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Introduction 

      Through this paper all rings are associative with unity and all modules 

are unitary right modules. We recall some relevant notions and results. A 

submodule N of an R-module M is essential in M (briefly N≤𝒆𝒔𝒔M) if N ∩ W 

= (0), W ≤ M implies W = (O)[2]. A submodule N of M is called closed in 

M (briefly N ≤𝒄 M) if N has no proper essential extension in M, that is if N 

≤𝒆𝒔𝒔W ≤ M, then N = W[9]. The set {x ∈ M: 𝒙I = (0) for some essential 

ideal I of R} is called the singular submodule of M and denoted by 

Z(M)[l0].Equivalently Z(M) = {x ∈ M: ann(x) ≤𝒆𝒔𝒔R} and ann(x) = {r ∈ M: 

𝒙𝒓 = 0}. M is called singular (nonsingular) if Z(M) = M(Z(M) = 0).   It is 

known that" a module M is called extending(  CS-module or module has 𝑪𝟏 

-condition) if for every submodule N of M then there exists a direct 

summand W(W ≤⊕ M) such that N ≤𝒆𝒔𝒔 W " Equivalently" M is extending 

module if every closed submodule is a direct summand", where a submodule 

C of M is called closed if  

C ≤𝒆𝒔𝒔 C' < M implies that C = C'[1].  

in chapter two we study as a generalization of essential submodule , Asgari 

in [1] , introduced the nition of t-essential submodule , where a submodule 

of is called t-essential (denoted by if whenever ,implies ,is the second 

singular submodule and is defined by [8] where for some essential ideal of ) 

Equivalently and is called singular (nonsingular) if .Note that for some t-

essential ideal of . is called –torsion if . A submodule is called t-closed 

(denoted by if has no proper t-essential extension in [1] .it is clear that 

every t-closed submodule is closed , but the convers is not true . However 

,under the class of nonsingular the two concepts are equivalent 
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In this chapter we recall the definition of essential submodules closed 

submodules and some of their properties that are relevant to our Work.  

Definition (1.1) : Let M be an R – Module, recall , recall that a submodule A of M 

is called essential in M (denoted by A ≤𝑒𝑠𝑠  M) if A ∩  𝑊 ≠ 0  for every non zero 

submodule W of M equivalently A ≤𝑒𝑠𝑠 M if Whenever A ∩ W = 0 , W ≤ M then 

 W = 0 . 

Find essential submodule in Z12 and Z24. 

Solution: Z12 

< 0 > = 𝑊1 

< 2 > = {0, 2, 4, 6, 8, 10} = 𝑊2 

< 3 > = {0, 3, 6, 9} = 𝑊3 

< 4 > = {0, 4, 8} = 𝑊4 

< 6 > = {0, 6} = 𝑊5 

Z12 = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11} = 𝑊6 

𝑊2  ∩ 𝑊2 = 𝑊2  ≠ 0 

𝑊2  ∩ 𝑊3 = 0 = {0 , 6} 

𝑊2  ∩ 𝑊4  ≠ 0 = {4 , 8} 

𝑊2  ∩ 𝑊5  ≠ 0 = {0 , 6} 

𝑊2 ∩ 𝑊6  ≠ 0 = < 2 >         𝑡ℎ𝑒𝑛  𝑊2  ≤𝑒𝑠𝑠  𝑍12 
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𝑊3 ∩  𝑊1  = 0 

𝑊3 ∩  𝑊2  = (0 , 6) 

𝑊3 ∩  𝑊4 =  𝑊1 𝐵𝑢𝑡 𝑊4  ≠ 0 

𝑊3  ≤𝑒𝑠𝑠 𝑍𝑛 =  𝑍𝑛 

𝑊4  ∩  𝑊2  ≠ 0 𝑊4 

𝑊4 ∩  𝑊3 = 0 𝑏𝑢𝑡 𝑊3  ≠ 0 

𝑊4  ≰𝑒𝑠𝑠  𝑍12 

𝑊5 ∩  𝑊2  ≠ 0 =  𝑊5 

𝑊5  ∩  𝑊3  ≠ 0 =  𝑊5 

𝑊5  ∩  𝑊4 = 0 𝑏𝑢𝑡 𝑊4  ≠ 0 

𝑊5  ≰𝑒𝑠𝑠  𝑍12 

The submodules of Z24 are. 

𝑊2  = {0 , 2 , 4 , 6 , 8 , 10 , 13 , 14 , 16 , 18 , 20 , 22}  𝑊1 

𝑊3  = {0 , 3 , 6 , 9 , 12 , 15 , 18 , 21}  𝑊2 

𝑊4  = {0 , 4 , 8 , 13 , 16 , 20}  𝑊3 

𝑊5 = {0 , 6 , 12 , 18}  𝑊4 

𝑊6  = {0 , 8 , 16}  𝑊5 

𝑊7  = {0 , 12}  𝑊6 

𝑊2  ∩  𝑊1  ≠ 0 =  𝑊1 



5 | P a g e  

 

