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Abstract

Let U denote the unit ball in the complix plane, the Hordy space H?

is the set of functions f(z):if“(n)zn holomarphic on U such that

i ‘fA(n)‘2<oo with "(n) denotes then the Taylor coeffecient of f.

Let v be a holomarphic self-map of U, the composetion operator
C, induced by v is defined on H? by the equation
Ccf=foy (feH?

We have studied the compactness of the composetion operator Cg
induced by the bijective map ¢ and descussed the adjoint of the
composetion operator Cy induced by the bijactive map ¢ .We have look
also at some known properties on composetion operators and tried to se the
analogue propirties in order to show how the resultes are changed by
changing the function v in U.

In arder to make the work accessible to the reader, we have included
some known resultes with the details of the proofs for some cases and

proofs for the properties .
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Chapter one

Properties of the Map ¢




Intraduction

Definition(1.1) :

Lat U ={z<C:|z|<L}be a unit boll in complix plane C andoU={z<C:|7 =1

is a boundory of U.

Definition(1.2):

B—z

Lat ¢:U— U be holomarphic on U and define ¢(z) = Bz 1 (z,BeU)
Proposition (1.3):
¢ IS bijective .
Proof:
: B—z
Since ¢(z) = [?z—l (z,peU)
Suppase ¢(z,) =d(z,) that is 52:3112 [1332:321' thus |p[°z, -p—pz,z, +2,=

B[z, -B—Bzz, +2, , therefare |p°z, -z, = |g]°z,~z,, hance z, =z, . Thus ¢ is injective .

Lety=d¢(z), that is y— B‘Zl , therefare g—z=gyz-vy, than B+y =Byz+z hance

Bz -

) ) 5_[B+VJ Bryp-p-y
Z:f”_y,q,(z):q{ﬁﬂjz APyl py+d :QB|2_1)y:y,forevery yeU, there
By+1 By+1 B(Bw]_l Bly-+py-py-1 (8 -1)
By+1 By-1

exists zeusuch that y=¢(z) .Thus ¢ is surjective . Hance ¢ is bijective.
1




Definition(1.4) :

For e, then

g

Bz-1"
Proof:
Lo |Bezf_ [P -1
e ~1- ) e
_ (pz-1) (Bz-1)-(-2) (p-2)
pz-1

Bl —pz—pz+1-|pf +pz+pz—" (e 1) (" 1)
pz-1° pz-1

Proposition (1.5) :

If pe U, than ¢ take ou into oU.

Proof :
Let z e oU, than |z =1, hance|z|* =1. By (1.4) 1—|¢(z) ~ =0, therefare

o(z) ~ =1, hance |¢(z) =1, hance ¢(z)edU, hance ¢ take dU into oU .

Definition(1.6):

Let v : U —U be holomarphic mop on U,  is called an inner mop if

w(z)=1.

Proposition (1.7):




¢ esaninner map .

Proof :

From (1.5) ¢ take au into au ., hance |¢(z)=1. By (1.6) ¢ es an inner map .

Proposition (1.8) :

N Bz
¢ (Z)_Bz+1'

Proof :
Lot y = ¢(z), than z =¢(y), hance z :Ey;_yl  thus Byz—z=B-v, therefare

+z 1o\
Bz+l,than o (z)=

B+z
. .

Byz+y=B+z.Thus y(Bz+1)=p+z, hance y-= Bz 11

Remark(1.9) :

If peu, than ¢'(0)=1-Jp", ¥/(B)= -

Definition(1.10) :

Lat v:U—U be holomarphic map on U. We say that v is a rototion round

the origen if there exists o e U such that y(z)= az (z < U)




Proposition (1.11):

If =0, then ¢ is a rototion a round the origin

Proof:

Since ¢(z)=B;Zl, since B=0, hance ¢(z)=z=0z ,a=1e0dU, than by (1.9)

Bz

¢ is a rototion a round the origin .

Definition(1.12):

A linear fractional trancformation is a mapping of the form <(z)= z:g ,

wherea, b, ¢, and d are complix numbers , and we somatime donete it by ,(z)

. : : , b
where A is the non-singulor 2x2 complix matrix Azﬁ d]

Proposition (1.13) :

If Be U, than ¢ is a linear fractional trancformation .

