Republic of Iraq
Ministry Of Higher Education

And Scientific Research

AL - Qadisiyah University
College of Education

Department of Mathematics

On Partial sum of Cap like and star like univalent function

A research

Submitted to the department of education Al-Qadisiyah
University as a partial fulfillment requirement for the degree of
Bachelor of Science in mathematics

BY

Mohammed. K. Raee

Supervised By
Rr. Zainak &#g4deh

2018



s)aaYy)

V) cllialll qulai ¥ g | dlicUay ) el quba ¥ g & S V) Jall) qulay ¥ (4
iy’ ) Adad) ke Vg gy W) BAY i Vg .81 8Ky
A™Ma Ja &)
LOmallad) e daa gl o ) AW aly | AdlY) sal g Al &l G
alag 4l g Ale d Lo teaa U
danl Jaal (A, JUEDH ¢ g slaall ale cpa ) |, B gl g Angdl i) ALS o )
M Jgha day LgBad (fla 3B T Ll 5 Al & ae Bty O A e g2 LA S
L) g ) B sl gy cial asad dlilals Al
ST INTENE
g Bload) dany ) A g Gliad) na g qaaldl ina L 3Lal) b S )
bl AT ) Al sl Lgilia g alad i Lgdled (S G ) L 25 51)
Al
Al Al i BaEla daad ) |, e dule g ST 4 e )
Ga ) Blall e gma e a1, gt agaa Y diaa g B g8 ST W3 g3 g3 (e )
bl Ulla Laais Uadla ) Gl g e () clide Bdlag Uils

talug Al g ddde A o A Jgmy J B &l 41 J485 1Y)
(D) Gall) alea o ¢y slad cplacd) b alall g aull b csall o))

L“QJC)AUS‘ calay) u.l\ ‘;44-63. 15 Joudill Liale QAUM S (alldy Aa i) Q,JJ\LAS
L ST ES UJ‘ Lﬂj ) ui\ Qe EIAJ

4.'\'..\.1.1.:' 04 o= g.i:u paliuyy



A

k] 5 3%uall g { aSiay Y Al S () } AS aSaa B Al JgBy 4 aad)
O tHAN (alug Al g dnle Al ) daae Udaw alf 34 Qi) o
A Shy al (3 glial) Sy ol

alaily Ligle Juaili g oy alad) o dasla o) Jag Jo al) S Ay
dyg . Jand) 138

Al la o Adudisage b ALGMAN BMELY) B uaad | pall g | S

Ll g 4 g g AL )9 L A dula g gash a S 9 Jia dr (e
T J\Séy

Cbnal) £ 3a A1) of jad

Eaalyl



BJ\.@_.:'J.J\) V_ﬁaj\ éLc L;\ )95 f—r g WB—L\J

aalaall Ll ) e
4 gl 3 ) g

(Yeo)ay



Contents

No Subject | page
1 Introduction 1
2 | Chapter one: Univalent Functions 3

1-Section one: Basic definitions 4
2- Section two: Theory of Univalent 7
functions
3- | Chapter two: Cap like and Star like 15
1-Section one: Partial sum of Cap 16
like and star like
2- Section two: Partial Sum of Cap 20
like and Star like of order a

4- References 27




Introduction

We know that a complex -valued function is said to be regular or analyticin a
domain D Canon -empty open connected sup set of the complex plane. If it
has uniquely determined derivative at each point of D if f(z;) # f(z;) for all
{z,,z,} € D withz; = z,

A necessary condition for analytic function f(z) to be univalentin D
is f’(z) = 0. This condition is not sufficient

