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Introduction :

We take a closer look at linear continuous maps

between Hilbert spaces these are often called bounded
operators, and the branch of functional Analysis that

studies these objects is called operator theory.
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Abstract .

In this research , we introduce the notation of
Operator between Hilbert spaces, and given some
properties of them .
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Definition (1-1)
Let N be a vector space over afield F (F=R or C).

N is called a normal space over a field F , if there exists a map
|. || : N - R* satisfies the folloming axioms :

1- x| =0 ,vxe N,|x| =0 iff x=0.

2- ||(xx|| :|a|||x|| ,VXEN,Va€eF.

3-Ix+y|l< |x[[+]lyll ¥ xy€N, (riangle inquality ) .
||| is called a normal on N .

(N, ||.]| ) is called a normal space .

Remark (1-2)
Any norm space is a vector space but the converse is not true in
general .
Definition(1-3)
Let N be a normed spacs over afield F and let (x,,) be sequence in N
, (x,) Is said to be convergent sequence , if there exists a € N such that

vV e>03KeNsuchthat ||x,-al|l< e, vn>K.

Definition (1-4)
Let N be a normed space over a field F and let (x,,) sequence in N,
(x,) Is said to be Cauchy sequence , if V€ > 0, 3 KE N such that
| Xp-Vm| < €,V Nnm>K.

Remark(1-5)

Every convergent sequence is a Cauchy but the converse is not true
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Definition(1-6)
Let X be a normed space . X is said to be complete if every Cauchy

sequence in X is convergent.

Definition (1-7)

Every complete normed space is called Banach space.
Definition(1-8)
Let X,Y are normed space and f: X = Y be a function , f is said to be

continuous on x, € X if such that x, - x4 then f(x,) =f(xq) .

Proposition (1-9)

Anorm ||.]| :N - R* is continuous function on N . i.e if x, - xo in N,
Then ||x.| = [ %0 in R.
Proof:
Since x, - x¢ then ||x,-xo || 20,as n— o
Claim : ||x, || = [|%o] .
e llxall- ol 1-0
Ixall- Tl 12 [xaxo 0. a5 1o e
Thus ||| xa |- ||| | =0, as n—> oo.
Thus the claim hold .

i.e ||. | is a continuous function .

A T A A ATAAITITTITT 1T N N RN Y NN

SOoOoOIOT TIPSO 77 777



A N A N A A N A N N N N R N R R N R RS R R

SOOI TIPS

Definition (1-10)
L(N, N*)={T: N—- N*},L (N,N*) is vector space over F, Tis linear .

Proof;

1- Let T, ,T, 4y € L(N,N% T, ,T, are linear transformation .

= (T , Ty )i islinear.
Thus Ty + T, =L(N,N*).
2- ¢(Ty + Tz )x=(Ty , T2 ex
=Ti(x)tT2 (ex)=CTy xtC Tz x .
3-(c1¢) Ty =T(¢; e, x) =C1 (Teyx) =cy(c Ty ).
4- 1Ty =Tux =Tx .
5-(Ty + Tz )x=Ty xtTz x=T3 x+Ty x=(T2 + Ty )x -
Thus L(N , N*) is vector space .

Definition (1-11)

Let X be a vector space over a field F , X is said to be inner product
space over F if there exists a function () : XX X— F, (F=R or C)

satisfies the following axioms :

1- (x,x) >0 , (x,x)=01iff x=0 ,Vvx€X.
2- x,y)=Mx,y) ,VX,y €X,)eF.
3-(x,y)=(y,x) , VXyEX.

4- (x,y+z) =(x,z) +(y,z) .

A T A A ATAAITITTITT 1T N N RN Y NN

SOoOoOIOT TIPSO 77 777



A N A N A A N A N N N N R N R R N R RS R R

Theorem (1-12) ( Cauchy Shwartz inquality )
let X be an inner product space then
&yl < x| iyl vxyex.
Theorem (1-13)
Every inner product space is normed space .
Proof:
Let X be inner product space .