𝑊2  ∩  𝑊2  ≠ 0 =  𝑊4 

𝑊2  ∩  𝑊3  ≠ 0 =  𝑊3 

𝑊2  ∩  𝑊4  ≠ 0 =  𝑊4 

𝑊2 ∩  𝑊5  ≠ 0 =  𝑊5 

𝑊2  ∩  𝑊6  ≠ 0 =  𝑊6 

𝑊2  ≤𝑒𝑠𝑠  𝑍24 

𝑊3  ∩  𝑊1  ≠ 0 =  𝑊4 

𝑊3  ∩  𝑊2  ≠ 0 =  𝑊2 

𝑊3  ∩  𝑊3  ≠ 0 =  𝑊6 

𝑊3  ∩  𝑊4  ≠ 0 =  𝑊4 

𝑊3  ∩  𝑊5 = 0   𝑏𝑢𝑡   𝑊5  ≠ 0 ⟹  𝑊3  ≰𝑒𝑠𝑠  𝑍24 

𝑊4  ∩  𝑊1  ≠ 0 =  𝑊3 

𝑊4  ∩  𝑊2  ≠ 0 =  𝑊6 

𝑊4  ∩  𝑊3  ≠ 0 =  𝑊3 

𝑊4  ∩  𝑊4  ≠ 0 =  𝑊6 

𝑊4  ∩  𝑊5  ≠ 0 =  𝑊5 

𝑊4  ∩  𝑊6  ≠ 0 =  𝑊6           𝑡ℎ𝑒𝑛  𝑊4  ≤𝑒𝑠𝑠  𝑍24 

𝑊5  ∩  𝑊1  ≠ 0 =  𝑊4 

𝑊5  ∩  𝑊2  ≠ 0 =  𝑊4 
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𝑊5  ∩  𝑊3  ≠ 0 =  𝑊6 

𝑊5  ∩  𝑊4  ≠ 0 =  𝑊4 

𝑊5  ∩  𝑊5 = 0    𝑏𝑢𝑡    𝑊5  ≠ 0   𝑡ℎ𝑒𝑛  𝑊5  ≰𝑒𝑠𝑠  𝑍24 

Theorem (1.3) [6]: Let M be an R - module and A be a submodule of M, then A 

≤𝑒𝑠𝑠 M if and only if every non-zero element of M has a non-zero multiplication in 

A. 

Proposition (1.4) [6]: (1) Let A, A', B and B' be submodules of an R - module M 

such that A ⊆ B and A' ⊆ B' then, 

a. A ≤𝑒𝑠𝑠 M if and only if A ≤𝑒𝑠𝑠 B ≤𝑒𝑠𝑠 M. 

b. If A ≤𝑒𝑠𝑠 B and A' ≤𝑒𝑠𝑠 B', then A ∩ A' ≤𝑒𝑠𝑠 B' ∩ B'. 

(2) Let M and N be R – modules and let f: M⟶ N be an R-homomorphism, if B 

≤𝑒𝑠𝑠 N, then F-1(B) ≤𝑒𝑠𝑠 M. 

(3) Let M= ⊕ i ∈ J, 𝑀𝑖 be an R-module, Where 𝑀𝑖 is a submodule of M, ∀ 𝑖 ∈ 𝐼 if 

Ai ≤𝑒𝑠𝑠 Mi , for each i ∈ I, then ⨁ 𝑖 ∈ 𝐼 Ai ≤𝑒𝑠𝑠 𝑀𝑖, For each i ∈ I , then ⨁𝑖 ∈𝐼 Ai 

≤𝑒𝑠𝑠M. 

Definition [1.5] [3]: Let A be a submodule of an R - module M. Recall that a 

relative complement of A in M is any submodule B of M Which is maximal with to 

the property A ∩ B = 0.  

Easy application of Zama's lemma gives for every submodule A of an R - 

module M, there exists a relative complement for A in M.  
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Proposition (1.6) [3]: Let M be an R - module and A be a submodule of M. If B is 

any relative complement for A in M, then A ⊕ B ≤𝑒𝑠𝑠 M. 

Proof: Let D be a submodule of M such that D ∩ (A ⊕ B) =0, we want to show 

that D = 0. Assume D ≠ 0. Now A ∩ (D ⊕ B) = 0. But B is a relative complement 

for A in M, therefore D+B = B and hence D ⊆ B. Then D = D ∩ B = 0. This is a 

contradiction. Thus  𝐴 ⊕  𝐵 ≤𝑒𝑠𝑠  𝑀. 

Let M be an R - module. Recall that a submodule A of M is a closed 

submodule if A has no proper essential extension in M, [3]. 

Proposition (1.7) [3]: Let M be an R - module If 𝐴 and B are submodules of M such 

that M = A ⊕ B, then A is closed in M. 

Proof: Let A ≤𝑒𝑠𝑠 D, where D is subniodule of M. 𝑠𝑖𝑛𝑐𝑒 𝐴 ∩ 𝐵 = 0, then D ∩ B = 0. 

Let 𝑑 ∈ 𝐷, then d = 𝑎 +  𝑏, 𝑎 ∈ 𝐴, 𝑏 ∈  𝐵. Implies that d – a = b ∈ 𝐷 ∩  𝐵 = 

0, we get 𝑑 –  𝑎 = 0 and d = a. thus 𝐷 =  𝐴, [3]. 

Proposition (1.8) [3]: Let 𝐵 be a submodule of an R - module M. Then the 

following statements are equivalent: - 

1- B is a closed sub module of M. 

2 – If B ⊆ K ≤𝑒𝑠𝑠 M. 𝑡ℎ𝑒𝑛 
𝐾

𝐵
 ≤𝑒𝑠𝑠  

𝑀

𝐵
. 

3- B is a relative complement for some submodule A of M.  

 

 



8 | P a g e  

 

Theorem (1.9) [3], [2]: Let 𝐴, 𝐵 and 𝐶 be submodules of an R-module M with A ⊆ 

B, then: 

1-There exists a closed submodule D of M such that 𝐶 ≤𝑒𝑠𝑠 𝐷. 

2-If A closed in B and B closed in M, then A is closed in M: 

3-If Closed in M, then 
𝐵

𝐴
 closed in

𝑀

𝐴
. 

Definition (1.10) [3]: Let M be an R-module and let x ∈ M Recall that the 

annihilator of x (denoted by ann (x)) is defined as follows an (x) = { r ∈ R : rx = 0 } 

Clearly ann (x) is an ideal of R. 

