A A A A A A A A A A A A A A A AR A AT A

Republic of Iraq
Ministry of Higher Education and Scientific Research
University of Al-Qadisiyah / College of Education

Department of Mathematics

On a Certain Subclass of Univalent
Functions

A Research Submitted by

Mohammad Hassan Edam

To the council of the department of mathematics /collage
of education, University of Al-Qadisiyah in Partial fulfillment

of the requirements for bachelor in mathematics

Supervised by
Dr. Najah Ali Al -Ziadi

2018 A.C. 1439 A.H.

AT ASTAT AT AT AT TAT T AT TAT T AT AT T AT AT T AT AT T AT AT T AT T AT AT VAT T AT T AT T AT AT T AT AT AT AT A

VANVANNANANANANANANAN NN NN N NN NN




AT ASTAST AT AT AT AT AT A TAST AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT A

/ N\t vt Nt Nt Nt Nt vt vt Nt Nt v/ \wt vt \wt vt Nyt \wd \wd \

AN 0

2ol oo 29,01 J8 29l e higlluwy )
(Y8 V] plell 0o il B9 o)

aliad) Aol ) §aa

(Ao) 4 ¢l ) 3 ) g




AT ASTAST AT AT AT AT AT A TAST AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT A

/ N\t vt Nt Nt Nt Nt vt vt Nt Nt v/ \wt vt \wt vt Nyt \wd \wd \

0)

o 9,728 3\ AR 194 12 1 0
é/ﬁjégﬁ N

A/t@%&a’ujﬁ.... Ufﬂw&%

BV ENGIN A |5 2 VSN B

g & A




AT ASTAST AT AT AT AT AT A TAST AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT AT A

/ N\t vt Nt Nt Nt Nt vt vt Nt Nt v/ \wt vt \wt vt Nyt \wd \wd \

Abstract

In this work we presented acertain class MH ( o,f,mn, o,
, 0o, K) of univaent anaytic function with generaized
operator 7% in the open unit disk U.We obtained many
geometric properties , like, coefficient inequality , distortion
and growth theorems , radii of starlikeness , convexity and

close - to - convexity , extreme points , closure theorems.
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Chapter One

Basic Definitions and Standard

Results




Chapter One Basic Definitions

In this chapter, we list out all the defiaiis of the family of functions
from analytic, univalent and multivalenp{valent) and all related terms
used during the investigation. We also includehia thapter all the standard

theorems and lemmas used in the work.

Section 1

1.1 Basic Definitions

Definition (1.1.2)[7]: A function f of the complex variable is analytic at a
point z, if its derivative exists not only at, but each pointz in some
neighborhoods of,. It is analytic in regioru if it is analytic at every point

in U.

Definition (1.1.2)[7]: A functionf is said to be univalent if it does not take
the same value twice i.g(z,) # f(z,) for all pairs of distinct pointg,, z, €
U. In other wordsyf is one — to — one (or injective) mapping wfonto

another domain.

If £ assumes the same value more than one, thém said to be

multivalent p-valent) inu.

Definition (1.1.3)[7]: Leta denotes the class of functionsf the form:
f@)=z+ ) a,z" neN (1.1)

which are analytic and univalent in the open urskd.




Chapter One Basic Definitions

Definition (1.1.4)[7]: We say thatf € A4 is normalized iff satisfies the
conditionsf(0) = 0 andf’(0) = 1.

Definition (1.1.5)[7]: A setE c C is said to be starlike with respectitpe E
if the linear segment joiningy, to every other poinv € E lies entirely inE.
In a more picturesque language, the requiremetitailsevery point of: is
visible fromw,. The sef is said to be convex if it is starlike with respex
each of its points, that is , if the linear segmeirting any two points of

lies entirely InkE.

Definition (1.1.6)[7]: A function f is said to be conformal at a poiftif it
preserves the angle between oriented curves passowghz, in magnitude
as well as in sense. Geometrically, images of amydriented curves taken
with their corresponding orientations make the samgle of intersection as
the curves at, both in magnitude and direction. A functien= f(z) is said
to be conformal in the domaip, if it is conformal at each point of the

domain.