There exists function (,) : X X X— F satisfies the previous ( 4 ) axioms

above .

We must prove that X is normed space .

Then we define the function |.|| : X— R is follows
||x||= VX, x) ,xeX

1- ||X||=,/(x,x) >0,VX.
[x[|=0 iff /(x,x) =0iff (x,x)=0 iff x=0.
2- || 3x|| = (% 3x) = /3 (x,3x)

= A0xx) = /Jl(x,x) =/2X (x,X)
=B Ixl” =nlx]

3- |x+y]| = Jx+yx+y) =/ix+yx),x+yy)

=\/(x,X+y> +{y,x+y)

= J (X, x)(x, y) + {(y, x){y, y)
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= \](x, x) +(x,y) +(y,x) + {y,y)

(Il + Gy + G+ Iyl

Ixty "= lx[" +lly[*+ 2Re (x, )

By Theorem (1-12)

Re (x,y) <|Re xy)l<lxy) |<|x] [yl
2 2 2

Thus [[x+y[|” < [Ix[I" + [y "+2x]| lly|

= ([Ix[l +[ly[»?
Thus  [[x+y[| < [[x]I+ [[y]
From (1), (2) and (3) we have (X, ||.||) is normed space .

Definition (1-14)

A Hilbert space over F is a complete inner product space .

Remark (1-15)

Every Hilbert space is a Banach space but the converse is not
true in general.
Definition (1-16)

Given operator T eB(H1, H2), the unique operator

S eB(H2, H1) that satisfies[ (Tel|le2)H2 =(el|Se2)H1,

V (el,e2) € H1xH2 ] is called the adjoint of T, and is denoted
by T*. Bythe above Remark, for any two vectors el €H1, e2 €H2,
we have the identities :

(T elle2)H2 = (el| T e2)H1.
(e2|T el)H2 = ( T*e2|el)H1.
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Example:

B:L1(C)-»L2(C) B(x1,x2,...)=(x2,x3,...)
U(x1,x2,...)=(0, x1,x2, ...)

Claim U*=B , B*=U
Proof:
Let X,y €H
To prove (Ux,y)= (x,U"y) = (x, By).
(Ux,y) =((0,x1x2,..),(yl,y2,..))
=0.y1 + x1y2+ x2y3 + ...
= x1ly2+ x2y3 + ...
=((x1x2,..),(y2,y3,..))
Thus (Ux,y) = (x, By).
Thus (Ux,y) =(x By)=(x,U").
Thus By=U'y, VvyeH , Thus B=U"
Now U'=B = U*=B* = U=B*.

Definition (1-17)
T:v(f) — u(f), then Range of T,

R(T) ={ye€u(f) ,suchthat y=T(x) ,xe V},

And Kernal space of T ,N(T)

N(T) = {x € V(f), such that T(x)=0}.
R(T) is subspace of u(f) .

N(T) is subspace of v(f) .
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Lemma( 2.1)

Let X and Y be normed vector spaces. For a sesquilinear map
¢ . X x Y— C, the following are equivalent:
(i) @ is— continuous;
(ii) @ is continuous at (0, 0);
(iif) sup{le(x, Y)I : (x, y) € X x Y, [Ix|[- |y || 1}<ee;
(iv) there exists some constant C = 0, such that

o, ) =C - x[[lyll.vx, y) exxY .

Moreover, the number in (iii) is equal to
min{C20:|@Xx,y)sC- x| -ly]l ¥ x y)exxY}.... (1).

Proof:
The implication (i) = (ii) is trivial.
(i) = (iii)
Assume @ is continuous at (0, 0).
We prove (iii) by contradiction.
Assume, for each integer n = 1 there are vectors x,€ X and y,€ Y

with || x|, [ly||= 1, but such that |@(xy, y,)| 2 n2.

1 1
If we take v, = — Xp and w,_y, -

then on the one hand we have || x||. [ y/| s%,v n =1, which forces

lim (v,,wy,) = (0, 0) in X x Y, so by (iii)) we havelim ¢(v,, w,) =0.

the other hand, we also haveo

@ (v Wiy |20 > 4y > 1,

which is impossible.