Riemann mapping theorem is one of the most remarkable results for complex
analytic states the any simple connected results for complex analytic states
the any simple connected proper sup set of C can be mapping conformally
onto the unit disk D = {z € C: |z| < 1} that s, if D < Cis simple connected
and z, € C, then there enlists a unique conformal transformation

f:D — Dwith f(0) =zand f"(0) >0

therefore, statement about univalent functions on arbitrary simple
connected domains can be translated to statements about univalent function
on the unit disk, that is an analytic, and one-to-one function f(z) of a power
series (Taylor series) is called univalent in 1916,beirb.erb.ach proved that
|a,| < 2 forevery f(z) inuwhenuif f(z) = f(z) is analytic and univalent
inD = {z € C:|z| < 1with the condition f(0) = 0, f'(0) = 1} whose
Taylor expansion about the Originis f(z) = z + Y5, a;z". Letis also
showed that |a,| = z . For the function f(z) = z(1 — kz)™%, |k| = 1, which
is known as KOEBE'S function. Note that similarity of KOEBE'S function is
analytic in the open unit disk and f'(2) = (—2)(1 — kz) 73 (=k) +

1(—2z)(1 — kz)~2 imolies f'(0)=0(—z)(1 — k0) 3 (—k) + 1(1 — k0)"%2 = 1.
Clearly f(0) = 0, so KOEBE'S function is in u.

A function which is analytic and univalent in the open unit disc {z: |z | < 1}

with f(0) = 0, f'(0) = 1 is said to be cap. Like function if

zf"(2)
f'(2)

Re[1+

>0,|z| < 1.
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zf''(2)
f'(2)

And it is called star like if Re[ ] >0,z =r<1.

Zf”(z)] >a(c),0<a(c) <

f'(2)

Also it is called cup like of order « if Re [z +

1,|z| =r <1

zf'(2)
f'(@)

And it is called star like of order « if Re [z + ] >a(c),0 <a(c) <

1,]z|<c<1.

In our studied we introduce two chapter in chapter one
contain two section and chapter two so that two section.




CHAPTER ONE

UNIVALENT FUNCTIONS




Section one

Basic definitions

Definition 1.1.1

Let D c C be a domain non-empty subset of the complex plane ,we say that
A function f: D — Cis analytic at z, if it is complex differentiable at every
point in some neighborhood of z, .We say that f is analytic on D if f is

analytic at z, for every z, € D .
Example 1.1.2

Let f: D — C be a function given by f(z) = e#, where D is any open subset

of C .note that f is analytic at every z, € D.
Definition 1.1.3

A function f(z) is said to be a univalent in a domain D if f(z;) #

f(z,) forall{z,,z,} € D with z; # z, .

A necessary condition for analytic function f(z) to be univalentin D is

f'(z) # 0inD.

Example 1.1.4

2
Let f(z) be a function givenby f(z) =z + Z;

zi=1—i#2z,=i

(1—0)? 2—4i

> > =1-—-2i

f)=fA-D=1-i+

i? 241
fZ)=f)=i—-—-= * f(z1)

2 2
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Thus f(z) is univalent.

Example 1.1.5

Let f(z) be a function given by f(z) = eZ. Note that f(z) is univalent

since for

zy = 21w # zZ, = 4w we have

f(z,) =ex =e?" =cos2m +isen2mr =1

f(z)) = e%2 = e'™ = cosdm + i sendw = 1 = f(z,)
Thus f(z) is not univalent.

Definition 1.1.6

A function f: D — C which is both analytic on D and univalent on D is called
conformal on D. We will often refer to such an f as a conformal mapping of

D.

A word of notation is needed here. If we are interested in both the domain
and the range of a conformal mapping f, then we will write this explicitly as
"let f: D - D' be a conformal transformation." Thatis,f:D - D' isa

conformal mapping of D which isonto D’; i.e.,
f(D)=D".
Example 1.1.7

It is important to remember that the underlying domain is an integral part of

the definition of a univalent function (or a conformal mapping). Suppose that
D={zeC: 0<|z|<1Ly>0x>0}={z€eC0<]|z| <1,

0<6<m/2}

27X




Which is that part of the unit disk in the first quadrant. The function f(z) =
z? then maps D conformallyontoDNH ={z€C:0< |z| <1,y >
0}.Thatis,f : D - D N His analytic and univalent on D, and onto D N H.
However, the function g(z) = z* does NOT map ID conformally onto the unit
disk D, although g(ID) = D. While g: D — D is analytic, it is not univalent.
For instance, g(1/3) = g(—1/3) = 1/81. In fact, g'(0) = 0 which means that

there is no neighbourhood of 0 in which g is univalent.
Example 1.1.8

The koebe function which is given by

k(z) = =z+2z%>+323+ -

z
(1-2)?
And maps the unit disk to the complement of the ray(—, —1/4).