Definition (1.11) [3]: Let 𝑀 be an R-module. Recall that 𝑍(𝑀)  =  {𝑥 ∈

 𝑀: 𝑎𝑛𝑛 (𝑥)  ≤𝑒𝑠𝑠 R} is called singular submodule of M. If 𝑍(𝑀)  =  𝑀, then M is 

called the singular module .If 𝑍(𝑀)  =  0 then 𝑀 is called a nonsingular module. 

The following lemma gives some properties of singular submodules which 

are needed later and can be found in [3]. 

Lemma (1.12) [3]: Let M and 𝑁 be an R – modules, then: 

1 If 𝑓: 𝑀 ⟶  𝑁. N is an R – homomorphism, then 𝑓(𝑍(𝑀))  ⊆  𝑍(𝑁). 

2-Epimorphic image of a singular module is, singular. 

Proposition (1. 13) [3]:  A module C is singular if and only if there exists a shorter 

exact sequence 

0 ⟶ 𝐴 
𝑓
→  𝐵 

𝐵
→  𝐶 ⟶ 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝐴) ≤𝑒𝑠𝑠  𝐵. 
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Coro1lar (1.14) [3]: If 𝐴 ≤𝑒𝑠𝑠 𝐵, then 
𝐵

𝐴
 is singular. 

Proposition (1.15) [3], [2]: Let 𝐵 be a nonsingular R - module, and 𝐴 ⊆𝑒  𝐵. Then 

𝐵

𝐴
 is singular if and only if 𝐴 ≤𝑒𝑠𝑠 𝐵. 

Let M be an R - module. Recall that the second singular submodule 𝑍2 (M) 

of M is the submodule of M containing 𝑍(𝑀) such that 
𝑍2(𝑀)

𝑍(𝑀)
 is the singular 

submodule of 
𝑀

𝑍(𝑀)
. 

Proposition (1.16) [6]: Any direct summand of an R – Module M is closed. 

Proof: Let N ⊆⊕ M, such that M = N ⨁ K for some 𝐾 ⊆ 𝐾. 

To prove: 

 𝑁 is closed in 𝑀  

Suppose ∃ 𝑊 ⊆ M such that 𝑁 ≤𝑒𝑠𝑠 𝑊 

We must prove 𝑁 = 𝑊  

Suppose N ≠ W ⟹ ∃ 𝑥 ∈ 𝑊 and x ∉ N 𝑡ℎ𝑒𝑛 x ∈ 𝑁 = 𝑁 ⨁ 𝑘 

𝑡ℎ𝑒𝑛 𝑥 = 𝑛 + ℎ  , 𝑛 ∈ 𝑁 , 𝑅 ∈ 𝐾 

Then 0 ≠ 𝑥 − 𝑛 ∈ 𝑤  

(𝑓𝑜𝑟 𝑖𝑓 𝑥 − 𝑛 = 0 ⟹ 𝑅 = 0 ⟹ 𝑥 = 𝑛 + 0 = 𝑛 ∈ 𝑁) 

(By the N ≤𝑒𝑠𝑠 W ⟺ ∀ 𝑥 ∈ 𝑤 , 𝑥 ≠ 0 ∃ 𝑟 ≠ 0 ⟹ 𝐶𝑖 ∈ 𝑅 

∃ 𝑟 ≠ 0 𝑥 ∈ 𝑁) 
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We have: ∃ 𝑟 ∈ 𝑅 , 𝑟 ≠ 0 ∃ 0 ≠ 𝑟 (𝑥 − 𝑛) ∈ 𝑁 

Since x = n + k 

𝑟𝑥 =  𝑟𝑛 +  𝑟𝑘 

𝑟𝑥 − 𝑟𝑛

∈ 𝑁
=  

𝑟𝑘

∈ 𝑘
    ∈ 𝑁 ∩ 𝐾 = (0) 

∴  𝑟𝑥 –  𝑟𝑛 = 0 Which is a c : 

Thus 𝑤 = 𝑛 

Corollary (1.17) [6]: Every Submodule of semi simple R – module is closed: 

Remark (1.18): Closed Sub M. 𝑇ℎ𝑒𝑛 need not be direct summand for example 

Let M = Z8 ⨁ Z2 as a Z – module  

Let N = < {(2̅ , 1̅) > = {(0̅ , 0̅), (2̅ , 1̅), (4̅ , 0̅), (6̅ , 1̅)}} 

𝑁0 = (0̅)  ⊕ (0̅) = (0̅ , 0̅), 

𝑁1 = < (1̅ , 0̅) > = 𝑍8  ⊕ (0̅) = [(𝑎 , 0), 𝑎 ∈ 𝑍8] 

𝑁2 = < (2̅ , 0̅) > = (2̅) ⊕ (0̅) = [(𝑎 , 0), 𝑎 ∈ (2̅) ≤ 𝑍8] 

Proof: 𝑁3 = (4̅) ⊕ (0̅) = [(𝑎 , 0), 𝑎 ∈ (4̅) ≤ 𝑍8] 

< 𝑎 > = < −𝑎 > 𝑁4 = (4̅) ⊕ 𝑍2 = [(𝑎 , 𝑏), 𝑎 ∈ (4̅), 𝑏 ∈ 𝑍2] 

N is closed in M 

N is not direct summand of M. 
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Definition (1.19)[6]: Let 𝐵 ≤ 𝑀 , 𝐴 ≤ 𝑀 , 𝐴 is called a relative complement of 𝐵 if 𝐴 

is the largest submodule of 𝑀 With property 𝐴 ∩ 𝐵 = (0) 

Such that if ∃ 𝐴 ⊇ 𝐴 , 𝐴′ ∩ 𝐵 = 0  𝑇ℎ𝑒𝑛 𝐴 = 𝐴′ 

A relative complement A of B exists by Zero’s Lemma. 