(i) = (iv).
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Assume @ has property (iii), and denote the number

sup{ |o(x, V)| :(x, ¥) € X x Y, [|x|.|ly]l = 1}
simply by M.

In order to prove (iv) we are going to prove the inequality
o0, VI <M. [Ix[lly[l, v (x,y) eXxY . (2)

Fix (X, y) € XxY.

If either x = 0 or y = 0, the above inequality is trivial, so we can

assume both x and y are non-zero.

Consider the vectors v = — x and w :ﬁy.

Il

We clearly have

o0 M= e([[x]lv, [lyllw) = [Ix[HIy - lecv, w)l.

Since ||v||= |w|= 1, we have |@(v, w)| <M, so the above inequality
gives (2).

(iv) = ().

Assume ¢ has property (iv) and let us show that ¢ is continuous.

Let C=0is asin (iv). Let (Xp)noe € X and (Yn)n-0< Y be convergent

sequences with lim x, =x and lim y,=Y, and let us prove that
n—»>oo

n—->oo

lim @(Xq,yn) =@(X, y).

Using (iv) we have

|P(Xn,yn) - (X, Y)| < |@(Xn,¥n) - @Xn, V)| + [@(Xy, Y) - @(X, Y)|

= |@(Xp-Yn - V)| + |@(Xn- X, Y)|
<C. % -l v -yl +C llxa—x Jyll . vn=1,

which clearly forces lim |@(x, ,Vn )-@(X,y¥) | = 0, and we are done.
n—-»oo
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To prove the last assertion we observe first that every C = 0 with

e, Y= C. [Ix][y]l, v (x, y) exx,
automatically satisfies the inequality C = M.

This is a consequence of the above inequality, restricted to those
(x, y) € XxY, with [|x||.]ly]= 1.

To finish the proof ,all we have to prove is the fact that C = M satisfies

(iv).

But this has already been obtained when we proved the implication
(iii) = (iv).

Notation (2-2)

With the notations above, the number defined in (iii), which is

also equal to the quantity (1), is denoted by || ¢ |[|. This is justified by the

following.
Lemma( 2-3)

let M subspace actally is closed in normal space X and let Y

a number real so that 0<Y<1 the exists Xy € X, [|[x-Xy || =Y, vxeM

A T A A ATAAITITTITT 1T N N RN Y NN

SOoOoOIOT TIPSO 77 777



A N A N A A N A N N N N R N R R N R RS R R

Notation (2-4)
Let X and Y be normed vector spaces over C.

Prove that the space

SX,Y)={e: XxY — C: ¢ sesquilinear continuous}

IS a vector space, when equipped with pointwise addition and scalar
multiplication.

Prove that the map

SX, V)2 ¢ -— [l@ [|€0, =)

defines a norm.

With this terminology, we have the following technical result.
Theorem(2-5).

Let H1 and H2 be Hilbert spaces, andlet @ : HL x H2 - C be a
sesquilinear map. The following are equivalent .
(i) @ is continuous;
(ii) there exists T €B (H1, H2), such that
@(el, e2) = (T elle2)H2, vel, e2) eH1 x H2,
where (. | . )JH2 denotes the inner product on H2.
Moreover, the operator T € B(H1, H2) is unique, and has norm

ITl=lel-
Proof. (i) = (ii).

Assume @ is continuous, so by Lemma(2-1) we have
lpe)l<[lo|-le] - llz].veeH1, zeH2........... (3).
Fix for the moment e eH1, and consider the map

pe: H2 3z -— (e, z)e C.
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Using (3), it is clear that @e : H2 — C is linear continuous, and has norm
leell< (o -fel.

Using Riesz’ Theorem, it follows that there exists a unique

vector € € H2, such that

pe(z) = (é|z)H2, vz eH2.

