $|w-(1+\alpha)|<$ $|w+(1-\alpha)|$, where w be any complex number.

Theorem (1.2.1)[5]: (Distortion Theorem)

For each $f \in \mathcal{A}$

$$
\begin{equation*}
\frac{1-r}{(1+r)^{3}} \leq\left|f^{\prime}(z)\right| \leq \frac{1+r}{(1-r)^{3}},|z|=r<1 . \tag{1.13}
\end{equation*}
$$

For each $z \in U, z \neq 0$ equality occurs if and only if f is a suitable rotation of the Koebe function. We say upper and lower bounds for $\left|f^{\prime}(z)\right|$ as Distortion bounds.

Theorem (1.2.2)[5]: (Growth Theorem)

For each $f \in \mathcal{A}$

$$
\begin{equation*}
\frac{r}{(1+r)^{2}} \leq|f(z)| \leq \frac{r}{(1-r)^{2}},|z|=r<1 . \tag{1.14}
\end{equation*}
$$

For each $z \in U, z \neq 0$ equality occurs if and only if f is a suitable rotation of the Koebe function.

Theorem (1.2.3)[5]: (Maximum Modulus Theorem)

Suppose that a function f is continuous on boundary of $\mathbb{U}(\mathbb{U}$ any disk or region). Then, the maximum value of $|f(z)|$, which is always reached, occurs somewhere on the boundary of Uand never in the interior.

Chapter Two

On a Certain Subclass of Multivalent Functions

2.1: Introduction

Let $\mathrm{A}(\mathrm{p})$ indicate the class of functions of the form:

$$
\begin{equation*}
f(Z)=Z^{p}+\sum_{n=p+1}^{\infty} a_{n} Z^{n}(Z \in U, p \in N=\{1,2, \ldots .\}) \tag{2.1}
\end{equation*}
$$

Which are analytic and multivalent in the open unit disk

$$
U=\{Z \in \mathbb{C}:|Z|<1\}
$$

Let M_{p} denote the subclass of $A(p)$ containing of function of the form:

$$
f(Z)=Z^{p}-\sum_{n=p+1}^{\infty} a_{n} Z^{n}\left(a_{n} \geq 0, p \in N=\{1,2, \ldots .\}\right),(2.2)
$$

Which are analytic and multivalent in the open unit disk U .
Definition (2.1)[7]: let $\sigma, \beta, \mathrm{m} \in \mathrm{N}, \sigma \geq 0, \beta \geq 0, \mathrm{~m} \geq 0$, $\mathrm{p} \in \mathrm{N}$ and

$$
\mathrm{f}(\mathrm{Z})=\mathrm{Z}^{\mathrm{p}}+\sum_{\mathrm{k}=\mathrm{p}+1}^{\infty} \mathrm{a}_{\mathrm{k}} \mathrm{Z}^{\mathrm{k}} .
$$

Then, we wefine the linear operator
$D_{p, m}^{\sigma, \beta}: A(p) \rightarrow A(p)$ by

$$
\begin{gather*}
\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{Z})=\mathrm{Z}^{\mathrm{p}}+\sum_{\mathrm{n}=\mathrm{p}+1}^{\infty}\left(1+\frac{(\mathrm{n}-\mathrm{p}) \sigma}{\mathrm{p}+\beta}\right)^{\mathrm{m}} \mathrm{a}_{\mathrm{n}} \mathrm{Z}^{\mathrm{n}} \\
\mathrm{Z} \in \mathrm{U} \tag{2.3}
\end{gather*}
$$

With the help of the integral operator we define the class $\mathrm{MA}(\Lambda, \alpha, \sigma, \beta, m, p)$.

Definition (2.1): A function $f \in M_{p}$ is said to be in the class $\operatorname{MA}(\Lambda, \alpha, \sigma, \beta, m, p)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{\prime}+\mathrm{z}\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{/ /}}{\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{\prime}+\kappa \mathrm{z}\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{/ /}}\right\} \geq \alpha \tag{2.4}
\end{equation*}
$$

Where $\mathrm{p} \in \mathrm{N}, \mathrm{o} \leq \alpha<\frac{\mathrm{p}^{2}}{\Lambda \mathrm{p}^{2}-\kappa \mathrm{p}+\mathrm{p}}, \sigma \geq 0, \beta \geq \mathrm{o}$ and $\mathrm{m} \geq 0$
Some of the following properties studied for other classes in $[1,2,4]$.

2.2: Coefficient bounds

The following theorem gives a necessary and sufficient condition for function to be in the class $\operatorname{MA}(\Lambda, \alpha, \sigma, \beta, m, p)$.