Example (1.20) [6]: 𝐹 is any field, M = f ⊕ 𝐹 

Let A = F ⊕ (0) 

∀ 𝑥 ∈ 𝑓 , 𝑙𝑒𝑡 𝐵 = < (𝑥 , 1) > 𝑖𝑠 𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 . 𝑓𝑜𝑟 𝐴 

Special case: 

M = Z3 ⊕ Z3, A = Z3 ⊕ (0̅) = < ((1̅ , 0)) > 

= {(1̅ , 0̅) , (2̅ , 0̅) , (0̅ , 0̅)} 

Let 𝑥 = 0̅ , B1 = < (1̅ , 1̅) > = {(1̅ , 1̅) , (2̅ , 2̅), (0̅ , 0̅)} 

B1 ∩ A = {(0̅ , 0̅)} 

𝑋 = 2̅ , 𝐵2  = < (2̅ , 1̅) > = {(2̅ , 1̅), (1̅ , 1̅), (0̅ , 0̅)} 

𝐵2 ∩ A = {(0̅ , 0̅)} 

𝑋 = 0̅ , 𝐵3 = < (0̅ , 1̅) > = {(0̅ , 1̅), (0̅ , 2̅), (0̅ , 0̅)} 

𝐵3  ∩ A = {(0̅ , 0̅)} 

𝐵1, 𝐵2, 𝐵3 Are relative complement of 𝐴 in case 𝐹 is an in finite to field, A has an 

in finite relative complement. 
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Proposition (1.21) [6]: Let 𝐴 ≤ 𝑀 if 𝐵 is any relative complement of 𝐴, then 𝐴 ⊕  

≤𝒆𝒔𝒔 𝑀. 

Proof: Let N ≤ M suppose N ∩ (A ⊕ B) = 0 

To prove  𝑁 =  (0) 

Then 𝑁 ⊕ (𝐴 ⊕ 𝐵) = (𝐴 ⊕ 𝐵) ⊕ 𝑁  

  = 𝐴 ⊕ (𝐵 ⊕ 𝑁) 

Notice that   𝐴 ∩ (𝐵 ⊕ 𝑁) = 0 

To prove that: 

𝑞 = 𝑏 + 𝑛 For some 𝑏 ∈  𝐵, 𝑛 ∈  𝑁 

𝑇ℎ𝑒𝑛 (a – b) = n ∈ 𝑁 ∩ (A⊕) = (0) 

∴ n = 0 & a – b = 0 

𝐻𝑒𝑛𝑐𝑒 𝑎 = 𝑏 ∈ 𝐴 ∩ 𝐵 = (0) (Since 𝐵 is a relative complement of 𝐴) 

𝑎 = 0, So 𝐴 ∩ (𝐵 ⊕ 𝑁) = 0 

But 𝐵 is relative complement of 𝐴  

And 𝐵 ⊕ 𝑁 ⊇ 𝐵 

𝑡ℎ𝑒𝑛 B ⊕ N = B ⟹ N = (0) [Since N ∩ B = (0) and A ≤ M]. 
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Theorem (1.22) [6]: Let 𝐵 ≤ 𝑀 and 𝐴 ≤  𝑀, the following statement, are 

equivalent: 

(1) 𝐵 Is a closed sub 𝑀 of 𝑀. 

(2) If B ≤ K ≤𝒆𝒔𝒔 M, then 
𝐾

𝐵
 ≤𝒆𝒔𝒔  

M

B
. 

(3) If A is a relative complement of 𝐵, then 𝐵 a relative complement of 𝐴. 

(4) B is relative complement of 𝐴 ≤  𝑀. 

Proof: (1) ⟶ (2) 

Let B ≤ K ≤𝒆𝒔𝒔 𝑀 to prove 
𝐾

𝐵
 ≤𝒆𝒔𝒔  

𝑀

𝐵
  

Let 
𝑁

𝐵
 ≤ 

𝑀

𝐵
 with 

𝐾

𝐵
 ∩  

𝑀

𝐵
 with 

𝐾

𝐵
 ∩ 

𝑁

𝐵
 = 0 

𝑀

𝐵
 (to prove 

𝑁

𝐵
= 0 

𝑀

𝐵
 ? ) 

Then   
𝐾 ∩𝑁

𝐵
=  𝑂𝑀

𝐵

 

Hence  𝐾 ∩ 𝑁 = 𝐵 

But K ≤ess M & N ≤ess N 

N ∩ K ≤ess M ∩ N = N 

= N ∩ K ≤ess N 

𝐵 ≤ess 𝑁, but B is closed in M (B) 

𝑡ℎ𝑒𝑛 B = N ⟹ 
𝑁

𝐵
= 𝑂𝑀

𝐵

 

Then (3) 
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If A is a relative complement of B, then A ∩ B = (0) 

Then B ∩ A = (0) 

To prove B is the largest. 

Let B' ≥ B such that B' ∩ A = (0) 

But (A ⨁ B) ∩ B' = B ⨁ (A ∩ B') = B ⨁ (0) = B 

(𝐴 ⨁ 𝐵) ⋂ 𝐵′

𝐵
=  

𝐵

𝐵
= 𝑂𝑀

𝐵
 

𝐴 ⨁ 𝐵

𝐵
 ⋂

𝐵′

𝐵
=  𝑂𝑀

𝐵
 

B ≤ A ⨁ B ≤ess 𝑂𝑀

𝐵

 

𝐵 ≤  𝐴 ⨁ 𝐵 ≤ess 𝑀   [Since A relative complement of B] 

By (2) 
𝐴 ⨁ 𝐵

𝐵
  ≤ess 

𝑀

𝐵
 

𝐵′

𝐵
=  𝑂𝑀

𝐵

 ⟹ B = B′ 

B is a relative complement of A  

(3) ⟹ (4) it is clear  

(4) ⟹ (1) if B is a relative complement of A  

To Prove B is closed. 

