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Abstract

In this search, we consider the differential transform method ( DTM)
for finding approximate and exact solutions of some partial
differential equations with variable coefficients . The efficiency of the
considered method is illustrated by some examples , the results reveal
that the proposed method is very effective and simple and can be
applied for other linear and nonlinear problems in mathematical

physics .



Chapter one
Basic

Definition and Rules



Introduction

Many physical problems can be described by mathematical models that
involve partial differential equations . A mathematical model is a
simplified description of physical reality expressed in mathematical terms
. Thus , the investigation of the exact or approximation solution helps us
to understand the means of these mathematical models . Several
numerical methods were developed for solving partial differential
equations with variable coefficients such uh He's polynomials , the
homotopy perturbation method , homotopy analysis method and the
modified variational iteration method . In this search, we consider the
differential transform method ( DTM) for finding approximate and exact
solutions of some partial differential equations with variable coefficients .
The efficiency of the considered method is illustrated by some examples ,
the results reveal that the proposed method is very effective and simple
and can be applied for other linear and nonlinear problems in mathematical

physics .



1.1-Introduction

In this chapter the basic definition and rules accorder to partial
differential equation and how this can be classified accorder to their
solutions.

1.2-Definition

Differential Equation

Definition 1.2.1:

A differential equation is an equation that relates the derivatives of a
function depending on one or more variables,

For example:
d’u + du _ COS X (1,1)
dx2 = dx v

Is a differential equation involving an unknown function u(x) depending
on one variables and

E)Zu_l_azu __ Ou
Y

o . (1,2)

Is a differential equation involving an unknown function u (t, x, y)
depending on three variables.



Partial Differential Equation (PDE)

Definition 1.2.2:

A partial differential equation (PDF) is an equation that contains, in
addition to the dependent and independent variables, one or more
partial derivatives of the dependent variable.

Suppose that our unknown function is u and it depends on the tow
independent

Variables than the general from of the (PDE) is
F(X, ¥, oo, W Uy, Uy, Uy, Uy, Uy, ... ) = O

Here subscripts denotes the partial derivatives, for example

_du _du B a*u B 9*u
U = ox ty = ay’ Wax = G52 Uxy = 0xdy’
a*u
= o

Order of partial differential equation

Definition 1.2.3:

The order of a partial differential equation is the order of the highest
ordered partial derivative appearing in the equation,

For example:

In the following example, our unknown function is u and it depends on
three variables t, x and y.



WU, + 2xuU,, +u,, = e”; Order is Two
BMU,,, + xu,, + 8u =7y ;0rder is Three
mu; — 6uu, + u,,, = 0; Order is Three

MU, + UU, = U,,; Order is Tow

M Uyyy + XUy, + yu? = x + y; Oeder isThree

mu, +u,=0; Order is One

Degree of partial differential equation

Definition 1.2.4:

The degree of a partial differential equation is the degree of the highest
order partial derivative occurring in the equation,

For example:

In the following examples, our unknown function is u and it depends on
twot,xandy

WU, + 2xu,, +u,, = e”;Degree is One

mu,,, +2xu’,, + 8u = 7y;Degree is One

3

mu, — 6uu,u = 0;Degreeis Three
t X XXX

mu, + uud, = u,, ;Degreeis One

2

mu’,,, +xu’,, + yu? =x+y;Degreeis Two

mu, +y, =0;Degreeis One



Definition 1.2.5:

The Laplace transform of a function f(x) is denoted by L (f(x)) and is
defined as the integral of e 5*f(x) between the limits x = 0 and x =

oo

i.e.
L(f(0) = [, e f(x)dx

The constant parameter (s) is assumed to be positive and large enough
to ensure that the product e **f(x) converges to zero as x — oo, for
most common function f(x).

In determining the transform of any function, you will appreciate
the limits are substituted for (x), so that the result will be a function of s

- L(f(0) = [y e f(x)dx = F(s)

1.3-Properties of Laplace transformations

At this point, we will state two important properties of Laplace
transformation then precede how to use it to solve differential
equation.



PROPERTY 1:-

If f(x) =Ag(x)+ Bh(x),_where A and B are constants and the
function g(x) and h(x) have Laplace transform G(x)and H(x),
respectively, then

L(f(x)) = F(s) = AG(s) + BH(s)
In general

If f1(x), f2(x),..., fa(x) are (n) function such that x > 0 and if
Gy, G,, ..., G, are (n) numbers then:

LIG1f1(x) + Gof2(x) + -+ Gpfn(X)] =
G1L[f1(x)] + G L[f2(x)] + -+ + G, L[fn(x)]

This property is called property of linearity.

PROPERTY 2:- (property of uniqueness)

Let f(x),and g(x), be two function piecewise continuous with an
exponential order at infinity.

Assume that L(f) = L(g),

Then f(x) = g(x)for x € [0, B], for every B > 0, except may be for
a finite set of points.



1.4-Classification of partial differential

equation

1-The general from of the first order P.D.E is given by:

f(x, y,u,u,, uy) = (0, where x and y are independent variables
and u is the dependent variable and this equation may be linear and
may be non-linear equation.