Moreover, one has the equality

& [H2 = [|@c || < [|@] -[e]H1.ieeeeie. (4).
Remark that, if we start with two vectors e, g xeH1, then we have

(€[2)H2 + (q|z)H2 = @(e, 2) + @(q, Z) = @(e + 0, Z) =@Pe+q (2), VZ EHZ,

so by the uniqueness part in Riesz’ lemma we get the equality

e+t q=¢é+q.
Likewise, if e € H1, and A €C, we have
(A&|2)H2 = A(€|2)H2 =& @ (e, 2) = @(Ae, 2) = ;. (2), VZ EH2,

which forces Ae= A €.

This way we have defined a linear map
T:Hl>3e-— e eH2,

with

o(e, z) = (T e|z2)H2, V(e, z) eH1 x H2.

Using (4) we also have

[ Tel|H2< ||¢]|-|e[H1, vx €H1,s0 T is indeed continuous, and it has
norm || T] <[l e.

The uniqueness of T is obvious.
(ii) = (i).

Assume ¢ has property (ii), and let us prove that ¢ is continuous.

This is pretty clear, because if we take T eB(H1, H2) as in (ii), then using

SOOI TIPS
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the Cauchy-Bunyakovski-Schwartz inequality we have
lp(el, e2)| = |(T elle2)H2| <|| T ex |- [e2| <[ T [ex|[e2].

V(el,e2) eH1 x H2,

so we can apply Lemma(2-1). Notice that this also proves an the
inequality ||| <[T].

Since by the proof of the implication (i) = (ii) we already know that

[ T[I<[l®] it follows that in fact we have equality | T|| = |||l

Proposition(2-6).

A. For two Hilbert spaces H1, H2, one has

| T =[| T[], YT €BMHL, H2);uooveiiiiiiiii, (5)
(T*) =T, VTEBMHL H2)iuowo i (6)
(S+T)* =S8+ T* VS, Te B(H1, H2);.....oon....... (7)
(AT T* =X T, VT €B(H1, H2),A€C;..covvrvnnnnn.. (8)

B. Given three Hilbert spaces H1, H2, and H3, one has
(ST )" =T*S*,v Te B(H1, H2), S € B(H2, H3)....... (9)

Proof.

The equality (5) has already been discussed in Remark The identity (6)

IS obvious.
To prove the other identities we employ the following strategy.

We denote by X the operator whose adjoint is the left hand side, we
denote by Y

the operator in the right hand side, so we must show X* =Y , and we
prove this equality by proving the equality

(Xelq) =(e[Yq), V e,q.

For example, to prove (8) we put X=S+TandY =S8+ T*,anditis
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pretty

obvious that

(Xel|q) = (Se+ T e|q) = (Selq) + (T e|q) = (e| $*q) + (e] T* q)
=(e| S*q+ T*q)=(e|]Y q),V e € H1, g€ H2.

The other identities are proven the exact same way.

Proposition(2-7)  (Kernel-Range Identities).

Let H1 and H2 be Hilbert spaces .For any operator T € B(H1, H2), one
has the equalities
(i)- Ker T*=(Ran T)i;
(ii)- Ran T*= (Ker T)*;

Proof.

(i). If we start with some vector g € Ker T", then for every e € H1,
we have

(q|T e)H2 =( T*qle)H1 =0,

thus proving that q LT e, Ve € H1,

i.e. e € ( Ran T)%;. This proves the inclusion
Ker T*=(Ran T)t..

To prove the inclusion in the other direction, we start with some vector

q eKer T* = (Ran T)* and we prove that T* g = 0. This is however
pretty since we have qL (T T*q), i.e.

2
0=(alT T*q)H2 = (T*q| T*q)H1 = || T*q ||,

which forces T*q = 0.
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(i1).  This follows immediately from part (i) applied to T*:

Ran T* =([Ran T*]1)‘= (Ker T)*.
Remarks (2-8).

A- Every self-adjoint operator T € B(H) is normal.

B- The set{T € B(H) : T normal } is closed in B(H), in the norm
topology.