Assume B ≤ess B′ (T prove B = B′). 
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(B′ ∩ A) ∩ B = B′ ∩ (A ∩ B) = (0) 

But B ≤ess B′ and B′ ∩ A ≤ B′ 

𝑇ℎ𝑒𝑛 (B′ ∩ A) ∩ B = (0) implies B′ ∩ A ≤ B′ 

𝑇ℎ𝑒𝑛 (B′ ∩ A) ∩ B = (0) implies B′ ∩ A ≤ 0 

But B is a relative complement of A and B′ ⊇ B 

𝐻𝑒𝑛𝑐𝑒 B = B   𝑡ℎ𝑒𝑛  B is closed. 

Proposition (1.23) [6]: If 𝐴 ≤ B ≤ M, if A is closed in B and B is closed in M then A 

≤ess M. (𝐴 ≤ess 𝐵 𝑎𝑛𝑑 𝐵 ≤ess 𝑀 ⟹  𝐴 ≤ess 𝑀). 

Poof: A ≤ess B ⟹ ∃ 𝑋̅ ≤ B ∋ A is a relative complement of 𝑋̅ 

Then (𝐵 ∩  𝐶 = (0)) 

Note that 𝑋̅ ∩ C = (0) (Since 𝑋̅ ∩ C ⊆ B ∩ C = (0)) 

We claim that A is a relative complement of 𝑋̅ ⊕ C  

To prove A ∩ (𝑋̅ ⊕ C) = (0). 

Let a ∈ A & a = X + C, X ∈  𝑋̅, C ∈ C 

𝑇ℎ𝑒𝑛 a – x = c ∈ B ∩ C = (0) 

𝑡ℎ𝑒𝑛 C = 0, a = X ∈ A ∩ 𝑋̅ = (0) 

𝑡ℎ𝑒𝑛 a = 0 

𝑡ℎ𝑒𝑛 A ∩ (𝑋̅ ⊕ C) = (0) 
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Let 𝐴′ ⊇ 𝐴 and 𝐴′ ∩ (𝑋̅ ⊕ 𝐶) = (0) 

(𝐴′ ∩ 𝑋̅) ⊕ (𝐴′ ∩ 𝐶) = (0) 

𝑇ℎ𝑒𝑛 A′ ∩ 𝑋̅ = (0) 

But A is a relative complement of 𝑋̅ and 𝐴′ ⊇ 𝐴 

𝐻𝑒𝑛𝑐𝑒 A = A′ 

𝑡ℎ𝑒𝑛  A is a relative complement of 𝑋̅ ⊕ C 

𝑡ℎ𝑒𝑛  A is closed in M. 

Proposition (1.24) [6]: If A ≤ B ≤ M, and 𝐴 ≤ess M then A ≤ess B. 

Proof: A is closed in M ⟹  ∃ 𝑋̅ ≤ M ∋ A is relative complement of 𝑋.̅ 

𝑇ℎ𝑒𝑛 A ∩ 𝑋̅ = 0 

Let B ∩ 𝑋̅ ≤ B We claim that A is a relative complement of B ∩ 𝑋̅ 

A ∩ (𝐵 ∩ 𝑋̅) = 𝐵 ∩ (𝐴 ∩ 𝑋̅) = 𝐵 ∩ (0) = (0) 

Suppose (∃A′ ≥ A); A′ ∩ (𝐵 ∩ 𝑋̅) = (0) 

(∃A′ ⊆ B) ⟹ (A′ ∩ B) ∩ 𝑋̅ = (0) 

𝑇ℎ𝑒𝑛 A′ ∩ 𝑋̅ = (0) 

But A is a relative complement of 𝑋̅ ⟶ A = A′ 

𝑇ℎ𝑒𝑛A is a relative complement of B ∩ 𝑋̅ ⊆ B 

𝐻𝑒𝑛𝑐𝑒 A is closed in B 
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Proposition (1.25) [6]: Let C be a closed in M and let T ≤ M such that C ∩ 𝑇 = (0) 

Then C is a relative complement of T 

𝑡ℎ𝑒𝑛 C ⊕ T ≤ess M 

If 𝐶 ⊕ 𝑇 ≤ess 𝑀, to prove 𝐶 is relative complement of 𝑇. 

Since C is closed in M, So C is relative complement of S ≤ M (then C ∩ S = (0)) 

To prove C is a relative complement of T  

C ∩ T = (0) 

Suppose ∃ D ⊇ C such that D ∩ T = (0) 

(C ⊕ T) ∩ (D ∩ S) = [(C ⊕ T) ∩ D] ∩ S 

But C ⊕ T ≤ess M, hence 

D ∩ S = (0) and D ⊇ C, C is a relative complement of S. So D = C 

𝑇ℎ𝑒𝑛 C is a max. Sub With property C ∩ T = (0) 

𝑡ℎ𝑒𝑛 C is a relative complement of T.  

Exercise (1.26) [6]: 

(1) Let A ≤ B ≤ M. If B ≤ess M. To prove that 
𝐵

𝐴
 ≤ess  

𝑀

𝐵
 is the converse true. 

(2) If 𝐴 ≤ess M, A2 ≤ess M2. Prove that A1 ⊕ A2 ≤ess M1 ⊕ M2. 

(3) A1 ≤ess M1, A2 ≤ess M2.To prove that A1 ⊕ A2 ≤ess M1 ⊕ M2. 
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(4) Let M be a finitely generated Faith. Multiplication. R–module. Let N ≤ M 

prove that. 

N ≤ess M ⟺ (N R I M) ≤ess R ⟺ N = Im for Some closed ideal I in R. 
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Definition(2.1): sup module A of M is said to be t-essential in M (wr=tecn 

A≤𝑡𝑒𝑠𝑠M) if for every sup module B of M , 𝐴 ∩ 𝐵 ≤ 𝑍2(𝑀) implies that 𝐵 ≤

𝑍2(𝑀) clearly if A is a Sup module of anon singular  module M , then A is t-

essentialin M if and omly if is essent ialin M .  