Theorem (2.1):
Let $f(z) \in M_{p}$. Then $f(z) \in \operatorname{MA}(\Lambda, \alpha, \sigma, \beta, m, p)$ if and only if

$$
\begin{gather*}
\sum_{n=p+1}^{\infty}\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-K n+n\right)\right) a_{n} \\
\leq p^{2}-\alpha\left(\Lambda p^{2}-\kappa p+p\right) \tag{2.5}
\end{gather*}
$$

Where $\mathrm{p} \in \mathrm{N}, 0 \leq \alpha<\frac{\mathrm{p}^{2}}{\Lambda \mathrm{p}^{2}-\Lambda \mathrm{p}+\mathrm{p}}, \sigma \geq 0, \beta \geq 0$ and $\mathrm{m} \geq 0$.
The result is sharp for the function

$$
\begin{aligned}
f(z)= & z^{p}- \\
& \frac{p^{2}-\alpha\left(\kappa p^{2}-\kappa p+p\right)}{\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-\kappa n+n\right)\right)} z^{p},(n \geq p+1 ; p \\
& \in N)
\end{aligned}
$$

Proof: Assume that $f(z) \in \operatorname{MA}(\Lambda, \alpha, \sigma, \beta, m, p)$, so we have

$$
\operatorname{Re}\left\{\frac{\left(D_{p, m}^{\sigma, \beta} f(z)\right)^{\prime}+\mathrm{z}\left(D_{p, m}^{\sigma, \beta} f(z)\right)^{/ /}}{\left(D_{p, m}^{\sigma, \beta} f(z)\right)^{\prime}+\kappa z\left(D_{p, m}^{\sigma, \beta} f(z)\right)^{/ /}}\right\} \geq \alpha
$$

$\operatorname{Re}\left\{\frac{p^{2} z^{p-1}-\sum_{n=p+1}^{\infty} n^{2}\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m} a_{n} z^{n-1}}{\left(\Lambda p^{2}-\Lambda p+p\right) z^{p-1}-\sum_{n=p+1}^{\infty}\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(\Lambda n^{2}-K n+n\right) z^{n-1}}\right\}$
$\geq \alpha$
or equivalently
$\operatorname{Re}\left\{\frac{\left(p^{2}-\alpha\left(\Lambda p^{2}-K p+p\right)\right) z^{p-1}-\sum_{n=p+1}^{\infty}\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-K n+n\right)\right) a_{n} z}{\left(\Lambda p^{2}-K p+p\right) z^{p-1}-\sum_{n=p+1}^{\infty}\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(K n^{2}-K n+n\right) z^{n-1}}\right.$ ≥ 0.

This inequality is correct for all $\mathrm{z} \in \mathrm{U}$. letting $\mathrm{z} \rightarrow 1^{-}$yields

$$
\begin{aligned}
\operatorname{Re}\left\{\left(p^{2}-\alpha\right.\right. & \left.\left(\kappa p^{2}-\Lambda p+p\right)\right) \\
& \left.-\sum_{n=p+1}^{\infty}\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-\Lambda n+n\right)\right) a_{n}\right\} \\
& \geq 0
\end{aligned}
$$

Therefore

$$
\begin{gathered}
\sum_{n=p+1}^{\infty}\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-K n+n\right)\right) a_{n} \\
\leq p^{2}-\alpha\left(\Lambda p^{2}-\kappa p+p\right)
\end{gathered}
$$

Conversely, let (2.5) hold. We will prove that (2.4) is correct and then $f(z) \in \operatorname{MA}(\Lambda, \alpha, \sigma, \beta, m, p)$.

By lemma (1.2.1) it is enough, show that $|w-(p+\alpha)|<|w+(p-\alpha)|$ where

$$
\mathrm{W}=\frac{\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{/}+\mathrm{z}\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{/ /}}{\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{\prime}+\kappa \mathrm{z}\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{/ /}}
$$

or show that

$$
\begin{aligned}
\mathrm{T}=\frac{1}{|\mathrm{~N}(\mathrm{z})|} & \mid\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{/}+\mathrm{z}\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{/ /}-(\mathrm{p}+\alpha)\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{/} \\
& -(\mathrm{p}+\alpha)\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{/ /} \mid
\end{aligned}
$$

$$
\begin{gathered}
\left.<\frac{1}{|\mathrm{~N}(\mathrm{z})|} \right\rvert\,\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{/}+\mathrm{z}\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{/ /}+(\mathrm{p}-\alpha)\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{/} \\
\quad+(\mathrm{p}-\alpha) \kappa \mathrm{z}\left(\mathrm{D}_{\mathrm{p}, \mathrm{~m}}^{\sigma, \beta} \mathrm{f}(\mathrm{z})\right)^{/ /} \mid=\mathrm{Q}
\end{gathered}
$$

where $N(z)=\left(D_{p, m}^{\sigma, \beta} f(z)\right)^{\prime}+K z\left(D_{p, m}^{\sigma, \beta} f(z)\right)^{/ /}$and it is easy to verify that $\mathrm{Q}-\mathrm{T}>0$ and so the proof is complete.

