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tAbstrac    
 

We  presented  in  this  work  a certain  class  MA(ʎ,α,σ,β,m,p) of  

multivalent analytic  functions  with  linear  operator     

in the open  unit  disk  U. We  study  coefficient  inequality , distortion  

and  growth  theorems  ,  radii  of  starlikeness , convexity  and  close - to 

- convexity  ,  weighted  mean  and  arithmetic  mean , extreme  points .  
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Chapter One 

Basic Definitions and Standard Results 

Introduction:  

 In this chapter, we list out all the definitions of the family of functions 

from analytic, univalent and multivalent ( –valent) and all related terms used 

during the investigation. We also include in this chapter all the standard 

theorems and lemmas used in the work.  

1.1 Basic Definitions 

Definition (1.1.1)[5]: A function  of the complex variable is analytic at a point 

if its derivative exists not only at  but each point  in some neighborhoods of 

. Itis analytic in region � if it is analytic at every point in �. 

Definition (1.1.2)[5]: A function  is said to be univalent (schilcht) if it does not 

take the same value twice i.e. ≠  for all pairs of distinct points , ∈ �. In other words,  is one – to – one (or injective) mapping of � onto 

another domain. 

If  assumes the same value more than one, then  is said to be multivalent ( -

valent) in�. We also deal with the functions which are meromorphic univalent in 

the punctured unit disk � = { ∈ ℂ: < | | < }.  is said to be meromorphic if it 

is analytic at every point in �except finite elements in�. 
As  examples, the function =  is univalent in � while =  is not 

univalent in �. Also, = + ��
 is univalent in � for each positive integer n. 

Example (1.1.1 ) [5]:The function = +  is univalent in U. 

Let , ∈ � and suppose = . Then  + = +  
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⇒ + + = + +  ⇒ − + − =        ⇒ − + + = . 
Since| |, | | < , we know that + + ≠ . Hence − =  or =  

Definition ( 1.1.3) [5]: A function is said to be locally univalent at a point ∈ℂif it is univalent in some neighborhood of . For analytic function , the 

condition ′ ≠ is equivalent to local univalent at . 
Example (1.1.2)[5]: Consider the domain 

= { ∈ ℂ: < | | < ,   < arg < �},  
and the function : → ℂgiven by = . It is clear that is analytic on and 

local univalent at every point ∈ , since ′ ≠ ≠ for all ∈ . 
However, is not univalent on , since  

( √ + � √ ) = (− √ − � √ ) = �. 
Definition (1.1.4)[5]: Let �denotes the class of functions  of the form:  

= + ∑∞= , ∈ ℕ                                    .  

which are analytic and univalent in the open unit disk �. 

Definition (1.1.5)[5]: We say that ∈ � is normalized if  satisfies the 

conditions =  and ′ = . 

Definition (1.1.6)[5]: A set ⊆ ℂ is said to be starlike with respect to ∈  if 

the linear segment joining  to every other point ∈  lies entirely in . In a 

more picturesque language, the requirement is that every point of is visible 
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from . The set  is said to be convex if it is starlike with respect to each of its 

points, that is , if the linear segment joining any two points of  lies entirely in .  

Definition (1.1.7)[5]: A function  is said to be conformal at a point  if it 

preserves the angle between oriented curves passing through  in magnitude as 

well as in sense. Geometrically, images of any two oriented curves taken with 

their corresponding orientations make the same angle of intersection as the 

curves at  both in magnitude and direction. A function =  is said to be 

conformal in the domain , if it is conformal at each point of the domain.  

Definition (1.1.8)[5]: A function ∈ � is said to be starlike function of order � 

if and only if  

{ ′ } > �,  � < ;  ∈ �, ≠ .                           .  

Denotes the class of all starlike functions of order � in � by �  and  the 

class of all starlike functions of order , = . Geometrically, we can say 

that a starlike function is conformal mapping of the unit disk onto a domain 

starlike with respect to the origin. For example, the function  

= − −�  , 
is starlike function of order �.  

Definition (1.1.9)[5]: A function ∈ � is said to be convex function of order � 

if and only if 

{ + ′′′ } > �,  � < ;  ∈ �, ′ ≠ .                           .  