Indeed, if we start with a sequence (T,), =1 of normal operators, which
converges (in norm) to some T € B(H), then(T,);’ =1 converges toT",

and since the multiplication map

B(H) x B(H) 3 (X, Y ) -— XY € B(H)

Is continuous, have T*T =lim T*, T,, and T T* =lim T,,T",,,, SO we

n-00 N0
immediately get T*T =T T".

C- For T € B(H), the following are equivalent (see Remark):

* T is self-adjoint

* the sesquilinear map

eT:HxH>3(e,q)-—(Te|lgHeC

Is sesqui-symmetric, i.e. (T e|q) = (T q|q), Ve, q €H;

* (T ele) eR, Ve eH.

In particular, we see that every positive operator T is self-adjoint.

the condition that T is positive is equivalent to the condition that ¢T is

positive definite.

D- The sets:

B(H)sa={Te B(H): T*=T},
B(H)+ ={Te B(H) : T positive }
are also closed in B(H).
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This follows from the observation that, if(T,,);; =1 converges to some T,
then we have

(T ele) =lim (T,e|q), vV ee H.
n—>0oo

So if for example all T,,’s are self-adjoint, then this proves that

(T ele) e R, Ve, € H,

so T is self adjoint. Likewise, if all T,,’s are positive, then

(T e|le)20,Vve € H, soT is positive.

E- Given Hilbert spaces H1 and H2, and an operator T € B(H1, H2), it
follows
that the operators T T* € B(H1) and T T* € B(H2) are positive.

This is quite obvious, since
(T"Tele)=(Te[Te)= || Te||*20,veeHd,

(T Tala) = (T"al T*a) =|| T"q | * 20, v q € H2.

F- The space B(H)sais a real linear subspace of B(H).

G - The space B(H)+ is a convex cone in B(H)sa, in the sense that
«if S, T € B(H)+, then S+ T € B(H)+,;

«if Se B(H)+ and a € [0, «), then aS € B(H)+.

H- Using G, one can define a order relation on the real vector space
B(H)saby

S2T&< S-TeB(H)+.

This is equivalent to the inequality

(Sele) = (T ele), V e € H.

The transitivity and reflexivity properties are clear. For the antisymmetry,
one must showthatif T2SandS=T,thenS=T.

SOOI TIPS
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This is however clear, because the difference X = S - T is self-adjoint,

and satisfies
(Xz|z)=0,VZEH...........c.... (10)

Using polarization , we have

(Xela) = s Thoo i (X(e+ik q)]e + ikq)

and then (10) forces
(Xelq) =0 ,ve,q€eH,
we must have X = 0.

From now on, we are going to write T = 0 to mean that T is positive.

Notation (2-9)

Prove that for an operator T € B(H) the following are equivalent:
* T is normal,
« | Te|=|| T*e]|. v e € H.

Proposition(2-10).

Let H be a Hilbert space. For a bounded operator Q eB(H),
the following are equivalent:
(i) there exists a closed subspace X cH, such that Q = PX - the
orthogonal projection onto X;
(i) Q =Q" =Q*.

Proof.

The implication (i) = (ii) is trivial.
(ii) = (i).

Assume Q = Q* =Q?, and let us prove that Q is the orthogonal

projection onto some closed subspace X cH. We define X = Ran Q.

A T A A ATAAITITTITT 1T N N RN Y NN

SOoOoOIOT TIPSO 77 777



A N A N A A N A N N N N R N R R N R RS R R

First of all, we must show that X is closed. This is pretty obvious, since
the equality Q% = Q
gives the equality X = Ker(L - Q).

To prove that Q = PX, we must prove two things:
(a) Qe=¢e, V e €X;
(b) Qe=0,,Vee€Xxt.

The first property is clear, since X = Ker(L - Q), To prove the second

property, we use Proposition(2-2) to get

X+=(Ran Q)t=Ker Q* =Ker Q.

Definitions.(2-11)

Let H1 and H2 be Hilbert spaces.
A-. An operator T eB(H1, H2) is called an isometry, if

| Tel|=[le]|, v e eH1.
B-. An operator T eB(H1, H2) is said to be a coisometry, if its adjoint

T* € B(H2, H1) is an isometry.