Finally, sharpness follows if we take

$$
\begin{aligned}
f(z)= & z^{p}- \\
& \frac{p^{2}-\alpha\left(K p^{2}-К p+p\right)}{\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-K n+n\right)\right)} z^{n},(n \geq p+1 ; p \\
& \in N \quad)
\end{aligned}
$$

Corollary (2.1): Let $\mathrm{f} \in \operatorname{MA}(\Lambda, \alpha, \sigma, \beta, \mathrm{m}, \mathrm{p})$. Then

$$
\begin{gather*}
a_{n} \leq \frac{p^{2}-\alpha\left(\Lambda p^{2}-\Lambda p+p\right)}{\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(K n^{2}-\Lambda n+n\right)\right)},(n \geq p+1 ; p \\
\in N \quad) \cdot(2.7) \tag{2.7}
\end{gather*}
$$

2.3: Distortion and growth theorems

We introduce here the distortion and growth theorems for the functions in the class $\operatorname{MA}(K, \alpha, \sigma, \beta, m, p)$.

Theorem (2.2): Let the function $f(z)$ defined by (2.2) be in the class $\operatorname{MA}(K, \alpha, \sigma, \beta, m, p)$. Then, for $|z|=r(0<r<1)$

$$
\begin{aligned}
& \mathrm{r}^{\mathrm{p}}-\frac{\left(\mathrm{p}^{2}-\alpha\left(\kappa \mathrm{p}^{2}-К \mathrm{p}+\mathrm{p}\right)\right) \mathrm{r}^{\mathrm{p}+1}}{\left(1+\frac{\sigma}{\mathrm{p}+\beta}\right)^{\mathrm{m}}\left((\mathrm{p}+1)^{2}-\alpha\left(\kappa(\mathrm{p}+1)^{2}-\kappa(\mathrm{p}+1)+(\mathrm{p}+1)\right)\right)} \\
& \quad \leq|\mathrm{f}(\mathrm{z})|
\end{aligned}
$$

$\leq r^{p}$

$$
\begin{equation*}
+\frac{\left(p^{2}-\alpha\left(\Lambda p^{2}-\kappa p+p\right)\right) r^{p+1}}{\left(1+\frac{\sigma}{p+\beta}\right)^{m}\left((p+1)^{2}-\alpha\left(\Lambda(p+1)^{2}-\kappa(p+1)+(p+1)\right)\right)},(\tag{2.8}
\end{equation*}
$$

for $\mathrm{z} \in \mathrm{U}$. The result (2.8) is sharp .

Proof: Since $f(z) \in \operatorname{MA}(K, \alpha, \sigma, \beta, m, p)$, in view of theorem (2.1), we have

$$
\begin{gathered}
\left(1+\frac{\sigma}{p+\beta}\right)^{m}\left((p+1)^{2}-\alpha\left(\Lambda(p+1)^{2}-\Lambda(p+1)+(p+1)\right)\right) \\
\sum_{n=p+1}^{\infty} a_{n} \\
\leq \sum_{n=p+1}^{\infty}\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-\Lambda n+n\right)\right) a_{n} \\
\leq p^{2}-\alpha\left(\Lambda p^{2}-\Lambda p+p\right)
\end{gathered}
$$

which immediately yields

$$
\begin{aligned}
& \sum_{n=p+1}^{\infty} a_{n} \\
& \leq \frac{p^{2}-\alpha\left(\kappa p^{2}-\kappa p+p\right)}{\left(1+\frac{\sigma}{p+\beta}\right)^{m}\left((p+1)^{2}-\alpha\left(\kappa(p+1)^{2}-К(p+1)+(p+1)\right)\right)}
\end{aligned}
$$

Consequently, for $|\mathrm{z}|=\mathrm{r}(0<r<1)$, we obtain

$$
\begin{gathered}
|f(z)| \leq r^{p}+r^{p+1} \sum_{n=p+1}^{\infty} a_{n} \\
\leq r^{p}+\frac{\left(p^{2}-\alpha\left(\Lambda p^{2}-\Lambda p+p\right)\right) r^{p+1}}{\left(1+\frac{\sigma}{p+\beta}\right)^{m}\left((p+1)^{2}-\alpha\left(\Lambda(p+1)^{2}-\Lambda(p+1)+(p+1)\right)\right)}
\end{gathered}
$$

and

$$
\begin{gathered}
|f(z)| \geq r^{p}-r^{p+1} \sum_{n=p+1}^{\infty} a_{n} \\
\geq r^{p}-\frac{\left(p^{2}-\alpha\left(\Lambda p^{2}-\Lambda p+p\right)\right) r^{p+1}}{\left(1+\frac{\sigma}{p+\beta}\right)^{m}\left((p+1)^{2}-\alpha\left(\Lambda(p+1)^{2}-\Lambda(p+1)+(p+1)\right)\right)}
\end{gathered}
$$