The following Proposition is useful 

-Proposition(2.2): the following State ements are equivalents for a sup module A 

of an R –module M ; 

1. A is t-essential in M ; 

2. (𝐴 + 𝑍2(𝑀)) 𝑍2⁄  (M) is essenti al in 𝑀 𝑍2⁄  (𝑀) 

3. 𝐴 + 𝑍2 (𝑀) is essential in M ; 

4. 𝑀 𝐴⁄  𝑖𝑠 𝑍2-torsion 

Proof: - (1) ⇒ (2) there exists Subodule B of M such that 𝐴 ⨁ 𝐵 is essential in M . 

By ℎ2 𝑝𝑜⁄  thesis , 𝐵 ≤ 𝑍2 (𝑀) hence , 𝐴 + 𝑍2 (𝑀) is essential in M , and since 

𝑍2(𝑀) is a closed Sub module of M , we conclude that (𝐴 + 𝑍2(𝑀) 𝑍2(𝑀)⁄  is 

essential in 𝑀 𝑍2⁄ (𝑀)  

(2) ⇒ (3) This is obrious  

(3) ⇒ (4) By hypo thesis 𝑀/(𝐴 + 𝑍2(𝑀)) is singular ,and hence , 𝑍2-torsion .on 

the other hand , (𝐴 + 𝑍2(𝑀)/𝐴 is isomorphic to a factor of 𝑍2(𝑀)  

Proposition(2.3): The following statements are equir a lent for a sub module A of 

a module M (the not a tion ≤e denotes an essential Sub module ): 

1. 𝐴 ≤𝑡𝑒𝑠  𝑀 ; 

2. (𝐴 + 𝑍2(𝑀))/𝑍2(𝑀) ≤𝑡𝑒𝑠  𝑀 𝑍2⁄ (𝑀);  

3. 𝐴 + 𝑍2(𝑀) ≤𝑡𝑒𝑠 𝑀 ; 

4. 𝑀 𝐴⁄  𝑖𝑠 𝑍2-torsion ; 

Proof: A shown [1,Proposition 2.2] , (1) ⇔ (2) ⇔ (3) ⇔ (4). The equiralence 

(1) ⇔ (5) follows easily from the t-essential property  
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Corollary(2.4) 

(1)𝑙𝑒𝑡 𝐴 ≤ 𝐵 ≤ 𝑀 be Modules . then 𝐴 ≤𝑡𝑒𝑠  𝑀𝑖 fand only if 

𝐴 ≤𝑡𝑒𝑠 𝐵 𝑎𝑛𝑑 𝐵 ≤𝑡𝑒𝑠 𝑀 

(2) let 𝑓: 𝑀 → 𝑁 be a homomorph is M of Modules , and 

𝐴 ≤𝑡𝑒𝑠 𝑁 𝑇ℎ𝑒𝑛 𝑓−1(𝐴) ≤𝑡𝑒𝑠 𝑀 

Proof: (1) This follows from proposition 1.1(4) and the facts that 𝐵 𝐴⁄ ≤

𝑀 𝐴⁄  𝑎𝑛𝑑 𝑀 𝐵⁄ ≅ [𝑀 𝐴⁄ ] [𝐵 𝐴⁄ ]⁄  

Corollary(2.5): let 𝐴𝜆 be a sub module of 𝑀𝜆 For all 𝜆 𝑖𝑛 𝑎 𝑠𝑒𝑡 ∧ 

1) If ∧ is finite and 𝐴𝜆 ≤𝑡𝑒𝑠 𝑀𝜆 for all 𝜆 ∈∧  then ∩∧ 𝐴𝜆 ≤𝑡𝑒𝑠∩∧ 𝑀𝜆 

2) ⨁∧𝐴𝜆 ≤𝑡𝑒𝑠 ⨁∧𝑀𝜆 if and only if 𝐴𝜆 ≤𝑡𝑒𝑠 𝑀𝜆 For all 𝜆 ∈∧ 

Proof . (1) clearly , ∩∧ 𝑀𝜆 ∩∧ 𝐴𝜆⁄  embeds in ∏ 𝑀𝜆 𝐴𝜆⁄∧  . By proposition 1.1 (4) 

,∏ 𝑀𝜆∧ 𝐴𝜆 𝑖𝑠 𝑍2⁄  to rsion , and so ∩∧ 𝑀𝜆𝑖𝑠 𝑍2 −torsion .A gain by 

∩∧ 𝐴𝜆 ≤𝑡𝑒𝑠∩∧ 𝑀𝜆 

(2) This follws from the isomorph is ⊕⋀ 𝑀𝜆 ≅⊕⋀ 𝑀𝜆 𝐴𝜆⁄  and proposition 

1.1(4) 

2.𝑇11 −TyPEMoDuLES 

Recall from [17] that a module M is said to satisfy  

𝐶11 com dition if every sub module of M has a complent which is a direct sum 

and . By restricting the 𝐶11 com dit ionto-closed sub module of M 

       Definition(2.6): we say that a sub module C of M is t-closed in M and write 

𝐶 ≤𝑡𝑐 𝑀 𝑖𝑓 ≤𝑡𝑒𝑐 𝐶` ≤ 𝑀 

      Implies that 𝐶 = 𝐶` 

Clearly , every t-closed sub module is closed and if C is a sub module of a 

nonsingular module M , then C is t-closed in M if and only if C is closed in M  

Further properties of t-closed sub modules are given below  
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Lemma (2.7):. let M be a module  