Denotes the class of all convex functions of order� in � by �  and  for the 

convex function = . 
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Definition (1.1.10)[5]: A function ∈ �is said to be close – to – convex of order � � <  if there is a convex function  such that  

{ ′′ } > �, ′ ≠ ;  ∈ � .                                        .   
We denote by � � , the class of close – to – convex functions of order �, is 

normalized by the usual conditions = ′ − = . By using argument, we 

can write the condition (1.4) as  

| ′′ | < �� , � > , ∈ �.                                     .  

We note that � ⊂ � ⊂ � � .  

Definition(1.1.11)[6]:A Möbius transformation, or a bilinear  transformation, is 

a rational function : ℂ → ℂ of the form 

= ++   , 
where , , , ∈ ℂare fixed and − ≠ . 

 

Example(1.1.3)[5]:Perhaps the most important member of� is the Koebe 

function which is given by  

� = − = + + + ⋯ , 
and maps the unit disk to the complement of the ray (−∞, − ]. This can be 

verified by writing  

� = ( +− ) −  , 
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and noting that 
+�−�maps the unit disk conformally onto the right half- plane { { } > }; see Fig. . . . 

 

Fig. (1.1.1): The Koebe function maps �conformally onto ℂ\ (−∞, − ��]. 
We  note  that  = +�−� ,        = ,         = − . 
Now 

 = ( +− ) − = − . 
And Möbius transformation that maps � onto the right half–plane whose 

boundary is the imaginary axis. Also,  is the squaring function, while  

translates the image one space to the left and then multiplies it by a factor of . 

Note that the Koebe function is starlike, but not convex. 

Definition (1.1.12)[5]: Let �  denote the class of analytic –valently functions 

in � of the form:  

= + ∑ , ∈ �, ∈ ℕ = { , , … } .                     .∞
= +  

We say that  is –valently starlike of order�, –valently convex of order �, and –valently close - to - convex of order� � < , respectively if and only if : 

{ ′ } > �                                                                  .  
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  { + ′′′ } > �                                                          .  

 { ′ − } > �.                                                               .  

Definition (1.1.13)[5]: Let us denote by � (p) the class of meromorphic function 

 of the form: 

= − + ∑ , ∈ ℕ                                       .∞
=  

which are meromorphic and –valent in the punctured unit disk � = { ∈ ℂ: <| | < } = � − { }. We say that  is –valently meromorphic starlike of order � � <  if and only if 

{− ′ } > � for   ∈ � .                                            .  

Also,  is –valently meromorphic convex of order � � <  if and only if  

{− + ′′′ } > �, ∈ � .                                 .  

Note that if = , we have defined univalent meromorphic starlike of order �  � < , univalent meromorphic convex of order �  � <  

respectively. Denoted by � (1) the class of univalent and meromorphic functions 

in � . 
Definition (1.1.14)[5]: Radius of starlikeness of a function  is the largest , < < for which it is starlike in | | < . 

Definition (1.1.15)[5]: Radius of convexity of a function  is the largest , < <  for which it is convex in | | < . 



Chapter One                                                                                                              Basic Definitions 

7 

 

Definition (1.1.16)[9]:The convolution (or Hadamard product) of the 

functions and  denoted by is defined as following for the functions in �  and  � respectively: 

     (i) If 

= + ∑ , = + ∑ ,∞
= +

∞
= +  

then 

= + ∑ .∞
= +  

(ii) If 

        = − + ∑∞
= ,         = − + ∑∞

= , 
then  

= − + ∑∞
= .    

and if =  in (i), then  the convolution (or Hadamard product) for the functions 

in �. Also, if =  in (ii), then  the convolution (or Hadamard product) for the 

functions in � (1). 

Definition (1.1.17)[5]:The weighted mean  of  and  defined by 

= [ − + + ], < < . 
Also, 

ℎ =  ∑ � ,�=  

is the arithmetic mean of  � � = , , , … , . 
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Definition (1.1.18)[8]: Let � be a topological vector space over the field ℂ and 

let  be a subset of �. A point ∈  is called an extreme point of  if it has no 

representation of the form = � + − � , < � <  as a proper convex 

combination of two distinct points  and  in . 
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1.2 Standard Results 

The following lemmas and theorems are essential and has been used in the 

proofs of the our principal results in the next chapter. 