Definition (1.1.7)[7]: A function f € A is said to be starlike function of

ordera if and only if

2f'(2)
Re{ @

}>a,(0£a<1;zEU). (1.2)
Denotes the class of all starlike functions of ordén U by s*(a) ands* the
class of all starlike functions of ordey s*(0) = s*. Geometrically, we can
say that a starlike function is conformal mappirgtlee unit disk onto a

domain starlike with respect to the origin. Forrapde, the function

Z

F@) = G

is starlike function of order.
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Definition (1.1.8)[7]: A function f € A4 is said to be convex function of
ordera if and only if

zf" (2)

Re {1 + —f’(z)

}>a,(0§a<1;zEU). (1.3)

Denotes the class of all convex functions of otder U by C(a) andc for

the convex functiom (0) = C.

Definition (1.1.9)[7]: A function f analytic in the unit disk/ is said to be
close — to — convex of orde(o < a < 1) if there is a convex functiog such
that

Re {J;'—EZZ;} > a, vVzeU. (1.4)
We denote by (a), the class of close — to — convex functions otoud f is
normalized by the usual conditiof@) = f'(0) — 1 = 0. By using argument,
we can write the condition (1.4) as

f'(2)
g'(2)

aT
< .a>0vzel. (1.5)

arg

We note that (a) c S*(a) c K(a).

Note that the Koebe function is starlike, but nobhwex where the Koebe

function is given by the following:

z - 1/1+202 1
K@ == 2 =3 (=)

n=1

iIs the most famous function which mapsonto ¢ minus a slit along the

negative real axis fromi t0 —co.
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Definition (1.1.10)[7]: Let A(p) denote the class of analytjs-valently

functions inu of the form:

f(z) =27 + Z a,2" (z€U,pEN = (1,2,..}). (1.6)

n=p+1

We say thar is p-valently starlike of ordet, p-valently convex of orded,
andp-valently close - to - convex of ordef < a < p), respectively if and

only if :

zf'(z) zf"(2) f'(2)
Re{f(z)}>a, Re{1+ f’(z)}>a' Re{zp—_l}>a.

Definition (1.1.11)[7]: Let us denote by4; the class of meromorphic

function £ of the form:

f(z)=z"P+ Z a,z", pEN (1.7)
n=p

which are meromorphic ang-valent in the punctured unit disk* =
{zeC:0<|z|<1}=U-{0}. We say thatf is p-valently meromorphic

starlike of order (0 < a < p) if and only if

e~

@ }>afor zeU. (1.8)

Also, 1 is p-valently meromorphic convex of orde(o < « < p) if and only
if

Re {— <1 + Zj:é?)} > a, zeU" (1.9

Definition (1.1.12)[7]: Radius of starlikeness of a functigns the largest

1,0 <1 < 1 for which it is starlike inz| < r,.
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Definition (1.1.13)[7]: Radius of convexity of a function is the largest

1,0 <1, < 1 for which it is convex inz| < r,.

Definition (1.1.14)[7]: The weighted meak} of f andg defined by

N| =

hi(z) =5 [A =P+ A +)g2)], 0<j<L

Also,

1 m
h@) = — > fil2),
k=1

is the arithmetic mean of.(2) (k = 1,2,3, ..., m).

Definition (1.1.15)[10]: The convolution (or Hadamard product) for
functionsf andg denoted by g is defined as following for the functions in

A(p) andA;, respectively:

(i) If
f(z) =zP + a,z", g(2) =2zP + b,z"
n;;;l n;§;1
then
(f*g)(2) =2 + a,b,z". (1.10)
n;§;1
(ii) If
fz)=z7P + Z a,z", g(z) =z7P + Z b,z",
n=p n=p
then
(f*g)(2)=zP+ Z a,b,z". (1.11)

n=p
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Definition (1.1.16)[9]: Let X be a topological vector space over the field
and lete be a subset of. A pointx € E is called an extreme point dof if it
has no representation of the form=ty+ (1-t)z,0<t<1 as a proper

convex combination of two distinct pointsandz in E.




Chapter One Basic Results

Section 2

1.2 Basic Results

In this part, we mention some results which we have used in this

research.
Theorem (1.2.4)[7]: (Distortion Theorem)

Foreach f € A

m If (Z)I = (1 L+r )3 ,IZI =r<1. (112)

For each z € U,z # 0 equality occursif and only if f is a suitable rotation of
the Koebe function.