1. If 𝐶 ≤𝑡𝑐 𝑀 , 𝑡ℎ𝑒𝑛 𝑍2(𝑀) ≤ 𝐶 

2. 0 ≤𝑡𝑐 𝑀 if and only if M is nonsingular  

3. 𝑖𝑓 𝐴 ≤ 𝐶, then 𝐶 ≤𝑡𝑐 𝑀 if and only if 𝐶 𝐴⁄ ≤𝑡𝑐 𝑀 𝐴⁄  

Proof :(1) since (𝐶 + 𝑍2(𝑀)) 𝐶 ≅ 𝑍2(𝑀) (𝐶 ∩ 𝑍2(𝑀))⁄⁄  is 𝑍2 torsion –by 

proposition 2.2 , 𝐶 ≤𝑡𝑒𝑠 𝐶 + 𝑍2(𝑀) thus 𝐶 = 𝐶 + 𝑍2(𝑀) and so 𝑍2(𝑀) ≤ 𝐶 

(2) let 0 ≤𝑡𝑐 𝑀 𝑠𝑖𝑛𝑐𝑒 0 ≤𝑡𝑒𝑠 𝑍2(𝑀) we conclude that M is nonsingular . the 

con verse is easy  

(3) this following by proposition 2.2(4) 

Proposition(2.8): let C be a sub module of a module M the following state 

mentis are  equivalent: 

1. There exists a sub module S such that C is with respect to the property 

that 𝐶 ∩ 𝑆 𝑖𝑠 𝑍2-torsion; 

2. C is t –closed in M; 

3. C contains 𝑍2(𝑀) and C is a closed sub module of M ; 

4. C contains 𝑍2(M) and 𝐶 𝑍2(𝑀)⁄  is a closed sub module of 𝑀 𝑍2(𝑀)⁄ ; 

5. C is a complement to a nonsingular sub module of M ; 

6. 𝑀 𝐶⁄  is nonsingular  

Proof: .(1) ⇒ (2)𝑙𝑒𝑡(1) hold and 𝐶 ≤𝑡𝑒𝑠 𝐶` ≤ 𝑀 then 𝐶 ∩ (𝐶` ∩ 𝑆) ≤

𝑍2(𝑀) implies that 𝐶` ∩ 𝑆 ≤ 𝑍2(𝑀) . Hence 𝐶 = 𝐶` 

(2) ⇒ (3) By lemma 2.5 C contains Z , (M) let 𝐶 𝑍2(𝑀) ≤ 𝐶` 𝑍2(𝑀)⁄⁄  By 

proposition 2.2(2) , 𝐶 ≤𝑡𝑒𝑠 𝐶` , ℎ𝑒𝑛𝑐𝑒 𝐶 = 𝐶` 

(3) ⇒ (4)𝑙𝑒𝑡𝐶 ≤𝑒 𝐶` ≤ 𝑀 every essential sub module is t-essential hence 

by proposition 2.2(2), 𝐶 𝑍2(𝑀)⁄ ≤𝑒 𝐶` 𝑍2(𝑀)⁄  Thus 𝐶 = 𝐶` 

(4) ⇒ (5) As C is closed by lam [12,proposition 6.32], 𝐶 = 𝑋 ∩ 𝑀 for some 

direct . sum M and X of the injective hull 𝐸(𝑀), say 𝐸(𝑀) = 𝑥⨁𝑦 and let 
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𝑆 = 𝑀 ∩ 𝑌 cleary 𝐶 ∩ 𝑆 = 0 Thus 𝑍2(𝑠) = 𝑍2(𝑀) ∩ 𝑆 ≤ 𝐶 ∩ 𝑆 = 0 and 

hence S 

              Thus it is 𝑍2- torsion . therefore ,from the is ommorph is 

             𝑀 [𝑀 𝐴⁄ ] [(𝐴 + 𝑍2(𝑀)) 𝐴⁄ ]⁄ ≅ 𝑀 (𝐴 + 𝑍2(𝑀))⁄  , we cohclude that 

𝑀 𝐴⁄  𝑖𝑠 𝑍2-torsion  

            (4) ⇒ (1)𝑠𝑖𝑛𝑐𝑒 𝑀 𝐴⁄  𝑖𝑠 𝑍2-torsion , [𝑀 𝐴⁄ ][𝑍(𝑀 𝐴⁄ )] is singular . How       

           every ,the latter is isomorphic to 𝑀 𝐴∗⁄  𝑤ℎ𝑒𝑟𝑒 𝐴∗ 𝐴⁄ = 𝑍(𝑀 𝐴⁄ ) thus  

          𝑀 𝐴∗⁄  is singular .  

        Now let 𝐴 ∩ 𝐵 ≤ 𝑍2(𝑀) for some sub module B of M , and 𝑏 ∈ 𝐵. 𝐴𝑠 𝑀 𝐴∗⁄   

       is singular there exists a ness eutial  right ideal of R such that 𝑏𝐼 𝐴∗⁄  then for  

      every 𝑋 ∈ 𝐼. There exists an essential right ideal Z of R such that 𝑏𝐼 ≤ 𝐴∗ . then  

       for every 𝑋 ∈ 𝐼 , there exists an essential right ideal 𝐾 ∘ 𝑓𝑅 Such that  

       𝑏 × 𝐾 ≤ 𝐴 ∩ 𝐵 ≤ 𝑍2(𝑀) and so 𝑏𝑥 + 𝑍2(𝑚) ∈ 𝑍(𝑚) 𝑍(𝑚)) = 0⁄    

       thus𝑏𝐼 ≤ 𝑍2(𝑀) . and this implies that 𝑏 + 𝑍2(𝑀) ∈ 2(𝑀 𝑍2(𝑀)⁄ ) = 0 so  

       be∈ 𝑍2(𝑀) consequently , 𝐵 ≤ 𝑍2(𝑀) 