 

Lemma (1.2.1)[3]: Let � . Then, > � if and only if  | − + � | <| + − � |, where  be any complex number. 

 

Theorem (1.2.1)[5]: (Distortion Theorem) 

For each ∈ � −+ | ′ | +−  , | | = < .                            .  

For each ∈ �, ≠  equality occurs if  and only if is a suitable rotation of the 

Koebe function. We say upper and lower bounds for | ′ | as Distortion bounds.  

 

Theorem (1.2.2)[5]: (Growth Theorem)  

 For each ∈ � 

+ | | −  , | | = < .                            .   
For each ∈ �, ≠  equality occurs if and only if is a suitable rotation of the 

Koebe function. 

Theorem (1.2.3)[5]: (Maximum Modulus Theorem) 

Suppose that a function  is continuous on boundary of �(� any disk or region). 

Then, the maximum value of | |, which is always reached , occurs somewhere 

on the boundary of �and never in the interior. 



  

 

 

Chapter Two 

 

On a Certain Subclass of Multivalent 

Functions 
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2.1: Introduction 

Let A(p) indicate the class of functions of the form: f Z = Z + ∑ a Z∞
= + Z ∈ U, β ∈ N = { , , … . } , .  

Which are analytic and multivalent in the open unit disk U = {Z ∈ ℂ: |Z| < } 

Let M  denote the subclass of A(p) containing of function of the form: 

f Z = Z − ∑ a Z∞
= + a , β ∈ N = { , , … . } , .  

Which are analytic and multivalent in the open unit disk U. 

Definition (2.1)[7]: let σ ,  , m ∈ N , σ  ,  , m , β ∈ N  and f Z = Z + ∑ akZk .∞
k= +  

Then, we wefine the linear operator D ,σ, ∶ A β → A β  by  

D ,σ, f Z = Z + ∑ + n − β σβ +∞
= + a Z , 

Z ∈ U .    .  

 

With the help of the integral operator we define the class MA ʎ, , σ, , m, β . 

Definition (2.1): A function f ∈ M  is said to be in the class MA ʎ, , σ, , m, β  if and only if 

Re { D ,σ,  f z / + z D ,σ,   f z //
D ,σ,  f z / + ʎz D ,σ,   f z //}  ,   .  



Chapter two                                                          On a Certain Subclass of Multivalent Functions 

 

11 

 

Where β ∈ N  , α < ʎ −ʎ + , σ , α  and m  

Some of the following properties studied for other classes in [ , , ] . 
2.2: Coefficient bounds 

The following theorem gives a necessary and sufficient condition for 

function to be in the class MA ʎ, , σ, , m, β . 

Theorem (2.1):  

Let f z ∈ M  . Then f z ∈ MA ʎ, , σ, , m, β  if and only if  

∑ + n − β σβ +∞
= + (n − ʎn − ʎn + n )a

β − ʎβ − ʎβ + β ,   .  

Where β ∈ N , < ʎ −ʎ + , σ ,  and m  . 
The result is sharp for the function  f z = z − β − ʎβ − ʎβ + β+ − σ+ (n − ʎn − ʎn + n ) z , n β +  ; β

∈ N         .   
Proof: Assume that f z ∈ MA ʎ, , σ, , m, β , so we have  

Re { D ,σ,  f z / + z D ,σ,   f z //
D ,σ,  f z / + ʎz D ,σ,   f z //}   

Re { β z − − ∑ n + − σ+ a z −∞= +ʎβ − ʎβ + β z − − ∑ + − σ+ ʎn − ʎn + n z −∞= + }
 

or equivalently  
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Re {(β − ʎβ − ʎβ + β )z − − ∑ + − σ+ (n − ʎn − ʎn + n )a z −∞= +ʎβ − ʎβ + β z − − ∑ + − σ+ ʎn − ʎn + n z −∞= + }
 . 

