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Introduction

Through this paper all rings are associative with unity and all
modules are unitary right modules. We recall some relevant notions
and results. A submodule N of an R-module M is essential in M
(briefly N<_ M) if N N W = (0), W < M implies W = (0)[2]. A
submodule N of M is called closed in M (briefly N <. M) if N has no
proper essential extension in M, thatis if N <., ;W < M, then N =
WI[9]. The set {x € M: x| = (0) for some essential ideal | of R} is
called the singular submodule of M and denoted by
Z(M)[I0].Equivalently Z(M) = {x € M: ann(x) <.,<R} and ann(x) = {r
€ M: xr = 0}. M is called singular (nonsingular) if Z(M) = M(Z(M) =
0).

It is known that" a module M is called extending( CS-module or

module has C; -condition) if for every submodule N of M then there

exists a direct summand W(W <® M) such that N <, W "

Equivalently” M is extending module if every closed submodule is a

direct summand", where a submodule C of M is called closed if
C <.ss C' <M implies that C = C'[1].

This work consists of two chapters. In chapter one we deal with

certain knows result which is worthwhile throughout this work.

In chapter two we study type of module namely extending module of

some properties abut it also we study a character of extending module.




An R —modules M is extending if and only if every closed submodule

of M.




Chapter One

Essential and Closed

Submodule




In this chapter we recall the definition of essential submodules
closed submodules and some of their properties that are relevant to

our Work.

Definition (1.1) : Let M be an R — Module, recall , recall that a
submodule A of M is called essential in M (denoted by A <.,;c M) if
A N W # 0 for every non zero submodule W of M equivalently A
<ess M if Whenever ANW =0,W<MthenW=0.

Find essential submodule in Z12 and Z24.

Solution: Z1

<0>=W;

<2>={0,2,4,6,8,10} =W,
<3>={0,3,6,9}=W;

<4>={0,4,8}=W,

<6>={0,6}=W;s
Z1,={0,1,2,3,4,5,6,7,8,9,10,11} =W,
W, n\W,=W, #0

W, nWy,=0=1{0,6}

W, nW, #0=1{4,8}

W, nWg #0=1{0,6}




WyNW, £0=<2>  then W, <pe Z1,
Wsn W, =0

Wyn W, =(0,6)

Wsn W, = W, But W, # 0
W3 <ess Zn = Zn

W, n W, #0W,

W, N Wy =0butWs #0
Wy *ess Z12

Wen W, #0= W,

Wen Wy #0= W,

We n W, =0butW, #0
Ws Fess Z12

The submodules of Z,4 are.

w, ={0,2,4,6,8,10,13,14,16,18,20,22} W;

w, ={0,3,6,9,12,15,18,21} W,
w, ={0,4,8,13,16,20} W;
We ={0,6,12,18} W,

W, ={0,8,16} W,




W7 = {0112} W6

nNWw, #0= W,
nNWw, 0= W,
nNW, 0= W,
nNw, £0= W,

W,n Ws 0= Ws

WzﬂW6 ¢0=W6

0= W,
W, 0= W,
Wy 0= W,
W, #0= W,
Ws=0 but Wsg #0 = Wy $oss Zz4
0= W,
0= W,
0= W,
0= W,

#:OZWS




N We 0= W
nNw, 0=W,
nNw, £0= W,
NnW; 0= W
nw, 0= W,
Ws N Wy =0 but Ws #0 then Wy F.55 Zos

Theorem (1.3) [6]: Let M be an R - module and A be a submodule of
M, then A <., M if and only if every non-zero element of M has a

non-zero multiplication in A.

Proposition (1.4) [6]: (1) Let A, A", B and B' be submodules of an R -
module M such that A € B and A' < B' then,

a. A<, sMifandonlyif A <., B <.,;c M.
b.IfA<,Band A'<,,c B, then AN A' <., B NB'"

(2) Let M and N be R — modules and let f M— N be an R-

homomorphism, if B <. N, then F1(B) <.ss M.

(3) Let M= @ i € J, M; be an R-module, Where M; is a submodule of
M,Vi elif Al <,,c Mi, foreachiel,then®i €1 Ai <., M;, For
eachi €|, then @; ¢; Al <M.




Definition [1.5] [3]: Let A be a submodule of an R - module M.
Recall that a relative complement of A in M is any submodule B of M

Which is maximal with to the property An B = 0.

Easy application of Zama's lemma gives for every submodule A

of an R - module M, there exists a relative complement for A in M.