We say upper and lower bounds for |f'(z)| as Distortion bounds.

Theorem (1.2.5)[7]: (Growth Theorem)

Foreach f € A

<|f@l < Jzl =7 < 1. (1.13)

r
1+r)2~ _(1 r)?’

For each z € U,z # 0 equality occurs if and only if f is a suitable rotation of

the Koebe function.
Theorem (1.2.8)[7]: (Maximum M odulus T heorem)

Suppose that a function £ is continuous on boundary of U (U any disk or
region). Then, the maximum value of |f(z)|, which is aways reached ,
occurs somewhere on the boundary of U and never in the interior.
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Chapter two On a Certain Subclass of Univalent Functions

2.1: Introduction

Let A be the class of function of the form :

f(2) =z+)¥p-,an,z" 2.1)
which are analytic and univalent in the open urgkd

U ={ze C:| 4 <1}.

Let At be subclass of A consisting of functiongtod form :
f(2) =zt)n_pa, 2", (2 0) . (2.2)
For the functiorf € AT given by (2.2) and g AT defined by
9(2) =z +Xn=p bpz",(by 20), (2.3)
define the convolution ( or Hadmard product ) ahfi g by
(f*9) (2) =Z n=2 anbpz"=(Q*f) (). (2.4)

Forme NO=NU{0},8 >0, € R with a + B>0andf € A.

The generalized operattgflﬂ (see [11]) is defined by.

I f @) =2 +55., (CI™ g,z (2.5)

a+f

Note that the generalized operatff; unifies many operators of

A . In particular :

1-1p4 , f (2) =13 f (2) ,a>-1 (see Cho and Srivastava [6] and
Cho and Kim [5] ) .




Chapter two On a Certain Subclass of Univalent Functions

2-1" 55 f (2) =Dg" f (2) ,B = 0 (see Al- Oboudi [1] ) .
3-1041-pp f (@) =1 f (2) , C>-1, B> o(see Catas [4])
Definition (2.1) : Let g be a fixed function defohéy (2.3) .

The functionf € AT given by (2.2) is said to be in the class MH

(a, B, m,n, 0y, 0,, A) if it satisfies the following condition :

m ’,
z (g (Feg)(2))

m ,
z (g8 (Frg)(2))

7

Im * zZ
*Uap (9)@) L (5 4 ) <A (2.6)

m ’
(Uap (r+9)(@))

Where mé NO=NU{0}, £ >0 ,ax €R witha + >0, 0<y <1
,0<0:1<1l, Kor,<land0«<1.

The following interesting geometric properties dist function
subclass were studied by sveral authors for otlesses . like ,
Aout at el , [2] , Atshan and Al-Ziadi [3] and Jass$&] .

2.2 Coefficient bounds

Now ,we obtain the necessary and sufficient comdifor another

function f to be in the calss MH(, 5, m ,n ,01,05,7).

Theorem (2.1) : lef € AT ,thenf e MH (¢ , £, M, ,0 1,05
A) if and only if .
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a+nﬁ

Yne2n((n—=1)A+4An) -4 (0y +073) ) (

. (2.7) where /g NO =NU {0}, >0 ,aeR witha + 8 > 0,

™ a, b Aoy +0y)

0<n<1,0<0:1<1,0<0<1 and XA1<1.

The result is sharp with the functighgiven by :

A(O'l + 0'2 )
Z)=27+ a+nf\m
f@ n (( n—1)(1+An)-2A(oy + 03) )(;ﬁ; b,

zZ",n=2. (2.8)

Proof : Suppose that (2.7) is true f@lzand| 2 =1
Then , we have

‘Z(’"f ap (o) )t 01+ 0o) (I3,

=‘ Z%o=z n(n —1) (a;jﬁﬁ)man b,z n-1

a+n a+nﬁ

A T5an - DE G, b2 (ot 03) (14 TSy m

1

a+npf

= Trant-1) (22 " a, b2

~A| (o1 @) - B (= DR an bz + T n(on + )

a+npf
a+p

a+nﬁ

™ anbiz 4 TE, -1 @

vy

) ma, bz"t

a+nﬁ

-4 ‘ (07 +03)- Xp=2n(n(n—1) — (0y + 02))( )manb z"

a+nﬁ

< Yien(n—1) (o) ™ anbyl 27

a+nﬁ

ez —1) = (o1 + 02) () ™ Anlon | 2l "= A(0y +02)
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a+nB

=2n=2 (0= DA +4n) —A(or + 02)) () ™ anbn—
}\(0_1 + 0_2) <0

By hypothesis , Hence , by maximum modulus prilecj € MH
(a,B,m,n,0.,05,2) .