This completes the proof of theorem (2.2). Finally, by taking the function.

$$
\begin{equation*}
f(z)=z^{p}-\frac{p^{2}-\alpha\left(\Lambda p^{2}-\kappa p+p\right)}{\left(1+\frac{\sigma}{p+\beta}\right)^{m}\left((p+1)^{2}-\alpha\left(\kappa(p+1)^{2}-\kappa(p+1)+(p+1)\right)\right)} z^{p+1} \tag{2.9}
\end{equation*}
$$

we can show that the result of theorem (2.2) is sharp.
Theorem (2.3): If $f(z) \in \operatorname{MA}(K, \alpha, \sigma, \beta, m, p)$, then

$$
\begin{aligned}
& \operatorname{pr}^{\mathrm{p}-1}-\frac{(\mathrm{p}+1)\left(\mathrm{p}^{2}-\alpha\left(\Lambda \mathrm{p}^{2}-\Lambda \mathrm{p}+\mathrm{p}\right)\right) \mathrm{r}^{\mathrm{p}}}{\left(1+\frac{\sigma}{\mathrm{p}+\beta}\right)^{\mathrm{m}}\left((\mathrm{p}+1)^{2}-\alpha\left(\Lambda(\mathrm{p}+1)^{2}-\Lambda(\mathrm{p}+1)+(\mathrm{p}+1)\right)\right)} \\
& \quad \leq|\mathrm{f} /(\mathrm{z})| \\
& \quad \leq \mathrm{pr}^{\mathrm{p}-1} \\
& +\frac{(\mathrm{p}+1)\left(\mathrm{p}^{2}-\alpha\left(\Lambda \mathrm{p}^{2}-\kappa \mathrm{p}+\mathrm{p}\right)\right) \mathrm{r}^{\mathrm{p}}}{\left(1+\frac{\sigma}{\mathrm{p}+\beta}\right)^{m}\left((\mathrm{p}+1)^{2}-\alpha\left(\Lambda(\mathrm{p}+1)^{2}-\Lambda(\mathrm{p}+1)+(\mathrm{p}+1)\right)\right)}
\end{aligned}
$$

The result is sharp for the function f is given by (2.9)
Proof: The proof is similar to that of theorem (2.2).

2.4: Radii of starlikeness, convexity and close - to convexity

Using the inequalities (1.7), (1.8), (1.9) and theorem (2.1), we can compute the radii of starlikeness, convexity and close - to - convexity. Theorem (2.4): Let $f(z) \in \operatorname{MA}(\Lambda, \alpha, \sigma, \beta, m, p)$. Then $f(z)$ is p - valently starlike of order $\rho(0 \leq \rho<p)$ in the disk $|z|<R_{1}$, where

$$
R_{1}=\inf _{n}\left\{\frac{(p-\rho)\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-\kappa n+1\right)\right)}{(n-\rho)\left(p^{2}-\alpha\left(\kappa p^{2}-\kappa p+p\right)\right)}\right\}^{\frac{1}{n-p}},(n \geq p+1 ; p \in N)
$$

The result is sharp for the function $f(z)$ given by (2.6).
Proof: It is sufficient to show that

$$
\left|\frac{\mathrm{zf}^{\prime}(\mathrm{z})}{\mathrm{f}(\mathrm{z})}-\mathrm{p}\right| \leq \mathrm{p}-\rho(0 \leq \rho<p)
$$

for $|\mathrm{z}|<\mathrm{R}_{1}$, we have

$$
\left|\frac{\mathrm{zf}^{\prime}(\mathrm{z})}{\mathrm{f}(\mathrm{z})}-\mathrm{p}\right| \leq \frac{\sum_{\mathrm{n}=\mathrm{p}+1}^{\infty}(\mathrm{n}-\mathrm{p}) \mathrm{a}_{\mathrm{n}}|\mathrm{z}|^{\mathrm{n}-\mathrm{p}}}{1-\sum_{\mathrm{n}=\mathrm{p}+1}^{\infty} \mathrm{a}_{\mathrm{n}}|\mathrm{z}|^{\mathrm{n}-\mathrm{p}}}
$$

Thus

$$
\left|\frac{\mathrm{zf}^{\prime}(\mathrm{z})}{\mathrm{f}(\mathrm{z})}-\mathrm{p}\right| \leq \mathrm{p}-\rho
$$

if

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{(n-\rho)}{(p-\rho)} a_{n}|z|^{n-p} \leq 1 \tag{2.10}
\end{equation*}
$$