This can be verified by writing

1422 1

1—2) 4

k@) =+
zZ) = 2 (
Which is analytic and univalent function, so k is conformal.
Definition 1.1.9

n — th Partial sum of the function f(2) = z + Y5, arz* isSn(z, f) = z +

2;:;2 aka.




Section two
Theory of Univalent functions
Theorem 1.2.1 (Riemann Mapping Theorem)

LetD & C be asimply connected domain, and let z, € D be any given

point. Then there exists a unique analytic, one-to-one function
f: D — DD Which maps D onto D and has the properties that

f(2o) = 0 and f'(z,) > 0.

Since the inverse image of a conformal map is also conformal, the Riemann
mapping theorem implies that any two simply connected domains (neither of
which is C itself) are conformally equivalent. Thatis, if D € Cand D' &

C are simply connected, z € D, and w € D’, then there exists a unique

conformal transformation f : D — D' with f(z) =wand f'(z) > 0.
Theorem 1.2.2 (Bieberbach)

If (z)=z+ayz?+azz3+...€S, then|a,| <2.WhereSis

a family of analytic functions.
Proof

Suppose that f € S. Apply a square root transformation and invert |

to give

g2 = [f D] V2= 72— %Z—l 4.

Sothat g € L. It therefore follows from the previous corollary

(Corollary 2.2.7) that

27X




|b,| = |7| <1
And so |a,| < 2 as required.
Example 1.2.3

if f€ S,thenla3—as| <1
By using (1.7) and corollary 1.1.7

Bieberbach conjectured that if f € S, then the coefficients a,,
of fsatisfied |a,,| < n. This problem, known as Bieberbach's conjecture, was

finally proved by L. de Branges [2] in 1985.

Theorem 1.2.4 (Bieberbach Conjecture-de Branges' Theorem)

if f(z) =z+ayz?+azz3 +-- €85,
Then |a,| < n foralln = 2.

The final major geometric result for univalent functions f €

S of this section is a theorem due to Koebe. In 1907, Koebe [7]
showed that the images f (ID) of all functions f € S contained a
common disk {|w| < r} for some r < 1/4. it follows from
Bieberbach's theorem that r = 1/4. for obvious reasons, is known

as the Koebe one-quarter theorem.




Theorem 1.2.5: (Area theorem). If

LI L I
g(z) =z ottt

belongs toZ, then

(00]

2n|b2|2 <1,

n=1

With the equality if and only if g € £.

The above theorem is the basis of a theory of univalent functions, parts of
which we shall present in this section. The reason-for the name area theorem

comes. From the proof.
Proof

For r> 1, let C, denote the image of the circle |z| = r under g. Each C, is a
simple, closed, and smooth curve. Let E,.denote the bounded connected

component of
Theorem 1.2.6: (Growth Theorem)

Foreachf € §,

<If@)] € —— |zl =1

r
(1+71)? ~ (- nr?*

Moreover, for each z € D with z # 0, equality occurs if and only if fisa

suitable rotation of the Koebe function.
Proof

An upper bound on |f’|(2)l,as in gives an upper bound on |f(z)]| -That is,

fix z= re'® € D.Observe that

ST




() = j £ (pe'®)dp.
0

Then,

r : "1+4p r
f(z) =SJ "(pe®)dp| £ | ———=dp = —.
However, since we are working in dimension 2, a lower bound on |f’| does

not give a lower bound |f| - let z be an arbitrary point in D. We consider two

possibilities:
@ [f)| = 1/4
(i) |f(z)| < 1/4

Assume that (ii)occurs. Since forallr € (0,1),7/(1 + 1)? < 1/4, we

trivially haver /(1 +12) < |f(2)].