Conversely assume that .

f € MH (a, 8, m,, 04, 0, ,4) . then from (2.6) , we have .

2L p(reg)(2)"
(IB(F+g) ()
2(ICB(f+g)(2)"
— ' -+ (0, +0
(Lp(f+g) () (01 % 05)
Sropnn-1) EEym g, by, 21
— n o Cawpr PR < 2
= Zn=2n(y(n-1)—(0y + 7)) (“a++"ﬁ3) Map by 2" 1+(01 + 02)
Since Re (zg Iz/, we get
Yr_,n(n— 1)(a+nﬁ) an bp z™1 1
Re 2t < A
- Yn=2n((n-1)- (01"'02))( ﬁ)m ap by z™ 1+ (U1+02j
(2.9)

We choose the ralue ofon the real axis so that .

z(10 s fs )"
<p0@) ¢ gl
(I B(f+g)(2)
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o0

Z n(n-—1) <a -:_nﬁﬁ) m o a, b, z" 1

n=2

z /171(77(11 —1)—(0q + 02)) (a + nﬁﬁ) 0 b 1

+ A(oy + 0y)

Letting z - 1 through real valves,

z An(;y n—1)—(o; + 02)) (a * 7”;,)6’) a, b,

+ A(oy + 0y)
We obtain inequality (2.7) .

Finally , sharpness follows if we take .

— A(O’l +0'2) n 2 10
f@y=z+ (=D A0 -A(0y + ) (EZE) m by, " (210)

n=2,3, ...
The proof is complete .

Corollary (2.1) : Letf € MH («, 8, m,n, 01,05, ) . then
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(3.11)

a A(g1+02)

n <
n((n-1)(1+y)-2A(o1 + “2))<aa++nf > " bn

,n=2,3,...

2.3: Distortion and growth theorems .

Next, we obtain the growth and distortion boundsitie linear

operatorly .

Theorem (2.2): If f € MH o, 8, m, 5,04, 05, 4) andb,, =
b, (n = 3),then

A (01 + 0p)1?
2(1+)lr1)—)l (0'1 + 0'2) -

Im
. (f*g9)(Z)

A (01 + 0p)r? B
2(14An) =24 (01 + 03) ' (1Z]=r<1). (2.12)

Proof : Let f € MH (a, 8, m,#n, 04, 05, 4) . Then by theorem (2.1) ,

we get

a+2p
a+pf

2 (1) - Aoy + 02)) (S2) ™ by Tz an

< Tian((n = DA+ M) = (01 + 6)) () ™ anby <
A(014.07)
or
0 Aoy + 03)
o ap < 2.13
Zn=2 an 2( (1+Ap)-Aoy + az))(of:lf) m b, ( )

Hence ,
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a+npf

125 e S 12 1487 (Srg) ™ anbn 1217

o0

a+2ﬁm 5
S|z|+(a+ﬁ) b, | z| Zan

n=2

_ a+2p 0
=r+ (W) ™ by r? Yoo, an

Aoy + 0y)1r?

< +
=T 2( (1+2An)—2A(07 + 02)) (2.14)

Similarly,

a+np

125 (| 2121 Bima (5) ™ an bzl

+28 0
> |zl - (ZZ) ™ by 12255, an

a+f

_ a+2p 0
=T (m) ™ by r? Yoy an

. Aoy + op)1r?
= 2( (1+An)-2A(07 + 03)) (2.15)

From (2.14) and (2.15) we get (2.12) and the pimabmplete .

Theorem (2.3): If fe MH (a,f,m,5,0,,0,1) and b, =
b, (n = 3),then

A(oq + oyx)r

m [/
L v o) = 1 Usp (re9)@) ]

A(oq + o)r
((1+AI‘1)—A(O'1 + 0'2)) !