C-. An operator U eB(H1, H2) is called a unitary, if U is a bijective
isometry.

The algebraic characterizations for these types of operators are as

follows.
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Proposition(2-12).

Let H1 and H2 be Hilbert spaces.

(i)- T is an isometry;
(ii)- T*T =L H1.

(i)- T is a coisometry;
(ii)- T T* =LH2.

()- U is unitary;
(i) U*U =LH1and UU* = LH2.

Proof.
A. (i) = (ii).

Using polarization, applied to the sesquilinear form
@ :Hl1xH1>3(e,q)-— (T'Te|q) € C,

it follows that, for every &, n € H, one has the equalities

1 . . -
@€, q) = ;Xi=o i o (etit.e+i‘q)
1 . * : /
=3 k=0 T (T'T(exig)le + iq)
1 . : i
=Yoo i K (T(eti*q)|T(e + i*q)

= 2%3, ik | (T(eritg|’

A T A A ATAAITITTITT 1T N N RN Y NN

A-. For an operator T € B(H1, H2), the following are equivalent:

B-. For an operator T € B(H1, H2), the following are equivalent:

C-. For an operator U € B(H1, H2), the following are equivalent:
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Using the fact that T is an isometry, and polarization again (for the inner

product), the above computation continues with

0. q) = Xi, i || (T(eritg)’
=133 ik ||erikq|’

=133, ik (evikg)(e+ikq) = (elq)

Since we now have

(T*T elq) = (elq), V e, q €HI,

by Lemma(2-1) (the uniqueness part) we get T*T =LH1.

The implication (ii) = (i) is trivial, since the equality T*T = LH1 gives
| Te|* = (TelTe)=(T"Tele) = (ele) = | e]|*, v xie HL.

B-. This is immediate, by applying part A to T".

C-. (i) =(ii).

Assume U is unitary.

On the one hand, since U is an isometry,
by part A we get U*U =LH1. On the other hand, since U is bijective, the
above

equality actually forces U -1 = U*, so we also get U U* = UU -1 = LH2.
(i) = (i).

Assume U*U =LH1 and U U* = LH2, and let us prove that U is aunitary.

On the one hand, these two equalities prove that U is both left and right

invertible, so U is bijective.

On the other hand, by part A, it follows that U is an isometry, so U is

indeed unitary.
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In the study of bounded linear operators, positivity is an essential tool.

This is illustrated by the following technical result .

Proposition (2-13).

Let H be a Hilbert space.
(i)- Every self-adjoint operator T €B(H) has real spectrum, i.e. one has
the
inclusion Spec H(T) c R.
(ii)- Every positive operator T €B(H) has non-negative spectrum, i.e. one

has the inclusion Spec H(T) c [0, ).

Proof.

(i). Let T €B(H) be self-adjoint.
We wish to prove that for every complex number A €C,R, the operator
X = AL-T is invertible.
Write A = a+ib, with a, b €R with b # 0. We are going to apply Lemma
( 2-2), so we need to consider the operators X*X and X X*.

It turns out that
X* X=X X*=|A%’L - 2(Re N)T + T*,

so all we need is the existence of a constant a >0, such that X*X = aL.

But this is clear, since
X*X = (a? + b?)L - 2aT + T? =b%L + (aL- T)?,
and the positivity of (aL-T)? = (aL-T )* (aL-T) (see Remark (2-8-E)
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Immediately gives X*X = b2L.

(ii)- By part (i) we only need to prove that, for every number
a € (-, 0), the operator X =aL- T is invertible.

As before, we have
X*X =X X*=a?L - 2aT + T?,
and then the positivity of -2aT and of T? =T*T (see Remark(2-8-F)),

forces X*X = a’L.
Since a # 0, it follows that X is indeed invertible.
The above result can be nicely complemented with the one below.

Proposition(2-14)

(Spectral Radius Formula for self-adjoint operators). Let H be a
Hilbert space. For every self-adjoint operator T € B(H), one has the
equality
rad H(T) = || T

Proof.