Now assume that (ii) occurs. By the Koebe 1/4-Theorem, the radial line rz,
forr € [0,1]is contained in the image of of f. As f is one — to —
one , the pre — image of this radialline, is a simple smooth curve in

D connecting 0 to z. Let C denoted this curve. We have

f(2) = f £/(w) dw.

By the definition of C, for any point w on C, f'(w)dw has the same argument

as the argument of z. Thus,

r

1-p r

f@)] = e P T

fcf’(w)dw‘ - fclf’(W)IIdwl >

It follows from the above arguments that an inequality in either side of

Equation (1.1.10) implies the equality in the corresponding side of Equation

2 7<




(1.1.6), which by Theorem (1.2.5) implies that f is a suitable rotation of the

Koebe function.

Also, as in the proof of the previous theorem, suitable rotations of the Koebe
function lead to the equality on either side of Equation. Thus, the bounds in

the theorem are sharp.

It is possible to prove a distortion estimate involving both of |f(z)| and

If'(2)] -
Theorem 1.2.7 (Distortion Theorem)

For each f € S, we have

1—r

= 2| < 1.
(1+1) r=lzl

1+7r
AR cport

Moreover, one of the equalities hold at some z # 0, if andonly if f isa

suitable rotation of the Koebe function.

In order to prove the above theorem we need a lemma on calculating

derivatives with respect to the polar coordinates.
Lemma 1.2.8

There is a continuous branch oflog f'(z) defined on D that maps 0 to 0.
Moreover, for all z =re?in Dwe have

2f"(2)

42 = - (loglf (D) + ir o= (arg £ (2).

Proof. Recall that f'(0) = 1, and since f is univalenton D, forall z €
D, f'(z) # 0. Thus, by Proposition 5.26, there is a continuous branch of
log f'(2) defined on D which maps 0 to 0.

2T+7<




Let u(z) = u(re'®) be an arbitrary holomorphic function defined on some

open set U c C. Using the relation z = r cos 8 + ir sin 8 we have

du  Odu 62_ ou (cos B +isinf) = ou
TS =ro oo =1 (cos ising) =z-—.

Applying the above formula to the function log f'(z), and using log z =

log |z| + i arg z, we obtain the desired relation

zf"(2)
f'(@

9 G 9 9
= 2~ (log f'(2)) = r=~(log f'(2)) = 1= (oglf @) + ir = (arg f'(2)).

Proof of Theorem (1.2.5). Note that inequality |[w — c| < R impliesc — R <

Rew < c¢ + R.In particular, by Equation (6.5), for|z| = r, we have

2r? 4r < Re ((zf”(z))) 2r? 4r

1—-12 1-r2° (f' (2)) 1—r2+1—r2'

Which simplifies to

2r2 — 4r < Re (zf"(2) 2r2 — 4r
1—1r2 ~ (f(z)) _1—r2'
By Lemma 6.8, there is a continuous branch of log f'(z) defined on D that
maps 0 to 0. Moreover, the relation in the lemma and the above-inequality
implies that

2r2 — 4 61 0 2r2—4r
<< log|f(re™®) <

—r2’
Now we fixfand integrate the above equation from 0 to R to obtain

1-R i 1-R
logmﬁ log |f (7"8 )l Slogm.

Above we have used the explicit calculation

2T+7<




1+R
(1+R)3

fRerd —fR S 2 dr=—3logd — 1) +log(l + frzR—z
g r= CT=r Ty r= og r og(1+r) T 0g

As the map x — e* is monotone, Equation (1.1.9) implies the desired

inequality in the theorem.

Assume that for some z = Re?® € D, z # 0, we have an equality in
Equation 6.6. Then, we must have the corresponding equality in Equation
(1.1.9) for R. The latter condition implies the corresponding equality in
Equation (6.8) and then in Equation (1.2.7), for allr € (0,R). Now let r tend

to 0 from above, to obtain one of the equalities
Re (¥ f"(0)) = +4, or Re (e f(0)) = —4.