Hence, by Theorem (2.1), (2.10) will be true if

$$
\frac{(\mathrm{n}-\rho)}{(\mathrm{p}-\rho)}|\mathrm{z}|^{\mathrm{n}-\mathrm{p}} \leq \frac{\left(1+\frac{(\mathrm{n}-\mathrm{p}) \sigma}{\mathrm{p}+\beta}\right)^{m}\left(\mathrm{n}^{2}-\alpha\left(\Lambda \mathrm{n}^{2}-К \mathrm{n}+1\right)\right)}{\mathrm{p}^{2}-\alpha\left(\Lambda \mathrm{p}^{2}-К \mathrm{p}+\mathrm{p}\right)}
$$

and hence

$$
\begin{gathered}
|z| \leq\left\{\frac{(p-\rho)\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\kappa n^{2}-\Lambda n+1\right)\right)}{(n-\rho)\left(p^{2}-\alpha\left(\Lambda p^{2}-\kappa p+p\right)\right)}\right\}^{\frac{1}{n-p}},(n \\
\geq p+1 ; p \in N)
\end{gathered}
$$

Setting $|z|=R_{1}$, we get the desired result.
Theorem (2.5): Let $f(z) \in \operatorname{MA}(K, \alpha, \sigma, \beta, m, p)$. Then f is $p-v a l e n t l y$ convex of order $\rho(0 \leq \rho<p)$ in the disk $|\mathrm{z}|<\mathrm{R}_{2}$, where

$$
\begin{aligned}
R_{2}=\inf _{n}\{ & \left.\frac{(p-\rho)\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}(n-K \alpha n+\kappa \alpha-\alpha)}{(n-\rho)(p-K \alpha p+K \alpha-\alpha)}\right\}^{\frac{1}{n-p}},(n \\
& \geq p+1 ; p \in N)
\end{aligned}
$$

The result is sharp with the extermal function f given by (2.6).
Proof: It is sufficient to show that

$$
\left|1+\frac{\mathrm{zf}^{/ /}(\mathrm{z})}{\mathrm{f} /(\mathrm{z})}-\mathrm{p}\right| \leq \mathrm{p}-\rho \quad(0 \leq \rho<p)
$$

for $|z|<R_{2}$, we have

$$
\left|1+\frac{\mathrm{zf} / /(\mathrm{z})}{\mathrm{f} /(\mathrm{z})}-\mathrm{p}\right| \leq \frac{\sum_{\mathrm{n}=\mathrm{p}+1}^{\infty} \mathrm{n}(\mathrm{n}-\mathrm{p}) \mathrm{a}_{\mathrm{n}}|\mathrm{z}|^{\mathrm{n}-\mathrm{p}}}{\mathrm{p}-\sum_{\mathrm{n}=\mathrm{p}+1}^{\infty} n \mathrm{na}_{\mathrm{n}}|\mathrm{z}|^{\mathrm{n}-\mathrm{p}}}
$$

Thus

$$
\left|1+\frac{\mathrm{zf} / /(\mathrm{z})}{\mathrm{f} /(\mathrm{z})}-\mathrm{p}\right| \leq \mathrm{p}-\rho,
$$

if

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{n(n-\rho)}{p(p-\rho)} a_{n}|z|^{n-p} \leq 1 \tag{2.11}
\end{equation*}
$$

Hence, by Theorem (2.1), (2.11) will be true if

$$
\frac{(\mathrm{n}-\rho)}{(\mathrm{p}-\rho)}|\mathrm{z}|^{\mathrm{n}-\mathrm{p}} \leq \frac{\left(1+\frac{(\mathrm{n}-\mathrm{p}) \sigma}{\mathrm{p}+\beta}\right)^{\mathrm{m}}(\mathrm{n}-\kappa \alpha \mathrm{n}+\kappa \alpha-\alpha)}{(\mathrm{p}-К \alpha \mathrm{p}+К \alpha-\alpha)},
$$

and hance

$$
\begin{gathered}
|z| \leq\left\{\frac{(p-\rho)\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}(n-\Lambda \alpha n+\Lambda \alpha-\alpha)}{(n-\rho)(p-K \alpha p+\Lambda \alpha-\alpha)}\right\}^{\frac{1}{n-p}},(n \geq p+1 ; p \\
\in N) .
\end{gathered}
$$

Setting $|z|=R_{2}$, we get the desired result.
Theorem (2.6): Let a function $f(z) \in \operatorname{MA}(\Lambda, \alpha, \sigma, \beta, m, p)$. Then f is $p-$ valently close - to convex of order $\rho(0 \leq \rho<p)$ in the disk $|z|<R_{3}$, where

$$
\begin{aligned}
R_{3}=\inf _{n}\{ & \left.\frac{(p-\rho)\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}(n-K \alpha n+\kappa \alpha-\alpha)}{p(p-K \alpha p+\Lambda \alpha-\alpha)}\right\}^{\frac{1}{n-p}},(n \\
& \geq p+1 ; p \in N)
\end{aligned}
$$