Proof :

Since ¢(z)= B-z az+b suchthata=-1,b=f,c=p,d=-1 anda,b,c

Bz—-1 cz+d

, and d are complix numbers and A{‘Bl BJ, hance by (1.12) ¢ is a linear

fractional trancformation .




Chapter two

compactness of the C,




Intraduction

This seoarch consists of two chaptors . In chaptar one ,we ore going to
study the bijactive map¢ and proparties of ¢, and also descuss the interior and
exterior fixed pointes of ¢ and also discuss ¢ is a rotetion around the origin and
¢ is elleptic and ¢ is a linear fractional trancformation .

In chaptor two, we are going to stuidy the Composetion Operator c,
induced by the map ¢ and propirties of c,, and also discuss the adjoent of
Composetion Operator c, induced by the map ¢and also discuss the campactness

of c,.




Definition(2.1):

Let U denote the unit boll in the complix plane, the Hordy space H” is the

set of funcations f(z)=ifA(n) z" holomarphic on U such thati\fA(n)(z <o With

f(n) denoties then the Taylor coeffecient of fand H*:U—C.

Remark (2.2) :

We can define an inner praduct of the Hordy space funcations as follows:

f(2) :ifA(n) z" and g(z):igA(n) z", then the inner praduct of fand g is define

(.9)=>:1"(n) g"(n)

Definition (2.3) :

Lat o e U,define Km(z)=1 1&2 (zeU). Sance a € U then |o/ <1, hance the

geometric series i|oc|2n is convorgent and K, (z) = i(&) '2" thus k, e H?
n=0

n=0

Definition(2.4) :

Let v:U— U be holomarphic map on U, the composetion operator C,,

induced by v is defened on H as follows C, f =f oy (f e H?)




Definition(2.5) :

Let T bo a bounded operator on a Hilbart space H, then the norm

of an operotar T is defined by ||T| = sup{Tf|: f « H,|[f||=1}.

Theorem (2.6) :

Ify:U — Uis holomarphic map on U, thanf oy € H* and

1+ |\u(0)|

f oyl <|/f
Fowl<Iel 10

If| for each f eH?. The gool of this theoremC,, : H? — H?.

Definition(2.7) :

The composetion operator C, induced by ¢ is defened on H? as follows

Cc,f=fod, (FeH?)

Proposition(2.8) :

B— 1
If o(z)= [?z _Zl, than f opeH® and |f og] < %EHH\ far each f e H2.

Proof :

Since¢: U — Uis holomarphic map on U by (2.6)

1
f b fopeH:and [fog|< [~ hanceC, : H? — H?

1Py




Remark ( 2.9) :

1) One can easely show that C.C, =C,,, and hance C} =C,C,AC,

=C

Yoyah oy Wn

=C
2) C, is the idintity operator on H?if and only if v is idintity map from U
into U and holomarphic on U.

3) Itis semple to prove that C, =C,, ifendonly if k=

Definition(2.10):

Lat T be an operator on a Hilbart space H , The operator T-es the adjoint

of Tif (Tx,y)=(x,T"y) for each x,yeH.

Theorem (2.11) :

{K.2}, ., farms a danse subset of H>.

Theorem (2.12) :

If v:U—>Uis holomarphic map on U, then for all acU

C:K, =K

v(a)




Definition(2.13):

Lat H~”be the set of oll bounded holomarphic map on U .

Definition(2.14):

Lat geH~, the Toeplets operator T, is the operator on H? given by :

(T, )2)=0(2) f2) (FeH?, zeU)

Theorem (2.15) :

If w:U—uis holomarphic map on U, then C, T, =T _ C, (geH")

Remark ( 2.16) :

Far each f e H?, it is will- know that T; f =T f,such that heH".

Proposition(2.17) :

If eU,than ¢, = T,C, T, where h(z)=1-pz, g(z)=ﬁ , v(2)=1ﬁ+_ﬁzZ

Proof :

By (2.16), T, f =T_f for each f eH*. Hance for all a e U,

<T: f,Ka>=<Thf,Ka>=<f,T: Ka>AA (2-1)




On the other hand ,
<T: f Ka> =(f, T,K,)=(f,h(a)K, )A A (2-2)
From (2-1)and (2-2) we can se that T’ K, =h(a) K, . Hance 1; Kk, =h(o) K, .