Recall that since f € S, by Theorem (1.2.4), |f"'(0)| < 4. Therefore, by the
above equation we must have [f''(0)| = 4. By the same theorem, we
conclude that f must be a rotation of the Koebe function. For the Koebe

function k(z) = z/(1 — z)?, we have

1+z
k'(z) = m,

So we have the right-hand equality at every z = r € (0,1)

On the other hand, for the function h(z) = e™k(e™'" z), where k is the

Koebe function we have

1—2z

h(z) = k(e™™z) = D

So we have the left-hand equality at any z € (0, 1). this finishes the proof of
the if and only if statement.

Theorem 1.2.9 (combined growth-distortion Theorem)

Foreachf € S

ST




1+r
" 1-—r

1—-r
1+r—

z f'(2)
f'(2)

rf =r.

Moreover, for each z € D with z # 0, equality occurs if and only if f is a

suitable rotation of the Koebe function.

It is not possible to conclude the above theorem as a combination of the
bounds in Theorems (1.2.4) and (1.2.7). But the proof is obtained from
applying the Beiberbach Theorem (1.2.4) to a suitable disk automorphism
applied to f. As we have already seen this technique we skip the proof of the

above theore.
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Section one

Partial sum of Cap like and star like

Definition 2.1.1

A function f(z) that is analytic in the open unit disc {z: |z | < 1} with
f(0) =0, f'(0) = 1issaid to be cap. Like function if

2f"(@)
'@

Re[1+ >0,|z| < 1.

Example 2.1.2
The function (z) =z + 2z% + 4z3 is cap like for{z: |z| < 1}.
Definition 2.1.3

A function f(z)that is analytic in the open unit disc {z/ |z | < 1} and
univalent in the open disc {z/ |z | < ¢ < 1} with f(0) = 0, f'(0) = 1 is said

to be star like function in the open disc {z/ |z |< ¢ < 1}if

>0,]z| <c

2f'(2)
fe [f’(Z)

Theorem 2.1.4

Let f(2) is analytic in the open unit disc {z/| z |< 1} with f(0) =
0,f'(0) =1, and f(2) is univalent in the disc {z/|z| < 1}, then s,(z, f) is
analytic in disc {z/|z| < 1} with s,,(0, f) = 0,5',,(0,f) = 1, and is univalent

functionin|z| < 1 — 3716 < 1forallintegersn = 2,3,4 -

Proof

ST




Let f(z) is analytic in the open unit disc {z/| z | < 1} with f(0) =
0,f(0)=1

(e 0] n
= f(z) =z + z a,z¥ =s,(z,f) =z + Z a,z¥.
k=2 k=2
= 5,(z, f) Is analytic in the open unit disc {z/| z | < 1} withs,(0,f) = 0

s'n(0,f) =

Letz, # z,. Then z;* # z,* then a,z,* # a,z,* (k = 2,3,4,--+). But the

inequality

Zy + Yr_, apz¥ # z, + Y1, a,z¥ Mayor may not hold. So we can do some

work.
Since
Zy # Z,,wehavez; —z, #0 =|z; —2,|#0 =0<]|z; — 7,|.

Letp = |21| S |2, =7 <1 =>0<1r—p =|2| — |z1]| £ 21 — 23| by

triangle inequality.

Consider

Sn(z1, ) = $n (22, f) = [21 + Xhey @21 = (22 + Tioy 23]
=z — 2+ [E0, apzY — S, apzhl=z, — 2, + T, ap (2,5 — 2,¥]
By triangle inequality,

|21 — 23 + Yjeo Qi [2:% — 2,1 = |21 — 22| — | Zhey A [21* — 2,%]|

= [5p(21, ) = 5p(22, )| = |21 — z,| — |Z;<l=2 Ay [Z1k _sz“ =2T1r—p-—

| Z;cl:z ar [Z1k - sz] |

Again by triangle inequality and by BEIRBERBACH conjecture | a; | < k since
f(z) eU,

2T+ 7L<




| Zk=2 ar 215 — 25| < XRos law [2:° — 2°]| = ez lag [121% — 2,*
n
<> kllzkl+ 1z
k=2
— k k k | .k
= Yia k[121]" + 121" < o k [ + 1]
Since| z1| < |z,| = .
. _ d
l.eYiar|z® — 2K < ¥R k2rk =2r = Y5 k2r* "t =2r Zzzzark

I N
_er' k=2T".