The result is sharp, with the extermal function $f(z)$ given by (2.6) .
Proof: It is sufficient to show that

$$
\left|\frac{\mathrm{f}^{\prime}(\mathrm{z})}{\mathrm{z}^{\mathrm{p}-1}}-\mathrm{p}\right| \leq \mathrm{p}-\rho(0 \leq \rho<p)
$$

for $|\mathrm{z}|<\mathrm{R}_{3}$, we have that

$$
\left|\frac{f^{/}(\mathrm{z})}{\mathrm{z}^{\mathrm{p}-1}}-\mathrm{p}\right| \leq \sum_{\mathrm{n}=\mathrm{p}+1}^{\infty} n \mathrm{ma}_{\mathrm{n}}|\mathrm{z}|^{\mathrm{n}-\mathrm{p}}
$$

Thus

$$
\left|\frac{\mathrm{f} /(\mathrm{z})}{\mathrm{z}^{\mathrm{p}-1}}-\mathrm{p}\right| \leq \mathrm{p}-\rho,
$$

if

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{n a_{n}|z|^{n-p}}{p-\rho} \leq 1 \tag{2.12}
\end{equation*}
$$

Hence, by Theorem (2.1), (2.12) will be true if

$$
\frac{1}{(\mathrm{p}-\rho)}|\mathrm{z}|^{\mathrm{n}-\mathrm{p}} \leq \frac{\left(1+\frac{(\mathrm{n}-\mathrm{p}) \sigma}{\mathrm{p}+\beta}\right)^{\mathrm{m}}(\mathrm{n}-\Lambda \alpha \mathrm{n}+\Lambda \alpha-\alpha)}{\mathrm{p}(\mathrm{p}-\Lambda \alpha \mathrm{p}+К \alpha-\alpha)}
$$

and hence

$$
\begin{gathered}
|z| \leq\left\{\frac{(p-\rho)\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}(n-\kappa \alpha n+\kappa \alpha-\alpha)}{p(p-K \alpha p+K \alpha-\alpha)}\right\}^{\frac{1}{n-p}},(n \geq p+1 ; p \\
\in N)
\end{gathered}
$$

Setting $|z|=R_{3}$, we get the desired result.

2.5: Weighted mean and arithmetic mean

Theorem (2.7): Let f and g be in the class $\operatorname{MA}(K, \alpha, \sigma, \beta, m, p)$. Then the weighted mean of f and g is also in the class $\operatorname{MA}(K, \alpha, \sigma, \beta, m, p)$.

Proof: By Definition (1.1.17), we have

$$
\begin{gathered}
E_{q}(z)=\frac{1}{2}[(1-q) f(z)+(1+q) g(z)] \\
=\frac{1}{2}\left[(1-q)\left(z^{p}-\sum_{n=p+1}^{\infty} a_{n} z^{n}\right)+(1+q)\left(z^{p}-\sum_{n=p+1}^{\infty} b_{n} z^{n}\right)\right]
\end{gathered}
$$

$$
=z^{p}-\sum_{n=p+1}^{\infty} \frac{1}{2}\left[(1-q) a_{n}+(1+q) b_{n}\right] z^{n}
$$

Since f and g are in the class $\operatorname{MA}(\Lambda, \alpha, \sigma, \beta, m, p)$ so by Theorem (2.1), we get

$$
\begin{gathered}
\sum_{n=p+1}^{\infty}\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-\kappa n+n\right)\right) a_{n} \\
\leq p^{2}-\alpha\left(\Lambda p^{2}-\kappa p+p\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\sum_{n=p+1}^{\infty}\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\kappa n^{2}-\kappa n+n\right)\right) b_{n} \\
\leq p^{2}-\alpha\left(\kappa p^{2}-\kappa p+p\right)
\end{gathered}
$$

hence

$$
\begin{gathered}
\sum_{n=p+1}^{\infty}\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-\Lambda n+n\right)\right)\left(\frac{1}{2}(1-q) a_{n}\right. \\
\left.=\frac{1}{2}(1-q) \sum_{n=p+1}^{2}(1+q) b_{n}\right) \\
+\frac{1}{2}\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-\Lambda n+n\right)\right) a_{n} \\
+q) \sum_{n=p+1}^{\infty}\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-\kappa n+n\right)\right) b_{n} \\
\leq \frac{1}{2}(1-q)\left(p^{2}-\alpha\left(\Lambda p^{2}-K p+p\right)\right) \\
\\
+\frac{1}{2}(1+q)\left(p^{2}-\alpha\left(\Lambda p^{2}-K p+p\right)\right) \\
=\left(p^{2}-\alpha\left(\Lambda p^{2}-K p+p\right)\right)
\end{gathered}
$$

This shows $\mathrm{E}_{\mathrm{q}} \in \operatorname{MA}(K, \alpha, \sigma, \beta, m, p)$.
In the following theorem, we shall prove that the class $\mathrm{MA}(\Lambda, \alpha, \sigma, \beta, \mathrm{m}, \mathrm{p})$ is closed under arithmetic mean.