This inequality is correct for all z ∈ U.  letting z → − yields 

Re {(β − ʎβ − ʎβ + β )
− ∑ + n − β σβ + (n − ʎn − ʎn + n )a∞

= + }
 . 

Therefore  ∑ + n − β σβ + (n − ʎn − ʎn + n )a∞
= + β − ʎβ − ʎβ + β  . 

Conversely , let (2.5) hold. We will prove that (2.4) is correct and then f z ∈ MA ʎ, , σ, , m, β  . 

By lemma (1.2.1) it is enough , show that  |w − β + | < |w + β − | where 

W = D ,σ,  f z / + z D ,σ,   f z //
D ,σ,  f z / + ʎz D ,σ,   f z // 

or show that T = |N z | | D ,σ,  f z / + z D ,σ,   f z // − β + D ,σ,  f z /
− β + D ,σ,   f z //| 
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< |N z | | D ,σ,  f z / + z D ,σ,   f z // + β − D ,σ,  f z /
+ β − ʎz D ,σ,   f z //| = Q , 

where N z = D ,σ,  f z / + ʎz D ,σ,   f z //
 and it is easy to verify 

that Q − T >  and so the proof is complete. 

Finally, sharpness follows if we take f z = z − β − ʎβ − ʎβ + β+ − σ+ (n − ʎn − ʎn + n ) z , n β + ;  β
∈ N        . 

Corollary (2.1): Let f ∈ MA ʎ, , σ, , m, β . Then  a β − ʎβ − ʎβ + β+ − σ+ (n − ʎn − ʎn + n ) , n β + ; β
∈ N              .    .  

2.3: Distortion and growth theorems 

We introduce here the distortion and growth theorems for the functions in 

the class MA ʎ, , σ, , m, β . 

Theorem (2.2): Let the function f z  defined by (2.2) be in the class MA ʎ, , σ, , m, β . Then, for |z| = r < � <  r − (β − ʎβ − ʎβ + β )r ++ σ+ ( β +  − ʎ β + − ʎ β + + β + )|f z | r+ (β − ʎβ − ʎβ + β )r ++ σ+ β +  − (ʎ β + − ʎ β + + β + )  , .  

for z ∈ U. The result (2.8) is sharp . 
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Proof: Since f z ∈ MA ʎ, , σ, , m, β , in view of theorem (2.1), we 

have  ( + σβ + ) β +  − (ʎ β + − ʎ β + + β + )  

∑ a∞
= +  

∑ + n − β σβ + (n − ʎn − ʎn + n )a∞
= + β − ʎβ − ʎβ + β  , 

which immediately yields ∑ a∞
= + β − ʎβ − ʎβ + β+ σ+ β +  − (ʎ β + − ʎ β + + β + )  

Consequently, for |z| = r < � < , we obtain  |f z | r + r + ∑ a∞
= +  

r + (β − ʎβ − ʎβ + β )r ++ σ+ β +  − (ʎ β + − ʎ β + + β + )  

and  |f z | r − r + ∑ a∞
= +  

r − (β − ʎβ − ʎβ + β )r ++ σ+ β +  − (ʎ β + − ʎ β + + β + )  

This completes the proof of theorem (2.2). Finally, by taking the function. 
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f z = z − − ʎ −ʎ ++ σp+β +  − (ʎ + −ʎ + + + ) z +   , .   

we can show that the result of theorem (2.2) is sharp. 

Theorem (2.3): If f z ∈ MA ʎ, , σ, , m, β , then  

 βr − − β + (β − ʎβ − ʎβ + β )r+ σ+ β +  − (ʎ β + − ʎ β + + β + )|f / z | βr −
+ β + (β − ʎβ − ʎβ + β )r+ σ+ β +  − (ʎ β + − ʎ β + + β + )  . 

The result is sharp for the function f is given by (2.9) 

Proof: The proof is similar to that of theorem (2.2). 

2.4: Radii of starlikeness, convexity and close – to - 

convexity 

Using the inequalities (1.7) , (1.8) , (1.9) and theorem (2.1), we can 

compute the radii of starlikeness, convexity and close – to – convexity. 