1_T.n+1

, d d
i.e. Yt _,a,[z® —z,F]| < 2r—[-1-r+ Y k= 2r—[-1-r+——

(1—r)[0—(n—1)rn]—(1—rn+1)(—1)]

i.e. |Z;<l=2 ag [Z1k - sz]l <2r[0-1+ (1-1)2

—-(n+1)(1-r)r"+ 1—r”+1]

| Y=z Ak [Z1k - sz]l <2r[-1+ (1-1)2

,i.e.

~(m+ 1A -7 +1 -

= — - z,*]| = —2r[-
‘Zkzzak [Zl Z) ] = [ (1 _ T)Z
(n+1)(A—-r)r"—14r"1
i.e.—|¥i,alz" -2, =21 1?2 ]
. (n+1D)@A-r)rt+rntt 1
i.e.—|XR_,ay [z,* — z,%]| = 2r[1 + T — (1_r)2] > 2r[1+
1
0-— (1—r)2]

Since < r<l1l=-r>-1=1—-r>1—-1=0.

Thus we have

150(Z1, f) — sn(Z2, ) 27— p — | X2 [Z1k - sz]|

2r 2

1
21’—p+2r[1——]=3r—p_m =

(1—-r)?

Observe that
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2 2

- >
r[3 (1—r)2] p >0 <r[3— (1—r)2] p=0
Consider
0<p< [3 ] 3 — 2 >0 3>
—: — = S
SPSTP T aen? A -1 A —r)?
3 v2 6 V6 V6
01-N>-=21-r>—=— = 1—-—>r =2r<1-—- —
2 NERNG 3 3
=c
i.e.OSp=|21|S|ZZ|=r<c=1—§=3_3—\/g<1
2
=>|Sn(Z1;f)—Sn(Zz,f)|>T[3—m]—0>0

= |5p(21, ) —sp(22, )| # 0 = 5,(24, f) — sp(22, f) # 0.

Hence s, (z, f)is univalent function in the disc | z | < ¢ for all n.




Section two
Partial Sum of Cap like and Star like of order «

Definition 2.2.1

A function f(z) that is analytic in the open unit disc {z/|z | < 1} with
f(0) =0, f'(0) = 1is said to be caplike function if

zf''(2)
f'(@)

Re[l + ] > a(o), |z] < 1.

Definition 2.2.2

A function f(z) thatis analytic in the open unit disc {z/|z | < 1}and
univalent in the open disc {z/|z | < ¢ < 1}} with f(0) = 0, f'(0) = 1 is said

To be star like function in the open disc {z/|z | < ¢ < 1} if

[zf’(z) > a(c), |z| < 1.

f(2)

Theorem 2.2.3

Let L(z) = z(1 —z) 1thens,(z L) (n = 2,3,4,...) is cap like function in
disc|z| < 0.25

Proof

L(z) =z(1- Z)_l = 21?:0 z" = 21?:0 zk+t = Zlc\)zo—1=ozl"'_jwr1 = Zlcio=0 z" =

Z+ Y0, a,z"

2 7<




Wherea, = 1 (k = 2,3,4,...). Then we have

n n n
s,(z,L) =z +z zk=z Zk=z z¥l =z Lzk+1
k=2 k=1 k+1=1
n-1 Zn

1_
_ 22 S
k=0 1_Z

1-2)[1-Mm+1z"]—(0—1)[z—z"]
(1-2)?