2-The general from of the second order P.D.E is given by:
Auy, + Buy, + Cuy, + Du, + Euy, + Fu==G

Whereas A, B, C, D, E and F are function of x and y or constants and G is
function of xand y.

3-The general from of the P.D.E of higher order is given by:

n m ™ _
i=0 2j=0 ij (X, ¥) axiayl fx,y)

1.5-Laplace transform for partial differential

equation

There are many applications for Laplace transformations such as
solutions of linear partial equation with constant coefficients which we
show it in this paragraph. And before starting in the method of solution
we need to know Laplace transformation for partial derivatives.



Definition 1.2.6:-

Laplace transformation for function u(x, t) is define by following
from:

L(u(x,t)) = fooo e Stu(x, t)dt = v(x,s),s > o0
From the above definition, we get the following laws:-

(1) L(u;) = sv(x,s) —u(x,0)
(2) L(u;) = s*v(x,s) — su(x,0) —u,(x,0)

3) L) =g vs)



Chapter Two

Solving partial differential
Equations by using Differential

transformation



2-1 INTRODUCTION

In This Chapter we will deliberates The method differential
transformation to find a complete solution for partial differential

equation with variable coefficients



2-2- Methodolog

To illustrate the basic of the DTM, we considered u(x,t) is
analytic and differenuously in the domain of interest then let

1 [dku(x,t
U (x) ZE[ ;‘f,’f )], .................. (2-1)

Where the spectrum uk(x)is the transformrd function, which is called
T-function in brief the differential inverse transform of

U (x) Is defined as follows.

u(x,t) =Y oUp X —t)* , e (2-2)
Combining (2-1) and(2-2) ,it can be obtained that

o 1 okuxt
u(x,t) = Lo % t—1t)k, S X )

When (t ) are taken as (t = 0)then equation (2-3) is expressed

w 1  du(xt
u(x,t) = Xiloy u;’: ) tk e, (2-4)

And equation (2-2) is shown as
u(x,t) =Yp o Uk(x)tkE , i, (2-5)

In real application, the function u(x,t) by a finite series of

u(x,t) =Y o Uk(x)t* , e, (2-6)

Usually, the values of n is decided by convergence of the series
coefficients. The following theorems that can be deduced from equation
(2-3) and equation (2-4) are given as:

10



2-3-Theorems:

then the transformed function is:

Up(x) = wi(x) £ Vi (x).

the transformed function is

Ui,(x) =aV, (x).

Theorem 2-3-3: if the original function is U(x,t) = %, then
The transformed function is :

) = S ).

Theorem 2-3-4: if the original function is U(x, t) = aw(x't), then the
transformed function is U (x) = aix wi (x).

Theorem_2-3-5: if the original function s U(x, y, ) = *2,

then the transformed function is

3
U(x,y) = 5Wk(x; y).

ow(x,y,zt : jon i
—(ai’ ), then the function transformed function is Uy (x,y,z) =

d
5, Wk, Y, 2).

11



transformed function i:s

Up(x) = xm6(k — n).

x™t"™ w(x, t), Then the transformed function is

u(x) = x"wy_p, (x).

then the transformed function is:

Uk(x) - erf=0 W (x)vk—r(x)-

To illustrate the aforementioned theory, some examples of partial
differential equations with variable coefficients are discussed in details
and the obtained results are exactly the same which is found by
varitional iteration method .

2-4-application

Here, extended differential transformation method(DTM) is used to
fine solutions of the PDEs in one, two and three dimensions with
variable coefficients, and compared with that obtained by other
methods

Consider the one-dimensional heat equation with variable coefficients in
the form

12



2
U,(x,t) — %uxx(x, =0 , e, (2-7)
And the initial condition

U(x,0) =x%> e, (2-8)

Where U = U(x, t) is a function of the variables x and t the exact
solution of this problem is U(x,t) = x*e! then by using the basic

properties of the reduced differential transformation, we can find
transformed form of equation (7) as:

. xzazvk(x)
(k+ 1Dy, (x) = oz e (2-9)
Using the initial condition, equation (2-8) we have
ug(x) =x%. s (2-10)

Now, substituting equation (2-10) into (2-9), we obtain the following

U, (x) values successively

2 2 2

U (xX) = 22, Up(x) = =, Us(X) = —, Uy (x) = o, Us (x)
1x—x,2x—2,3x—6,4x—24,5x
xZ
- 120
xz xz
Us() = oy, Ul(0) = s (2-11)

Finally the differential inverse transform of U, (x) gives
(o'e} 2 2 (o'e} tk
UERIED NN/ MCITZED )il t (2-12)

Then, the exact solution is given as:

U(x,t) = x%2e! s sestseene (2-13)



Consider the tow dimensional heat equation with variable coefficients a:

2 2
Ui(x,y,t)— y? U, (xyt)— > U,,(xx,y,t) =0............. (2-14)
Where the initial condition is

Ux,y,0)=y%>. s (2-15)

Taking differential transform of equation(2-14) and the initial condition
Equation (2-15) respectively ,

92 92
(k+ DVi(x,y) = Y 2 5 Ui(x,y) + x* 5 Up(x,y), ....(2-16)