      Remark(2.3):. every essential sub module of a module M . is t-essential But the   

       converse not true fov  example 𝑍12 𝑎𝑠 𝑍-module  

       (4) ≤𝑡𝑒𝑠  𝑍12 𝑏𝑢𝑡 (4) ≤
𝑡𝑒𝑠⁄ 𝑍12 

        Corollary (2.9): let M be a module  

1. 𝑍2(𝑀) is t-closed in M 

2. If 𝜑 is an endomorph is M of M and C is a t-closed sub module of M , then 

𝜑−1(𝑐) is t-closed in M 
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Proof (1) since 𝑀 𝑍2⁄ (M) is nonsingular ,𝑍2(𝑀) is t-closed in M by proposition 

2.6(2) . there is natural embedding of 𝑀 𝜑−1⁄ (𝑐) in to the nonsingular module 

𝑀 𝐶⁄  thus 𝑀 𝜑−1⁄ (𝑐) is nonsingular ,and hence by propos is it ion 2.6 𝜑−1(𝑐) 

is t-closed in M 

Corollary (2.10) let C be a sub module of a module M  

1. If 𝐶 ≤𝑡𝑐 𝑀 , then 𝐶 = 𝑍2(𝑀) if and only if C is 𝑍2 torsion if and only if 

there exists a t-essential sub module S of M for which 𝐶 ∩ 𝑆 ≤ 𝑍2(𝑀) 

2. Let 𝐶 ≤ 𝑁 ≤ 𝑀 𝑖𝑓 𝐶 ≤𝑡𝑐 𝑀 , 𝑡ℎ𝑒𝑛 𝐶 ≤𝑡𝑐 𝑁 

3. If ≤𝑡𝑐 𝑁 𝑎𝑛𝑑 𝑁 ≤𝑡𝑐 𝑀 𝑡ℎ𝑒𝑛 𝐶 ≤𝑡𝑐 𝑀 

Proof .(1) by lemma 2.5(1) it suffices  to show that if 𝐶 = 𝑍2(𝑀) then there 

exists a t-essential sub module S of M such that C is maximal with respect 

to the property that 𝐶 ∩ 𝑆 𝑖𝑠 𝑍2 −torsion let 𝑆 ∩ 𝐵 ≤ 𝑍2(𝑀). By Z or n 

lemma , B can be enlarged in to a t-closed sub module C` such that 𝑆 ∩ 𝐶` ≤

𝑍2(𝑀)  However by lemma 2.5(1) 𝐶 = 𝑍2(𝑀) ≤ 𝐶` thus 𝐶` = 𝐶 =

𝑍2(𝑀)ℎ𝑒𝑛𝑐𝑒 𝐵 ≤ 𝑍2(𝑀) and so is t-essential 

(2) and (3) follow by proposition 2.6[(2)⇔ (6)] 

Let 𝐶 ≤𝐶 𝑀 mean that C is a closed sub module of M . we have in general  

𝐶 ≤ 𝑀,    𝐶` ≤𝐶 𝑀  ⇏ 𝐶 ∩ 𝐶` ≤𝐶 𝐶; 

𝐶 ≤𝐶 𝑀,   𝐶` ≤𝐶 𝑀    ⇏   𝐶 ∩ 𝐶` ≤𝐶 𝑀 ; 

See lam [12, caution 6.27 and proposition 6.32], but these are always true if 

we replace cbytc  

Proposition(2.11) let M be a module then : 

1. 𝐶 ≤ 𝑀 , 𝐶` ≤𝑡𝑐 𝑀 ⇒ 𝐶 ∩ 𝐶` ≤𝑡𝑐 𝐶 ; 

2. 𝐶 ≤𝑡𝑐 𝑀 , 𝐶` ≤𝑡𝑐 𝑀 ⇒ 𝐶 ∩ 𝐶` ≤𝑡𝑐 𝑀 

               Moreover , an arbitrary in terse action of t-closed sub module is t-closed  
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            Proposition(2.12) [9,proposition 2.4,p.q3] 

  Let M be a nonsingular R-module and let A be a sub module of M . then A   

            is y-closed in M  if  

               and only if A is closed  

               Proof :  ⇒ 𝐵𝑦 (2.1,1.3)  

              ⇐ Assume that M is a nonsingular R-module and A is a closed sub module  

                of M . let 𝑍(
𝑀

𝐴
) =

𝐵

𝐴
          

              where B is a sub module of M with 𝐴 ⊆ 𝐵 hence 𝐴 ⊆𝑒 𝐵 by (1.1.1∘) But A  

             is closed in M , there       

             for 𝐴 = 𝐵 𝑎𝑛𝑑 𝑍(
𝑀

𝐴
) = 0 thus A is a y-closed sub module of M 

Proposition(2.13): let M be a singular R module .then M is the only y-closed  

sub module of M 

Proof:  Let A be an y-closed sub module of M 

To show that 𝑀 = 𝐴 , 𝑙𝑒𝑡 𝑚 ∈ 𝑀 , since M is singular , then an 𝑛(𝑀) ⊆𝑒 𝑅   

 claim that an 𝑛(𝑀) ⊆ 𝑎𝑛𝑛(𝑀 + 𝐴) trover if y this , let 𝑟 ∈ 𝑎𝑛𝑛(𝑀), then  

 𝑟𝑚 = 0 ∈ 𝐴 and hence 𝑟(𝑀 + 𝐴) = 𝐴 

So 𝑟 ∈ 𝑎𝑛𝑛(𝑀 + 𝐴) .since 𝑎𝑛𝑛(𝑚) ⊆𝑒 𝑅  

           But 𝑀 + 𝐴 ∈
𝑀

𝐴
 𝑎𝑛𝑑 

𝑀

𝐴
 is nonsingular , there F or 𝑀 + 𝐴 = 𝐴 and hence  

          𝑀 ∈ 𝐴 thus 𝑀 = 𝐴 
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