Proposition (1.6) [3]: Let M be an R - module and A be a submodule

of M. If B is any relative complement for A in M, then A @ B <.

M.

Proof: Let D be a submodule of M such that D n (A & B) =0, we
want to show that D = 0. Assume D # 0. Now A n (D & B) = 0. But
B is a relative complement for A in M, therefore D+B = B and hence
D cB. Then D =D n B =0. This is a contradiction. Thus 4 é¢ B

Let M be an R - module. Recall that a submodule A of M is a

closed submodule if A has no proper essential extension in M, [3].

Proposition (1.7) [3]: Let M be an R - module If A and B are
submodules of M such that M = A & B, then A is closed in M.

Proof: Let A <., D, where D is subniodule of M. since AnB =0,
thenD N B =0.

Letd € D,thend=a + b,a € A,b € B.Impliesthatd—-a="b
€D N B=0,wegetd-a=0andd=a.thusD = A,[3].




Proposition (1.8) [3]: Let B be a submodule of an R - module M.

Then the following statements are equivalent: -

1- B is a closed sub module of M.

2-1f B S K <gq M. then — <,o =

3- B is a relative complement for some submodule A of M.

Theorem (1.9) [3], [2]: Let A, B and C be submodules of an R-module
M with A € B, then:

1-There exists a closed submodule D of M such that C <. D.

2-1f A closed in B and B closed in M, then A is closed in M:

3-1f Closed in M, then % closed in%.

Definition (1.10) [3]: Let M be an R-module and let x € M Recall that
the annihilator of x (denoted by ann (x)) is defined as follows an (x) =

{reR:rx=0}Clearly ann (x) is an ideal of R.

Definition (1.11) [3]: Let M be an R-module. Recall that Z(M) =
{x € M:ann (x) <, R} is called singular submodule of M. If
Z(M) = M, then M is called the singular module .If Z(M) = 0 then

M is called a nonsingular module.

The following lemma gives some properties of singular

submodules which are needed later and can be found in [3].




Lemma (1.12) [3]: Let M and N be an R — modules, then:

11ff:M — N.Nisan R — homomorphism, then f(Z(M)) <
Z(N).

2-Epimorphic image of a singular module is, singular.

Proposition (1. 13) [3]: A module C is singular if and only if there

exists a shorter exact sequence

f B
0 A > B - C — 0suchthat f(A) <.ss B.
Corollar (1.14) [3]: If A <. B, then %is singular.

Proposition (1.15) [3], [2]: Let B be a nonsingular R - module, and

A €, B.Then % is singular if and only if A <. B.

Let M be an R - module. Recall that the second singular
submodule Z, (M) of M is the submodule of M containing Z (M) such

M

that 2222 js the singular submodule of :
Z(M)

Z(M)

Proposition (1.16) [6]: Any direct summand of an R — Module M is

closed.
Proof: Let N €® M, such that M = N @ K for some K € K.
To prove:

N is closed in M




Suppose 3 W € M suchthat N <, W

We must prove N = W

Suppose N+#W =3I x e Wandx&Nthenxe N=N Dk
thenx=n+h, n eEN,R eK

Then0) #x—n ew

(forif x—m=0 =R=0=>x=n+0=n €N)
(BytheN <, WN&&Vx ew,x #03r #0 = Ci €R
dr #0x €N)

Wehave:3r eR,r #030 #r(x—n)€EN
Sincex=n+k

rx = 1rn + rk

rx—rn _ rk EN nK = (0)
EN €k B

~ rx-rn=0Whichisac:
Thusw =n

Corollary (1.17) [6]: Every Submodule of semi simple R — module is

closed:

Remark (1.18): Closed Sub M. Then need not be direct summand for

example




Let M =Zg & Z,as aZ— module

LetN=<{(2,1) >={(0,0),(2,1),(4,0),(6,D}}

No = (0) & (0) =(0,0),

N=<(1,0)>=25 H(0) =[(a,0),a € Zg]

N, =<(2,00>=2)D (0) =[(a,0),a € (2) < Zg]
Proof: Ny = () @ (0) = [(a,0),a € (3) < Z]
<a>=<-a>N,=@)DZ,=[(a,b),a € (4),b € Z,]
N is closed in M

N is not direct summand of M.

Definition (1.19)[6]: Let B <M , A < M , A is called a relative
complement of B if A is the largest submodule of M With property A
N B = (0)

Suchthatif3A 2A4,A ' NB=0 ThenA=A4'

A relative complement A of B exists by Zero’s Lemma.