<1+ (lz| =r <1). (2.16)

Proof , the proof is Similar to that of theorenm2(2.
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24. Radii of starlinkeness , convexity and clest® —

convexity Using the inequalities
(1.2), (1.3), (1.4) and

theorem (2.1): we can compute the radii #taness , convexity

and close — to — convexity .

Theorem (2.4) : Iff € MH (a,8,m,n,01,0, 1) , then f is
univalent starlike of order?(0<Y¥ < 1) in the disk |z| < 1,

where

rl(a) ﬁ) m; ;7; 0-1) 0-2) /11 \P):

(1-¥)((n-1)(1+A) -A(gy + 6)) (Y m b ) 1

lnfn{n (n n 01 T 03 )(a+ﬁ) }E ,nZZ
Proof: It is sufficient to show that

z f(2)

— < 1- <

| e 1| < 1-¢, 0 ¥<1),
For | < ri(a, B,m,n,01,05 1) , we have that
| 2@ _q| = Zim (D) an s Thep (o) an bl "

f(2 1+ Y5—, apz™ 1t T 14+3¥7_, an |z| "1
Thus

| Zf(Z)_1 < 1-¥,
f(2)

if
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Yh=2 (n—Paylz] "1
1-¥

<1 (2.17)

Hence , by Theorem, (2.1) , (2.17) will be true if

n(n _ qj)lzl n-—1 n ((Tl - 1)(1 - /U]) _/1(0-1 + 02)) (aa-:_nﬁﬁ) m bn
1-¥ = Aoy, + 07)

equivalently if

1

A-9)((-1)A+A)-A(0y + 0))(E2E) ™ by, "
z|< { ath } ,n>2

(N-¥) 4 (g1 + 02)

Setting z| =1, , we get the desired result. The proof is complete

Theorem (2.6) : If f€ MH (a,B,m,n,0.,05A) , then f is
univalent convex of orde?(0<W¥ < 1) in the disk 4| < r, ,
where

r(a, 5, m,n, 01,0, A, ¥)=

1
n-1

inf (1—‘P)((n—1)(1+/’111)—/1(01+02))(aa++nﬁﬁ)m Pn
Nt (N=-¥) A (01407)

Proof : It is sufficient to show that

zf (2)
< —
|f,(z) <1-Y%, (K¥<1)

for |z| <1 (a,B,m,n,01,05A,%Y), we have that

Yn=2 N(n-1)anz n-1 < Yn=2 n(n-1) an |z| n-l

1+ Y%, napz™1 |7 1-¥%_, nay|z|"*?

| 2f @ | _
f'(z)
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Thus

zf (2

o St

Zn=an(n =) an|z| "7 <1
1-¥

Hence by theorem (2.1) , (2.18) will by true if

Shes(n) 12| " _ n((n—1)(1+,1q)—A(al+az))(“a++"ﬁf”)m by,

(1-%¥) - A(o1402)

Equivalently if

1

_ (an-Da-in-Aen o) (G ™ )" -5
2 = (n=P)A(01377) =<

Setting|z| = , we get the desired result , the proof is complete

Theorem (2.6) : Let a functioff EMH (a, 8, m, 5,0, 0, ,1) thenf

IS univalent close —to - convex of ord&i0 < ¥ < 1) in the disk

|z | <rs, where.

rs(a, B, m, 1, 01,05, 1)=
1
(1-¥)((n=1)(1+An)-A( N(EEYm  p yn-1
in n{ - V- Mro)(Gy) } n>2

A(o1407)

Proof : It is sufficient to show that
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| f'@-1 <1-¥,0<¥<1),

for

z| <r3(a, B,m, 5,010, %),

We have

| f @-1| =25, na,z™t| <35, na,lz|™ 1.
Thus

| F @1 <1-¥,

If

n-—-1
S, M <1 (2.19)

Hence , by theorem (2.1) , (2.19) will be true if .

nlzp-t (= DA+ ) — Ao1407)) (“;jﬁﬁ) mop
<
1-% A(01407)

,equivalently . if

1

1z < {(1—‘11)((n—1><1+An)—A(al+az>)(“;”Bﬁ)m bn}m 2

Ao1407)

Setting | z | =41, we get the desired result . The proof is conaplet
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2.5:Extremepoints:
In the following theorem , we obtain the extrenoenps of

the classviH (a, B, m, 5, 0,05, 1) .