Calculotion give:

C K, (2) = Ky (2)

Boo—1
— 1 ~ Bo—1  ([@-pa)
Bu-1-pz-az -(@+p2)+alp-z) @L+Bz)-alp-2)
Bo—1

1 1

= 1—B(x) . ( ] . =
1+pBz 1_&(B—zj
1+PBz

= h(a) - 9(2) K,(1(z))=h(0) 9(2)-(K, o1)(2)
= h(a) - (T, K, o1)(@) =h(a) T,CK,(2)
=T, h(a) C, K,(z) =T, C, h(a) K, (2)
=T, C, T, K,(2) , therefare
C; K,(2)=T,C, T, K.(2) .

BUt {Kot}q e U = Hz’than C$ - Tg CV T:




Definition(2.18) :

Let T be an operator on a Hilbart space H , T is called compact if every

sequence X, in H is weekly convorges to x in H , thenTx_is strangly convorges to

Tx.Moreover (x, ——x if (x,,u) - (x,u),vueH and x, ——x if |[x, — x| —0.)

Theorem (2.19) :

If v:U— U is holomarphic map on U, thanC_, is not compact if and only

If v take oU into oU

Proposition(2.20) :

If L €U, then C,is net compact composetion operator

Proof :

From (1.5) ¢ take U intooU. By (2.19) C,is not compact composetion

operator .

Theorem (2.21) :

If v:U— U is holomarphic map on U, then C C; is compact if end only if

1 * * B—Z
c,C, is compact, where C; =T, C_ T/, Y(Z)=1+BZ

Proof:

Suppose that c c_is compact . Note that
c,C,=c,T,C T, (since c;=T,c, T, by(2.17))
=T,.,C,C, T (sincec, T, =T c, by(2.15)).
Sincec,C, es compact operator, T and T, are bounded operators then c,c; es

compact




Conversaly , suppose that C,C; is compact . Note that
C,C,= C\v(C::)*: c,(c,m)=c, o1
=T1,,,c0CT, (sincec, T =T,  c, by(2.15)).

Since c,c; is compact operator, T and T; are bounded operatores then c C
oy g v Y

IS compact .

Corollary (2.22) :

If v:U— U is holomarphic map on U, then C_C: is not compact if and

only if there exist points z,,z, € 68U such that(y oy )z, )=2z,.
Proof:

By (2.21) c,C; is not compactif and only if C,C, =C__ isnotcompact

. Since y:U—-U and y:U— U are holomarphices on U , then also y oy . Thus by

(2.19) C . isnot compact if and only if y oy take su into U . So, there exist

points z,,z, e U such that(y oy )z, )=2z,.

Theorem(2.23) :

If w:U— U is holomarphic on U, then C;C, is compact if and only if

: . \ bz
C,C, iscompact, where c; =T, c, T;, )=

Proof:

Suppose thatc c_ is compact . Nate that
c,C,=T,C, T, C, (since C;=T,cC, T, by(2.17))
=T,C T C, (by (2.16))

=T,T. ¢C.C, (since c T. =T C, by (2.15)).




SinceC,C,, is compact operotar , T, and T are bounded operatores than c;c, is
oy

compact
Conversaly ,Suppose that C;C,, is compact . Note that
c.c,=(c;)e,

= (1, c, T;)c, (since c:=7,c,T)
=T,C, T, C,
Nate that , by ( 2.11) it is enaugh to prove the compactness on the family {k_}

Hence for each zeuU we have
C,C K.,(z) =T,C T, CK,(2)
=T,C, T; K, (w(2))
= T,C; ol0) K,(wz)  (since T: k, =g(a) K,)
= gla) T, C; K, (w(2)
= g() T, C, C, K,(2)

Since C;C, Is compact, T, is bounded andgeH-, thenc c, Is compact .

Corollary (2.24) :

If w:U— uis holomarphic map on U, then c;c, is not compact if end only
if there exist points z,,z, e 8U such that (yoy)z,)=z,.
Proof:

By (2.23) C;C, is not compact if and only if C.C, =C__ isnotcompact.
Since y:U—U andy:U—U are holomarphices on U , then also y oy. Thus by

(2.19)C, . isnot compact if and only if y oy take U into oU . So, there exist

points z,,z, e U such that (y oy)z,)=z,.
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