=5s',(zL) =

l-z-(+Dz"+(n+Dz" +z-2z"" 1-(+1Dz" +nz™
(1-2)2 B (1-2)2

= logs’,,(z,L) =log [1 — (n + 1)z, + nz"*'] — 210g(1 —2)
By taking the derivative on both sides, we have

s"n(z,L)  0—(n+Dnz" ' +nn+1)z" -1
s',(z,L) 1—-—(Mm+1)z" + nzntt 1—-z
_ (n+Dnz" -1+ 7] N 2
S 1-(+ Dz +nztt  1—2z

s"..(z, L) (n+ Dnz"[-1 + z] 2z N(2) 27
= = + = +
s'w(zL) 1-(n+1Dz"+nz"1! 1—-z D(z) 1-2z

s, (z, L) (n+ Dnz"[—1 + 7] 27
s’ (z,L) =t 1-—(n+1)z" + nznt?t * 1—2z
(n+ Dnz"[—1 + z] 1+z

- 1—(n+1)z”+nz”+1+1—z

To simplify the notations, put

N(z) = (n+ 1)nz"[-1 + z], D(z)=1—-(n+ 1)z" + nz"*1,
1+2z
1—2z

=w=u+1iv

s".(zL)  N(2)
eI I Te

2+7<

=1+




Re [1 + ZM] = Re [N(Z) + W] = Re [N(Z)] + Rew

s’ (z,L) D(z) D(z)
N(2)
= Re|—=Z| 4+ 4 «oveenenn 1
e[D(Z)]+u (D)
We have
1+z
W=1_Z<z>w—wz=1+z<=)W—1=2+WZ S w—1=(04+w)z
Consider

[P Lk P TR TP Y
o |l—|=-o —1| =
A=2% w+1l " 3 v v

sS4lutiv-1=|lutiv+1l] e 16lut+iv—-1|>=|u+iv+1|?

o 16[(u—1)2+v?] =[(u+1)? +v?] = 16[u? — 2u+ 1 + v?]
=[u?+2u+ 1+ v?

& 16u? —32u+16+16v2 =u? + 2u+ 1 + v?
& 15u? —34u+ 15+ 15v2 =0

@uz—ﬁu+1+v2=0 @u2—2£u+(£)2—(£)2+1+v2
15 15 " \15 15
=0
17\* 289 289-225 64 (8)?
o(u-g5) + =g 1= s (1)

172 8\? 2 8\? . o
I\/Iax(u — —) =max (—) —vel = (—) i.e.max willexistatv =0
15 15 15

15 *15 1515
17 8 25 17 8 9

—" = — _— = — ——— = —,

Y™ 15715 YT 157157 15




Hence it is clear that the Mobius (Bilinear) transformation

1+2z
W:

1—2z

Maps the circle |z| = 471 in xy-plane into the circle

172+ . (8)
(” 15) ”‘(15)

In uv-plane such that the line segment AB on u-axis (v = 0) is a diameter

where
1= (% 0)= ). ana 5=(.0)=C o)

=2 cus B deustn)
Observe that

INZ)| =|(n+ Dnz"[-1+2z]| =+ Dn|z"*| | -1+ 2z| < (n+ Dn|z|"*[1 + |z]]

= [IN@Z)| < (n+ Dn|z|*[1+|z]] < (n+ Dn(4"H"[1 + 471]
=M+ Dnd ™ 1[4+ 1]

= |N©2)| <5n+ 1)nd"™ For|z| =471
Consider
[nz"1! — (n+ 1)z" < Inz"* + |-(n + Dz"| = n|z]"™* + (n + D|z|"*
Putlzl =4 t1= nz"" ' - (n+1Dz" <nd™™1+(n+1)4"<1
= —|nz""!'—(n+Dz" = —nd™-(n+1)4"> -1
= 1-|nz""1-(n+1)z"21—-nd " 1-n+1)4">1-1=0
But