We obtain here an extreme points of the class MH

(a, ﬁ, m,mn, 0-1’0-2,1) .

Theorem (2.7) : lef, (z) = z and

fn(2) = z+ Alg477) 2", (2.20)

n((=D)(A+)-2(01492) (%) ™ bn

Where all parameters are constrained as in the@e.

Then the functionf is in the class MHA, B, m,n, 041, 05, A) if and
only if

f(@)=2n=1 onfn(2) (2.21)
Whereo,, > 0 and},;;-; o,=1o0r 1=y + Y7, 0p.
Proof : Suppose thét is expressed in the form (2.21). then

f(2) =0121+ X5=2 00 fn(2)

A01407) Zn]

a+np

=01Z1+)im=2 OnlZ +
121+ 2n=2 Onl n((n—1)(1+/1r1)—/1(01+°'2))(a+b’)m on

0 A(o1407) n
=Z+ OnZ
> (=D )-20140)) () ™ bn
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i n((n =D + ) — Ao1402)) (S75) ™ ba

A(01407)

A
x (01+02)0p

n((n = DA+ ) - A(01:0,)) (T22) ™
=Yr—y 0p=1l0;<1.
Then f € MH (a, B,m, 5,0, 03, 1).
Conversely , Suppose thgte MH (a, 8, m, 5, 01 03, 1).

We may set

n((n-1)(1+20)-A(011.0,)) (L2E) ™

A(o1402)
Wherea,, is given by (2.11) , then

A(g1402)

by,

f(@)=24%5=2 anz'=Z+E0=,

a+f

n
Z

=z +¥0= [f n(2) — 7y
=z+¥0; fn(2)on-X5-20n
=(1-X7=2 0n)Z +X7=; fn(2) on
= 01 Z+Xq=2 0nfu(2).

This completes the proof of theorem (2.7).

n((n—-1)(1+An)—-A(014+07)) (“"‘nﬁ) m

On
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2.6. Closure theorems

Theorem (2.8) : Let the functigf defined by
fld=z+¥3_,a, » 2" (@n, 20,7=1,2,..,0) (2.22)
be in the class MH, 8, m, n, 01, 05, 4). For every

r= 1,2,3,--3 €. Then the function defined by

h(z) = 2452, e, 2"\ (e, , = 0)

Also belongs to the class MHid,(5,m,n, 01 02, 1). Where

1 oo —
en= ;Zr=z an r, (N=2,3,.....)

Proof : Since & MH (e, 8,m,n,01 0,4). It follows from theorem (2.1)
that

e}

D =D+ — 21402 (

n=2

a+nf
a+f

)m an,rbn < /1(O-1+O-2).

for everyr=1,2,3, ..{, Hence,

oo

> (=D +an) ~ A(01402) (

n=2

a+nf
a+p

) m en,rbn ’

=Y, n(( = D+ M) = A(01402) (S2) ™ by (322200 )

1

= 13 (S - D+ ) - Ao1402)

a+np

a+f

) m an,rbn) ) <
A(01407).

By theorem (2.1) , it follows that EMH (a, 8, m, 1, 01, 0, A).
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Theorem (2.9) : Let the functionsdefined by (2.22) by in the

class MH@, 5, m, , 0, 0,5, A). For every
r=1,2,3,..., . Then the function defined by

ha (2) = X721 G f(2)

Is also in the class Mid( 8, m, 5, 01 0,,1). Where
2r=1 G =1,(G=0).

Proof : By theorem (2.1) for every r = 1,2,3, . \we have

o0

D (= DA + ) = Aor.00) (

n=2

a+nf
a+pf

m
) an r bn

< A(01402),

But

ha(z) =Xn=2 ¢ fr(2) = 2526 (Z + 20— an,Zz") =z +
Z£=2(Z$lo=2 Cr an’r) Zn .

Therefore
izan((n = 1)1+ M) = A(01,0)) (

a+npf
a+f

)™ ba(Ezcr any)

a+npf
a+f

=Yy ¢ (Tiea (0 = (A + AA14.02))

< Yn=16r A(01103) = A(01403)

) " bnanm)

and the proof is complete .
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