Theorem (2.8): let $f_{1}(z), f_{2}(z), \ldots, f_{s}(z)$ defined by
$\mathrm{f}_{\mathrm{k}}(\mathrm{z})=\mathrm{z}^{\mathrm{p}}-\sum_{\mathrm{n}=\mathrm{p}+1}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{z}^{\mathrm{n}},\left(\mathrm{a}_{\mathrm{n}, \mathrm{k}} \geq 0, \mathrm{k}=1,2, \ldots, \mathrm{~s}, \quad \mathrm{n} \geq \mathrm{p}+\right.$

1) (2.13)
be in the class $\operatorname{MA}(K, \alpha, \sigma, \beta, m, p)$. Then the arithmetic mean of $\mathrm{f}_{\mathrm{k}}(\mathrm{z})(\mathrm{k}=1,2, \ldots, \mathrm{~s})$ defined by

$$
\mathrm{h}(\mathrm{z})=\frac{1}{\mathrm{~s}} \sum_{\mathrm{k}=1}^{\mathrm{S}} \mathrm{f}_{\mathrm{k}}(\mathrm{z})
$$

is also in the class $\operatorname{MA}(K, \alpha, \sigma, \beta, m, p)$.
Proof: by (2.13) and (2.14), we can write

$$
h(z)=\frac{1}{s} \sum_{k=1}^{S}\left(z^{p}-\sum_{n=p+1}^{\infty} a_{n, k} z^{n}\right)=z^{p}-\sum_{n=p}^{\infty}\left(\frac{1}{s} \sum_{k=1}^{s} a_{n, k}\right) z^{n}
$$

Since $f_{k}(z) \in \operatorname{MA}(K, \alpha, \sigma, \beta, m, p)$ for every $k=1,2, \ldots, s$, So by using theorem (2.1), we prove that

$$
\begin{aligned}
& \sum_{n=p+1}^{\infty}\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-K n+n\right)\right)\left(\frac{1}{s} \sum_{k=1}^{S} a_{n, k}\right) \\
& =\frac{1}{s} \sum_{\mathrm{k}=1}^{\infty}\left(\sum_{\mathrm{n}=\mathrm{p}+1}^{\infty}\left(1+\frac{(\mathrm{n}-\mathrm{p}) \sigma}{\mathrm{p}+\beta}\right)^{\mathrm{m}}\left(\mathrm{n}^{2}-\alpha\left(\Lambda \mathrm{n}^{2}-\kappa \mathrm{n}+\mathrm{n}\right)\right) \mathrm{a}_{\mathrm{n}, \mathrm{k}}\right) \\
& \leq \frac{1}{S} \sum_{\mathrm{k}=1}^{\mathrm{S}}\left(\mathrm{p}^{2}-\alpha\left(\kappa \mathrm{p}^{2}-\kappa \mathrm{p}+\mathrm{p}\right)\right)=\mathrm{p}^{2}-\alpha\left(\kappa \mathrm{p}^{2}-\kappa \mathrm{p}+\mathrm{p}\right) .
\end{aligned}
$$

This ends the proof of theorem (2.8).

2.6: Extreme points

In the following theorem, we obtain the extreme points of the class $\operatorname{MA}(\Lambda, \alpha, \sigma, \beta, m, p)$.

Theorem (2.9): Let $\mathrm{f}_{\mathrm{p}}(\mathrm{z})=\mathrm{z}^{\mathrm{p}}$ and

$$
\begin{equation*}
f_{n}(z)=z^{p}-\frac{p^{2}-\alpha\left(K p^{2}-K p+p\right)}{\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-K n+n\right)\right)} z^{n} \tag{2.15}
\end{equation*}
$$

where $\mathrm{p} \in \mathrm{N}, 0 \leq \alpha<\frac{\mathrm{p}^{2}}{\Lambda \mathrm{p}^{2}-\Lambda \mathrm{p}+\mathrm{p}}, \sigma \geq 0, \beta \geq 0$ and $\mathrm{m} \geq 0$.
Then the function f is in the class $\mathrm{MA}(K, \alpha, \sigma, \beta, \mathrm{~m}, \mathrm{p})$ if and only if it can be expressed in the form:

$$
\begin{equation*}
\mathrm{f}(\mathrm{z})=\theta_{\mathrm{p}} \mathrm{z}^{\mathrm{p}}+\sum_{\mathrm{n}=\mathrm{p}+1}^{\infty} \theta_{\mathrm{n}} \mathrm{f}_{\mathrm{n}}(\mathrm{z}) \tag{2.16}
\end{equation*}
$$

where $\left(\theta_{\mathrm{p}} \geq 0, \theta_{\mathrm{n}} \geq 0, \mathrm{n} \geq \mathrm{p}+1\right)$ and $\theta_{\mathrm{p}}+\sum_{\mathrm{n}=\mathrm{p}+1}^{\infty} \theta_{\mathrm{n}}=1$.
Proof: Suppose that f is expressed in the form (2.16). then