D@ =1+nz"—(n+ Dz 21—+ 14" <1—|nz"' = (n+1)z" =0

ST




1 1

= < =471
D@ = 1T—ma " T—m+Dnan ol
Thus we have, for |z| =471
N@|_IN@I__ S@+Dna™t 5(n + Dn G
D@)| D@ " 1-ndm1—(n+1)4™m 41 _n—(n+1)4 )
Observe that
P 5(n+ 1)n ~ 5(2 4+ 1)2 _103) _10(3) _3
n= 4l —(n+1)4 421 -2-(2+1)4 64-2-12 50 5
5(n+ 1n 3 25 4"l —_n—(n+1)4
<= & ——<
4+l —pn—(m+1)4° 5 12 4(n+ 1)n
_oan 1 1 @
" (n+Dn 4(n+1) n '
1<11<1 1>1 1>1 ! 1>11
4n+1) ' n 4(n+1) ’ n 4n+1) n
Foranyn = 2,3,4,--
P 43 _64_25
ne nn+1) 3B+1 12 12
Observe that for all integers k
4+t 4* 4%4 4* 4

1
G+ D(k+2) kk+1)  G+Dk+2) kk+1D)  k+2 &
o 4dk>k+2 o 3k>2

Since 3k > 2 for all integers k = 1 we have

4k+1 4k 43 64
G+Dk+2) kk+D_ "73@+D 1z

Thus we have

4n O sas 4n 1 1 6t _ 4025
- > = L) e — e S e ) =S S
nn+1) ~ 12 > (n+n 4n+1) n- 12 127 12

2+7<




N(z) = (n+ Dnz"[-1 + z], DZ)=1—((n+1)z" +nz"*1,

1+z _
=w=u-+1v
1—2z
s"n(z,L)  N(2)
=1+ =
“sn@l) D@
s"..(z,L) N(2) N(2)
Re |1 —| = =R R
e! +Zs’n(z,L)] eD(z)+W eD(Z) + Rew
N(z
_ P [ ( )]
D(z)
It remains to show that 0.25 is maximal radius. This is seen for s,(z,L) = z +
z2. then
s" (z,L 04+2 1+4
1+ ZL =1+z = i
S'n(Z, L) 1+2z 142z

Has singularity at z = 0.25 and thus analytic with in|z| < 0.25.

Clearly s, (z,L) = z + X.}_, z¥is analytic with in|z| < 0.25, and 5,,(0,L) = 0,
Sinces',(z,L) =z + Xp k2" Lwes,(0,L) =z+ Y _,x 01 =1.
Hence s,,(z, L) is cap like function in the open disk |z| < 0.25.

Definition 2.2.4

Hadamard product (or convolution) of two analytic functions f(z) =
Yoo axz" in the open disk |z| < r, and g(2) = Y5 biz" in the open disk
|z| < d is denoted by f * g and is defined as an analytic function

(f * 9)(2) = Yr=o axbyz" In the open disk |z]| < rd .
Theorem 2.2.5

Let f(2) = z + X p=, ai 2" is cap like function. Then s, (z,f) = z +
Y r=p a;z" are cap like function in the open disc | z | < 0.25.

Proof-

2+7<




L(Z) = Z(l - Z)_l = ZZI(?:oZk = ZI?:OZk-Fl = ZI?—I:OZ’(-FI_:[ = Z]O(o=1zk =z+

Yo, ax z~.

Wherea, = 1 (k = 2,3,4,---). Then by Theorem 4,

sp(z,L) = z+ Y_, Z° Is cap like function in the open disc |z| < 0.25.
Replace z by 0.25 ins,(z L), then

5,(0.25z,L) = 0.25z + XY7_,(0.25)%2* is also cap like function in the open
disc [0.25z] < 0.25 i.e. |Z| < 1.

By hypothesis, f(2) = z + X5, a,z" is cap like function in the open
disc| z | < 1.

Convolution of f(z), s,(0.25z,L) is f(z) * 5,(0.25z,L) = 0.25z +
Yi=2(0.25)"7".

By Theorem (2.2.5), convolution of two caps like functions is cap like function
Hence f(z) * s5,,(0.25z, L)is cap like function in the open disc |z | < 1

Replace z by 4z in f(z) * 5,(0.25z, L), then

F(42) * 5,(0.25 X 42, L) = 0.25 x 4z + X0_, a;, (0.25)* (42)* = z + 0, ayz*

Is cap like function in the open disc|4z| < 1i.e. |z| < 0.25.
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