Example (1.20) [6]: F isany field, M=f D F

Let A=F & (0)

Vx €f,letB=<(x,1) > isarelative complement . for A

Special case:




M223@23,A223@(6):<((i,O))>
={(1,0),(2,0),(0,0)}
Letx =0, Bi=<(1,1)>={(1,1),(2,2),,0)

B1ﬂA:{(6,6)}

X=2,B, =<2,1)>={2,1),(1,1),(0,0)}

B, n A={(0,0)}
,B3=<(0,1) >={(0,1),(0,2),(0,0)}
B; nA={(0,0)}

B;, B,, B; Are relative complement of A in case F is an in finite to

field, A has an in finite relative complement.

Proposition (1.21) [6]: Let A < M if B is any relative complement
of A,then A @ <. M.

Proof: Let N <M suppose NN (A@ B)=0

Toprove N = (0)

Then N D (ADB)=(A ®DB)DN
=A® (BON)

Noticethat AN (B@ N) =0

To prove that:




q=b+nForsomeb € B,n € N

Then(@a—b)=neN n (A@) = (0)

~nN=0&a-b=0

Hencea =b € AN B = (0) (Since B is a relative complement of A)
a=0,SOAN(B@GN)=0

But B is relative complement of A

AndB@ N 2B

thenB@ N=B = N =(0) [Since N n B =(0)and A <M].

Theorem (1.22) [6]: Let B < M and A < M, the following

statement, are equivalent:

(1) B Isaclosed sub M of M.

(2) 1B <K Sego M, then = <o =

(3) If A is a relative complement of B, then B a relative complement
of A.
(4) B is relative complementof A < M.

Proof: (1) — (2)

Let B<K <,4s M tO prove% <ess

with £ n Mwithfnﬂzoﬂ(toproveﬁzo
B B B B B B

M
B

?)
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KON

Then —— = O%
Hence KN N =B
But K <ess M & N <.ss N
NNK <, sMNN=N
=NNK< N

B <. N, but B is closed in M (B)

thenB:N=>%=0%
Then (3)

If A is a relative complement of B, then A n B = (0)
ThenB N A=(0)

To prove B is the largest.

Let B'> B such that B'n A = (0)

But(A®B)NB'=B®(ANB)=B@®(0)=B

(A &B) ﬂB'_ B
B B B

= 0pm

A®B M\B _
B B~ Z

B<A®B <, Ou

B




B< A® B <.,, M [Since A relative complement of B]

A DB

BSe

M
SS p

B is a relative complement of A

(3) = (4) itis clear

(4) = (1) if B is a relative complement of A
To Prove B is closed.

Assume B <., B’ (T prove B = B').
(BBNnA)NnB=B'n(AnB)=(0)

ButB <., B'andB'n A<B’

Then (B' n A) N B = (0) implies B'n A< B’
Then (B' n A) n B = (0) implies B'n A<0
But B is a relative complement of A and B' 2 B

Hence B=B then B is closed.




Proposition (1.23) [6]: If A <B <M, if A'is closed in B and B is
closed in M then A < s M. (A Soss Band B <qgs M = A <o55 M).

Poof: A <.,c B= 3 X <B 3 Ais a relative complement of X
Then (B n C =(0))

Note that X n C = (0) (Since X N C € B n C =(0))

We claim that A is a relative complement of X @ C

To prove An (X @ C) = (0).

Letae A&a=X+C,X€e X,CeC
Thena—-x=ceBnNC=(0)
thenC=0,a=X€e€eANX=(0)
thena=0

then An (X @ C) = (0)
LetA'2Aand A’ N (X @ C) =(0)
(A'NX)D (@A nC)=(0)

Then A’ n X = (0)

But A is a relative complement of X and A’ 2 A
Hence A=A’

then A is arelative complementof X @ C

17




then A'is closed in M.

Proposition (1.24) [6]: f A<B <M, and A <.,c M then A <. B.
Proof: A is closed in M = 3 X <M 3 A is relative complement of
X.

Then ANX=0

Let B n X < B We claim that A is a relative complement of B n X
AnNnBnX)=Bn(A nX)=Bn(0)=(0)

Suppose (A’ > A); A'n (B N X) = (0)

(AA’€B)= (A'nB)n X =(0)

Then A’ n X = (0)

But A is a relative complement of X — A = A’

ThenA is a relative complementof BN X € B

Hence A is closed in B

Proposition (1.25) [6]: Let C be a closed in M and let T < M such that
CnT=(0)

Then C is a relative complement of T

thenC P T <.5s M




IfC @ T <.ss M, to prove C is relative complement of T.