$$
\begin{aligned}
& f(z)=\theta_{p} z^{p}+\sum_{n=p+1}^{\infty} \theta_{n}\left[z^{p}\right. \\
& \left.-\frac{p^{2}-\alpha\left(\kappa p^{2}-\kappa p+p\right)}{\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-\Lambda n+n\right)\right)} z^{n}\right] \\
& =z^{p}-\sum_{n=p+1}^{\infty} \frac{p^{2}-\alpha\left(\Lambda p^{2}-\kappa p+p\right)}{\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-\kappa n+n\right)\right)} \theta_{n} z^{n}
\end{aligned}
$$

hance

$$
\begin{aligned}
& \sum_{n=p+1}^{\infty} \frac{\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-\Lambda n+n\right)\right)}{p^{2}-\alpha\left(\Lambda p^{2}-К p+p\right)} \\
& \times \frac{p^{2}-\alpha\left(\Lambda p^{2}-\Lambda p+p\right) \theta_{n}}{\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-\Lambda n+n\right)\right)} \\
&=\sum_{n=p+1}^{\infty} \theta_{n}=1-\theta_{p} \leq 1
\end{aligned}
$$

Then $\quad f \in \operatorname{MA}(\Lambda, \alpha, \sigma, \beta, m, p)$.

Conversely, suppose that $f \in \operatorname{MA}(\Lambda, \alpha, \sigma, \beta, m, p)$. We may set

$$
\theta_{\mathrm{n}}=\frac{\left(1+\frac{(\mathrm{n}-\mathrm{p}) \sigma}{\mathrm{p}+\beta}\right)^{m}\left(\mathrm{n}^{2}-\alpha\left(\Lambda \mathrm{n}^{2}-\kappa \mathrm{n}+\mathrm{n}\right)\right)}{\mathrm{p}^{2}-\alpha\left(\Lambda \mathrm{p}^{2}-К \mathrm{p}+\mathrm{p}\right)} a_{\mathrm{n}}
$$

where a_{n} is given by (2.7). then

$$
\begin{gathered}
f(z)=z^{p}-\sum_{n=p+1}^{\infty} a_{n} z^{n} \\
=z^{p}-\sum_{n=p+1}^{\infty} \frac{p^{2}-\alpha\left(\Lambda p^{2}-\kappa p+p\right)}{\left(1+\frac{(n-p) \sigma}{p+\beta}\right)^{m}\left(n^{2}-\alpha\left(\Lambda n^{2}-\kappa n+n\right)\right)} \theta_{n} z^{n} \\
=z^{p}-\sum_{n=p+1}^{\infty}\left[z^{p}-f_{n}(z)\right] \theta_{n} \\
=\left(1-\sum_{n=p+1}^{\infty} \theta_{n}\right) z^{p}+\sum_{n=p+1}^{\infty} \theta_{n} f_{n}(z) \\
=\theta_{p} z^{p}+\sum_{n=p+1}^{\infty} \theta_{n} f_{n}(z)
\end{gathered}
$$

This completes the proof of theorem (2.9).

References

[1] A. Aljarah and M. Darus, On certain suhclass of p-valent function with positive coefficients , Journal of Quality Measurement and Analysis , 10(2) (2014), 41.50.
[2] M. K. Aouf , A. O. Mostafa and A. A. Hussain, Certain subclass of p-valent starlike and convex uniformaly function defined by convolution, Int. J. Open Problems Compt. Math. , $g(1)$ (2016), 36-60.
[3] E. S. Aqlan, Some problems connected with geometric Function Theory, Ph. D. Thesis (2004), Pune University, Pune.
[4] W. G. Atshan and N. A. J. Al-Ziadi , On a new class of meromorphic multivalent functions defined by fractional Differ integral operator, Journal of Kufa for Mathematics and Computer (Irag), 5(1) 2018.
[5] P. L. Duren, Univalent Functions, In: Grundlehren der Mathematischen Wissenschaften, Band 259,Springer-Verlag, New York, Berlin, Hidelberg and Tokyo,(1983).
[6] X. Gu, Y. Wang, T. F. Chan, P. M. Thompson and S. T. Yau, Genus zero surface conformal mapping and its application to Brain surface mapping , IEEE Transaction on medical imaging, 23(8)(2004), 949-958.
[7] H. Mahzoon and S. Latha , Neighborhoods of multivalent functions defined by differential Subordination , Appl. Math. Sciences, 6(95) (2012) , 4701-4708.
[8] S.S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michig. Math. J., 28(1981), 157-171.
[9] S. Ruscheweyh, New criteria for univalent functions, Proceedings of the American Mathematical Society, 49(1)(1975), 109-115.