Theorem (2.4): Let f z ∈ MA ʎ, , σ, , m, β . Then f z  is p – valently 

starlike of order ρ ρ < �  in the disk |z| < R  , where 

R = inf  { −ρ + −p σp+β − ʎ −ʎ +−ρ ( − ʎ −ʎ + ) } −p , n β + ; β ∈ N  .  
The result is sharp for the function f z  given by (2.6). 

Proof: It is sufficient to show that  |zf / zf z − β| β − ρ ρ < � , 
for |z| < R  , we have  
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|zf / zf z − β|  ∑ n − β a∞= + |z| −− ∑ a∞= + |z| −  . 
Thus  |zf / zf z − β| β − ρ ,  
if  ∑ n − ρβ − ρ a∞

= + |z| −    .        .  

Hence, by Theorem (2.1), (2.10) will be true if  n − ρβ − ρ |z| − + − σ+ (n − ʎn − ʎn + )β − ʎβ − ʎβ + β  

and hence 

|z| { β − ρ + − σ+ (n − ʎn − ʎn + )n − ρ (β − ʎβ − ʎβ + β ) } −p , n
β + ; β ∈ N  . 

Setting |z| = R , we get the desired result. 

Theorem (2.5): Let f z ∈ MA ʎ, , σ, , m, β . Then f is p – valently 

convex of order ρ ρ < �  in the disk |z| < R  , where 

R = inf  { β − ρ + − σ+ n − ʎ  n + ʎ −n − ρ β − ʎ  β + ʎ − } −p , n
β + ; β ∈ N  . 

The result is sharp with the extermal function f given by (2.6). 

Proof: It is sufficient to show that | + zf // zf / z − β| β − ρ    ρ < �  ,  
for |z| < R  , we have 
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| + zf // zf / z − β| ∑ n n − β a∞= + |z| −β − ∑ na∞= + |z| −  

Thus  | + zf // zf / z − β| β − ρ  , 
if  ∑ n n − ρβ β − ρ a∞

= + |z| −    .                     .  

Hence, by Theorem (2.1), (2.11) will be true if  n − ρβ − ρ |z| − + − σ+ n − ʎ  n + ʎ −β − ʎ  β + ʎ −   , 
and  hance 

|z| { β − ρ + − σ+ n − ʎ  n + ʎ −n − ρ β − ʎ  β + ʎ − } −p , n β + ; β
∈ N  . 

Setting |z| = R  , we get the desired result. 

Theorem (2.6): Let a function f z ∈ MA ʎ, , σ, , m, β . Then f is p – 

valently close – to convex of order ρ ρ < �  in the disk |z| < R  , 

where 

R = inf  { β − ρ + − σ+ n − ʎ  n + ʎ −β β − ʎ  β + ʎ − } −p , n
β + ; β ∈ N  . 

The result is sharp, with the extermal function f z  given by (2.6)  . 

Proof: It is sufficient to show that  |f / zz − − β| β − ρ ρ < � , 
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for |z| < R  , we have that  

|f / zz − − β| ∑ na |z| −∞
= +   . 

Thus  |f / zz − − β| β − ρ  , 
if  ∑ na |z| −β − ρ∞

= +    .              .  

Hence, by Theorem (2.1) , (2.12) will be true if  

β − ρ |z| − + − σ+ n − ʎ  n + ʎ −β β − ʎ  β + ʎ −   , 
and hence 

|z| { β − ρ + − σ+ n − ʎ  n + ʎ −β β − ʎ  β + ʎ − } −p , n β + ; β
∈ N  . 

Setting |z| = R  , we get the desired result. 

 

2.5: Weighted mean and arithmetic mean  

Theorem (2.7): Let f and g be in the class MA ʎ, , σ, , m, β . Then the 

weighted mean of f and g is also in the class MA ʎ, , σ, , m, β . 

Proof: By Definition (1.1.17) , we have  E z = [ − q f z + + q g z ] 
= [ − q z − ∑ a∞

= + z +  + q z − ∑ b∞
= + z ] 
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= z − ∑ [ − q a + + q b ]z∞
= +  . 