Using the initial condition, equation (2-15) we have:

U, ) =y . (2-17)
Now, substituting equation (2-17) into(2-16), we obtain the following

U (x,y) values successively

2 x? x? y?2
Ul(xly) =X rUZ(x!y) =?,U3(x,y) = ?,U4(x,y) = EIUS(ny) =

2

x2 y2 y2 %k is even
E;U6(x;y) zm ;U7 = 5040’ Uk(x;}’) = yz . '(2'18)
k—!k is even

Finally the differential transform U (x,y)

tk

m .ee(2-19)

oS o tk 0
Ulx,y,t) = Zilo Ur(x, )tk = x* 3o -+ Y2 53l

14



Then the exact solution is given by:

t3 t5 t2n+1 t2 t4-
Ulx vy t) = t — e Y?(1
(3.0 x<+3'+5' (2n+1)> TR
t2n+1
4. )smht
-~ (2n)!
= X%sinht + Y*cosht............. (2-20)

Which is the exact solution of equation (2-14) initial condition equation

(2-22)respective

Considering the one-dimensional wave equation with variable
coefficients as:

2

U, — "7 U, (x,)=0, . (2-21)
With the initial condition

Ux,0)=x,U,(x,0)=X% ... (2-22)
Taking deferential transform of equation @~ ....... (2-21)
(k+ 1) (k + 2)Us(x) — 7F U (x)=0, ... (2-23)

Using the initial condition, equation (2-22) we have
Ug(x) =XU1(x) =x%. e (2-24)

Now, substituting equation (2-24) into (2-23), we have obtain the
following U, (x) values successively

15



U.(x)=0k=246,.. ..

1
Us(x) = —x ,Us(x) = ax ,Uz3(x) = o ——x? ...ceeenn(2-25)

finally the differential invers transform of U (x) gives

k

U(x,t) = Y2 OUktk—x2(1+t——+ +t ........ (2-26)
Thus, the exact solution is given in the closed form as:

Ulx,t) = X%t . s (2-27)

Considering the tow-dimension wave equation with variable coefficients
as:

2
U,(x,yt)— —uxx(x y, t) — yy(x y,t) =0 ... (2-28)

With the initial condition

U(x,y,0) = x*,u,(x,y,0) =y*, e (2-29)
Taking differential transform of equation (2-28) and the initial condition

equation (2-29) respectively

Uk(x y) — ——Uk(x y)=0 (2-30)

(k = Dttgess (1Y) - o

1202

Using the initial condition equation (2-28) we have,

uy(x,y) = x*u(x,y)=y* (2-31)

Now, substituting equation (2-31) into (2-30), we obtain the following
U (x) Values successively

16



1, 1, 1
U,(x,y) = Ex uz;(x,y) = gx uy(x,y) = 24x Yus(x,y)
1
1
= ?Oy“u(,(x, Yo e (2-32)

Finally the differential inverse transform of U, (x, y)

U(xr yr t) — Zl‘f’:O Uk (xr Y)tk = x4 Z?:O,ZA-__ Uk (x) }’)tk +

y? Yr=235, Uk (x, etk (2-33)
_ 2 AT
Ux,y,t) = x> <1+2'+4'+ >+y (t+3!+5!+ )

Hence, the exact solution is:

U(x,y,t) = x*sosh(t) + Y?sinh(t) = ... (2-34)

Considering the three-dimension wave equation with variable
coefficients as:

tt - (xz + yZ + ZZ) - % (xZUtt + yZUtt + ZZUtt) == O, ......... (2'35)
With the initial condition
U(x,y,2,0)=0,uy (x,y,2,0) = x* +y*> — 2%, .. (2-36)

Taking differential transform of equation (2-35) and the initial condition
equation (2-36) respectively,

02
(k+1)(k+2)up(x,y,2z) — Eﬁuk(% Y, Z)

17



yZ aZ
—Ea—yzuk(x,y, Z) - O )  cescssssss (2'37)

Using the initial condition, equation (2-36) we have
Uy(x,y,2) =0,U;(x,y,2) = x> +y*—2* , ... (2-38)

Now, substituting equation (2-38) into (2-38), we obtain the following
U, (x,y,z) Values successively

U(x,y,2) = %(xz +y% +2%),Uz(x,y,2) = %(xZ +y?—
z%),Uy(x,y,2) = i(xz +y%+2%),Us(x,y,2) = Flo(xz +y2

z%),U¢(x,y,2) = ?10(}:2 +y2—2z%, . (2-39)

Finally the differential inverse transform of U (X, y, Z) gives

Uxy,2) = ) Uy (xy,tk
k=0
= (xz + yZ + Zz) Zlo(o=0,2,3 Uk (x, Y, Z)tk + (xZ + yZ _
) Yiss Uy, )t (2-40)
2 2 t2 3 2 t2 3
ulx,y zt) =(x*+y )(H'Z-"E-" ) +z (_t+Z+§+ )
Then, the exact solution is given in the closed form by

Ulx,y,z) =(x®> + y?ete ™t — (x2 + y2 + 2%) e (2-41)

18
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