Since Cis closed in M, So C is relative complement of S <M (then C
NS =(0))

To prove C is a relative complement of T

CnT=(0)

Suppose 3 D 2 Csuchthat D N T = (0)
ChATIN(DODNS=[(CEHT)NnD]NnS

ButC @ T <.ss M, hence

DnNS=(0)and D 2 C, Cisarelative complementof S.SoD=C
Then C is a max. Sub With property CNn T =(0)

then C is a relative complement of T.

Exercise (1.26) [6]:

(1) Let A<B <M. If B <5 M. To prove that = <, — is the

converse true.

(2) If A <gs M, Ax <ogs Ma. Prove that A1 @ Az <.ss M1 D
M.

(3) Ai <gss M1, Ax <. M2.TO prove that A1 @ Az <.;c M1 D
M.
Let M Dbe a finitely generated Faith. Multiplication. R-
module. Let N < M prove that.

19




N<..c M& (NRIM) <., R < N=Imfor Some closed ideal | in

R.




Chapter TWO

Extending Modules




Definition (2.1) [2], [6]: Let M be an R — Module recall that M is
called an extending module (CS — module) if every sub module of M

Is essential in a direct summand of M.

The following theorem gives a characterization of extending

modules.

Theorem (2.2) [6]: An R — Modules M is extending if and only if

every closed sub modules of M is direct summand.

Proof: Suppose mis a CS — modules and let A be closed Sub Modules

in M then there exists a direct summand K of M such that A <., K

But A is closed in m, therefore A =K .

Conversely, let B be any Submodule of m. So by there exists a closed
sub. Module H in M such that B <., H since H is closed in M, and

then by our assumption H is a direct Summand.

Definition (2.3) [7]: Recall that an R — Module M is called semi

simple, if every sub module of M is a direct summand of M.

Definition (2.4) [2]: Recall that a nonzero R — Module. M is called

uniform if every nonzero sub module of m is essential in M.
Remarks and examples (2.5) [9]:
1- Every direct summand of CS - module is CS.

2- The module Q as Z - module is CS - module




3- It is easy to see that every semi simple R - module is CS - module,

for example Z, as Z - module, Where n is square free.

Proposition (2.6) [6]: Let M be an R — module. Then M is uniform if

and only if M is an indecomposable and CS - module

Definition (2.7) [6]: Let R is an integral domain. Recall that an R -
module M is called a torsion free R - module if ann (m) = 0, for

every nonzero element m in M.

Proposition (2.8) [6]: Let R be a principle ideal domain and M be a
finitely generated and torsion free R - module, then M is a CS -

module.

Definition (2.9) [2]: Let N is an R-module. Recall that an R - module

M is called N - injective if for each monomorphic f: A — N, Where A

Is any R - module of N, and any homomorphism g: A — M, there is a

homomorphism h: N — M such that g = hof.

> N

0 —

4 b
£
h
M




Definition (2.10) [2]: Recall that an R — module is called-self -
injective if M is M -injective. Any family of R - modules {M; , i € I}
are called relatively injective if M;is M; — injective, for all distinct i, |

€ .

Definition (2.11) [2]: Let M is an R - module and let E(M) the
injective hull of M. Then M is self - injective if and only if f(M) <
M, for every endomorphism f of E(M).

Definition (2.12) [2]: Recall that an R - module M is called 7 -
injective if f(M) € M, for every idempotent f of E(M) .

The following proposition appeared in [6].

Proposition (2.13) [6]: Let M is a B - injective module. If A € B,

then M is A - injective and M is % - injective.

Proof: One can show that M is A - injective to show that M is g
injective.

X
A

Let % be a submodule of %, and & : — M be a

homomorphism. Let : B —» % be the natural epimorphismand ' =

1, . Since M is B - injective, then there exists a homomorphism O:
B — M such that 6,i = ®ym’. Now 8 (A) = (d,r’) (A) = & (0) = 0.

Hence ker m € ker 6, let W : % — M be a map defined by ¥ (b +




A) =60 (b) V b € B. One can easily show that ¥ is a homomorphism
and W,m = 0. Foreveryx € X

Y(x+A)=%1((X)=6(X)=d (x +A). Thus ¥,j = ® and therefore

M is % - injective.

wa"/ ¢
Proposition (2.14) [6] : Let M be an R —module , and let {Ai:i €1}
be a family of R - module , then M is @ ie Ai - injective if and only if

M is Ai - injective, forevery i € I.