Since f and g are in the class MA ʎ, , σ, , m, β  so by Theorem (2.1), we 

get ∑ + n − β σβ + (n − ʎn − ʎn + n )a∞
= + β − ʎβ − ʎβ + β   

and  ∑ + n − β σβ + (n − ʎn − ʎn + n )b∞
= + β − ʎβ − ʎβ + β  , 

 

hence ∑ + n − β σβ + (n − ʎn − ʎn + n )∞
= + ( − q a

+ + q b ) 

= − q ∑ + n − β σβ + (n − ʎn − ʎn + n )∞
= + a

+
+ q ∑ + n − β σβ + (n − ʎn − ʎn + n )∞

= + b  

− q (β − ʎβ − ʎβ + β )
+ + q (β − ʎβ − ʎβ + β )= (β − ʎβ − ʎβ + β )  . 
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This shows E ∈ MA ʎ, , σ, , m, β . 

In the following theorem , we shall prove that the class MA ʎ, , σ, , m, β  is closed under arithmetic mean. 

Theorem (2.8): let f z , f z , … , fs z  defined by  fk z = z − ∑ a z  , (a ,k  , k = , , … , s,    n β +∞= +)      .   

be in the class MA ʎ, , σ, , m, β . Then the arithmetic mean of fk z   k = , , … , s  defined by  

h z = s ∑ fk z  S
k= , 

is also in the class MA ʎ, , σ, , m, β . 

Proof: by (2.13) and (2.14) , we can write  

h z = s ∑ z −S
k= ∑ a ,kz∞

= + = z − ∑  ∞
= s ∑ a ,k z  .S

k=  

Since fk z ∈ MA ʎ, , σ, , m, β  for every k = , , … . , s, Sα  by using 

theorem (2.1), we prove that  

∑ + n − β σβ + (n − ʎn − ʎn + n )∞
= + s ∑ a ,kS

k=  

= s ∑ ∑ + n − β σβ + (n − ʎn − ʎn + n )∞
= + a ,k∞

k=  

s ∑(β − ʎβ − ʎβ + β ) = β − ʎβ − ʎβ + β   .S
k=  

This ends the proof of theorem (2.8). 

2.6: Extreme points 

In the following theorem, we obtain the extreme points of the class MA ʎ, , σ, , m, β . 
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Theorem (2.9): Let f z = z  and  f z = z − β − ʎβ − ʎβ + β+ − σ+ (n − ʎn − ʎn + n ) z  ,   .  

where β ∈ N  , < ʎ −ʎ + , σ  ,  and m  . 
Then the function f is in the class MA ʎ, , σ, , m, β  if and only if it can 

be expressed in the form:  f z = θ z + ∑ θ f z∞
= +  ,                   .  

where (θ ,  θ , n β + )and θ + ∑ θ =∞= +  . 

Proof: Suppose that f is expressed in the form (2.16). then  

f z = θ z + ∑ θ∞
= + [z

− β − ʎβ − ʎβ + β+ − σ+ (n − ʎn − ʎn + n ) z ] 

= z − ∑ β − ʎβ − ʎβ + β+ − σ+ (n − ʎn − ʎn + n ) θ z∞
= +  

hance 

∑ + − σ+ (n − ʎn − ʎn + n )β − ʎβ − ʎβ + β∞
= + × β − ʎβ − ʎβ + β θ+ − σ+ (n − ʎn − ʎn + n ) 

= ∑ θ =∞
= + −θ  . 

Then    f ∈ MA ʎ, , σ, , m, β . 
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Conversely , suppose that f ∈ MA ʎ, , σ, , m, β . We may set  

θ = + − σ+ (n − ʎn − ʎn + n )β − ʎβ − ʎβ + β a  , 
where a  is given by (2.7). then  f z = z − ∑ a z∞

= +  

= z − ∑ β − ʎβ − ʎβ + β+ − σ+ (n − ʎn − ʎn + n ) θ z∞
= +  

= z − ∑ [z − f z ]∞
= + θ  

= − ∑ θ∞
= + z + ∑ θ f z∞

= +  

= θ z + ∑ θ f z   .∞
= +  

This completes the proof of theorem (2.9). 
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