It T =0, there is nothing to prove, so without any loss of generality

we can assume that || T|| = 1.

Since radH(T) < || T|| =1, all we have to prove is the fact that Spec
H(T) contains one of the numbers +1. Equivalently,

we must prove that either ( -L—T) or( L — T) is non-invertible.
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Consider the positive operator X = T?, so that we have
X-L=(C-L-T)(L-T)=(L-T)(-L -T),

which means that we must prove that ( X — L) is non-invertible.
We prove this fact by contradiction.

Assume that ( X — L) is invertible, there exists
some constant a € ( 0, 1) such that
aLs(X-L)Y(X-L)=(X-=-L)*........... (12)
Remark that, since || T||= 1, we have the inequality
0< (T*ele) =||T2e|* < (| T|| - [TelD?< | Te|” = (T2ele), v e € H,
which reads:

X2z X?%2 0.
In particular this gives (L - X) - (X -L )2 = X - X? 2 0, so we also have
(L -X)=(X-L)2.
Using (13) this forces the inequality (L- X = a L), which can be re-written
as
(1-0)k=X.
In other words, we have
1-a)|e]|’=@-a)ele)2(Xele)=(T2ele)= |Te|*, v e€H,
which gives
[Tel| sVvi—a - |e|,v eeH.
This forces || T|| < v1 — a, which contradicts the assumption that
ITll=1.

Although the following result may look quite “innocent,” it is crucial for the

development of the theory.
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Proposition(1-15).

Let H1 and H2 be Hilbert spaces. For every operatorT eB(H1,H2),
one has the identity || T*T||= | T[|* - o . (13)

Proof.

Fix T eB(H1, H2). Consider the sesquilinear map
@ Hl1xH1>3(e,q)-— (T'Tel|g)H1 e C.
By Theorem(2.1), we know that || T°T||= |||

Notice however that, for every
¢ eH1 with ||e| <1, one has

lell 2o e)=I(TTele)=|(Te[Te)=|Te|,

so we get

J lell zsup{ || Te]:e e H, [le]l =1} =|T].

thus proving the inequality | T*T||= ||| = || T||".
The other inequality is immediate, since
| Tt <] Tl - ITl=gT)

Corollary(2-16).

Let H be a Hilbert space, and let A be an involutive Banach
algebra.

Then every *-homomorphism ® : A — B(H) is contractive, in the sense
that one has the inequality
[®o@)]| < |la]l. vaeA).....cooooen.... (14)
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Proof.

Fix a *-homomorphism ® : A — B(H).
We can assume that A is unital, and ®(1) = L.

(If not, we work with the unitized algebra A, which is again an involutive

Banach algebra, and with the map

¢ : A —»B(H) defined by ¢(a, a) = ®(a) + aL, a €A, a €C, which clearly
defines a *-homomorphism satisfying ¢(1)=L.)

To prove (14) we start with an arbitrary element a €A, and we consider
the

element b = a*a.

On the one hand, the operator ®(b) = ®(a)* ®(a) B(H) is obviously self-

adjoint, so by Proposition(2.6), we know that

|®®)|| =rad H ®D)................. (15)

Since ® is an algebra homomorphism with ®(1) = 1, we have the
inclusion

Spec HO(b) c Spec A (b)

which then gives the inequality

rad H ®(b)< rad A (b).

Using the inequality radA (b) < ||b||, the above inequality, combined
with (16), yields

IO I P— (16).

On the other hand, using Proposition (2-14), we know that

lom)] = [®@)®@)] = |o@]’
so (17) reads
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l®@) | < |b]l.cecieeenen (17).

Finally, since A is an involutive Banch algebra, we have
* * —_ 2

[oll= 1 aall < | a*[| - [[a]|= [|all",

and then (17) clearly gives (14).

The identity (13) is referred to as the C*-norm condition.

The above result suggests that this property has interesting applications.

As shall see a little later, this condition is at the heart of the entire theory.
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