Proposition (2.15) [2]: Let M is a r - injective R -module, then Mis a
CS - module.

Lemma (2.16) [2]: let M= A @ B. Then A is B - injective if and only
if for every submodule N of M such that N n A = 0, there exists a
submodule M' of M suchthat M=A @ M'and N c M.

It is known that a direct sum of CS - module need not to be CS -

module, for example:

Consider the Z - module M = Zg @ Z, clearly each of Zg and Z,

is a CS - module. One can show that the submodule A = ((2,1)) is a




closed submodule of M but it is not a direct summand. Thus M is not a
CS — module.

The following proposition gives a characterization for CS - module.

Proposition (2. 17) [2]: Let M = A @ B, Where A and B are both CS
modules. Then M is a CS module if and only if every closed

submodule Kof Mwith KN A=00or KN B =0is adirect suinmand.

Proposition (2.18) [2]: LetM =M, @M, &@ ... M, be a finite direct
sum of relatively injective modules M;, Wherei =1, 2,..,n. Then M

isa CS - module if and only if M; isa CS - module, for every i € I.

Theorem (2.19) [3]: Let M be an R - module. Then the following

statements are equivalent:

(1) Misa CS-module.
(2) Every closed submodule of M is a direct summand.
(3) If Aisa direct summand of the injective hull E(M) of M,

then A N M is a direct summand of M.

Proposition (2. 20) [3]: Let R is a nonsingular ring. Then R is a CS -

ring if and only if every cyclic nonsingular R - module is projective.

In particular, if R is a nonsingular and CS ring, then every principle

ideal in R is projective.

The following proposition can. We give the details of the proof for

completeness.




Proposition (2.21) [6]: An R - module M is CS if and only if M = Z;
(M) @ M, for some submodule M' of M, such that M' and Z>(M) are
both CS and Z»(M) is M' - injective.

Proof: = suppose that M is CS-module. Because Z"ZM) IS
2

nonsingular. It easily to show that Z,(M) is closed in M and hence M
=7Z,(M) @ M’, for some submodule M' of M. By [2], Z,(M) and M'
are both CS. Now let N be a submodule of M such that N n Z,(M) =
0. Then there exists submodules L;, L, of M such that M = L1 L,
and N <., LiclearlyL, n Z,(M) =0, and hence Z,(M) c L,. It
followsthat M =L, @ L, =Z,(M) @ (L.n M) @ Liand N c (L, N
M"Y @ L,.By (2.16) Z,(M)is M' - injective.

& Suppose thatM = Z,(M) @ M’', Where Z,(M) and M' are both

CS and Z,(M) is M' - injective. Clearly M' is nonsingular, and hence
Homomorphism (Z,(M), M') = 0. Thus M' is Z,(M)- injective. By
(2.18), M is CS —module.

Definition (2.22) [5]: Let M be an R - module. Recall that M is called
a multiplication R - module if for each submodule N of M, there exists
an ideal | of R such that N = IM Equivalently, M is multiplication if
for each submodule N of M,N = [N: M| M , Where [N : M] =
{r € RsuchthatrM < N}.

Proposition (2.23) [3]: Let M be a faithful multiplication R - module
If R is CS - ring then M is CS - module

27




Proposition (2.24) [3]: Let M is a finitely generated, faithful and
multiplication R - module If M is CS - module, then R is CS — ring.

Definition (2.25) [8]: Recall that a submodule N of an R - module M

is called a fully invariant submodule if for every endomorphism

f: M— M, f(N) < N.

Proposition (2.26) [3]: Let M = ; %1 M; be an R - module, Where

each my is a submodule of M. If M is CS - module, then each M is CS
- module. The converse is true if each closed submodule of M is fully

invariant.

Proposition (2.27) [3]: Let My and M2 be CS modules such that
annM; + annM;, = R, then M1 @ M is CS — module.

We end this section by the following two propositions which are

appearing in.

Proposition (2.28) [6]: Let R is a ring. The following statements are

equivalent:

(1) 619 R is CS - module, for every index set I.

(2) Every projective R - module is CS — module.

Proposition (2.29) [6]: Let R be a ring. The following statements are

equivalent:




(1) 619 R is CS - module, for every finite index set I.

(2) Every finitely generated projective R - module is CS — module,
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