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Abstract

We introduce the concept of power series (Taylor, Maclaurin and
Laurent's) with the testing of convergence of power series in chapter
one. The concept of univalent functions is introduced in chapter two,
where the analytic function f(Z) is univalent under conditions that we

get it in the same chapter. The main result is that if f(Z) € B(a), then

F(2)€B@)if ;<a<1.
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Infroduction

Any function which is analytic at point to must have a Taylor
series about to. For it f is analytic at Z,, it is analytic throughout some
neighborhood |Z — Z,| < € of that point. If limit f limit to be analytic
at a point Z, but is analytic at some point in every neighborhood of Z,,

then Z, is called a singular point, or singularity of f.

A necessary, but by no name sufficient, condition for a function f
to be analytic in domain D is clearly the continuity of f throughout D.
Satisfaction of the Couchy—Riemann equations is also necessary but
not sufficient. Sufficient conditions for analyticity in D if we suppose
that:-

I. The differentiable power derivatives of the function u
and v with respect to x to y exist everywhere in the
neighborhood.

ii. Those power derivatives are continuous at Z, = (xg, o)
and satisfy the Couchy—Riemann equations,

Uy = Vy; Uy =

At Z, = (x9,¥). Then f (Z,) exists, its value being
f’(ZO) = Uy + Uy

When f is analytic everywhere inside a circle centered at Z,,
convergence of its Taylor series about Z, to f(Z) for each point Z

within that circle. If true an constants at n = 0,1,2, ... so that



o0

FD =) au(Z = Zp)"

n=0

For all points Z interior to some circle centered at Z,, then the power

series must be the Taylor series for f about Z,, when

f(Zy)

n!

n

Are the coefficients in Taylor series. We use the formula in Taylor's theorem
find the Maclaurin Series expansions of some fairly smile function of a
function f fails to be analytic at a point Z,, one can not apply Taylor's
theorem at the point. It is often possible, however, to find a series
representation for f(Z) involving both positive and negative powers of
Z — Zy which is Laurent Series. Since we say limit the series lower every to a
function f(Z) = S (S sum of the power series); therefore we can say that this
function is univalent in a domain D cC if f(Z;) # f(Z,) for all
{(Z,,Z,) c D} within Z; # Z,. A necessary condition for analytic function
£(Z) to be univalent in D is f (Z) # 0 in D. The Libera integral equator F of
a function f which is analytic in a domain D c C is introduced by R.J. Libera
as (1965) in the present research we introduce two chapter, chapter one

contain two suctions and chapter two contains two suctions.

~ Vil ~
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Chapter One Taylor of Power Series and Convergence

Chapter One
Types of Power Series and Convergence

(1.1) Basic Definitions of power Series

Theorem (1.1.1)
Suppose that a function f is analytic throughout a disk |Z —Z,| < R,
centered at Z, and with radius R,. Then f(Z) has the power series

representation by:

o0

1. f@D=) aZ-2)"  1Z-ZI<R
n=0
Where
f™(Zy)
2. a, = o ; n=0,1,2,..

That is series 1 converge to f(Z) when Z lies in the stated open disk.




Chapter One Taylor of Power Series and Convergence

This is the expansion of f(Z) into a Taylor Series about the point Z,. Series 1

can of course be written

3. f(Z) = f(Zo) +f < O) (Z—Zy)' + ! ;,ZO) (Z = Zy)* + 512 = Zy| < Ry
Example (1.1.2)

f(Z)=m; f(0)=1

f(Z)=m; f0)=5

p 4 "
f (Z)=(2_—Z)3; f(0) =

D= f =3
f _(Z_Z)4l f _4
_ f )z f(O)Z2
f(Z)=1+ T TR
—1+Z+Zz+ 32 +
B 4  31x4
—1+Z+ZZ+Zg+Z4+ iz
20 7 22 2n
n:
2 _izn
2—7 n



Chapter One Taylor of Power Series and Convergence

Definition (1.1.3)
When we take Z, = 0 in Taylor series which case f is assumed to be analytic

throughout a disk |Z| < R,, where

= £ (0
f(Z)=zf n!()Z" i 1Z] <R,
n=0

Example (1.1.4)
f(Z)=e?"" ; when Z=i
f2)=e""; f)=1
f@=e fO=1
ff@=e;  f(0)=1

oz 12
1! 2! *

z-D 1)2 = (Z— i)
P -y

i N2 -0

f@)=1+

Definition (1.1.5)

Laurent Series is a series of the form

o0

z a,(Z — Zy)" ()

n=—oo

As (*) is a doubly infinite sum we define

0

Za_n(Z—Zo)—Mian(Z—zo)"=Z > ’
n=0

n=1



Chapter One Taylor of Power Series and Convergence

Example (1.1.6)

1
Let f(Z) = e? + e(E). Recall that

o0 Zn
e?=>» — ;forall Z€C
n!
n=0
Hence
B _yZ
e\Z =z n' ;forall Z#0
n=0 '
- 72 z"
_— n_ooc DK — — DK — .o
f(2) = z A I T R T T A s e
n=—oo
Where
1 1
anza ;formn=>1, ap =2, a_nza ;form=>1

This expansion if valid forall Z # 0,i.e. Ry = 0,R, = oo.



Chapter One Taylor of Power Series and Convergence

(1.2) Testing for convergence of power Series
Definition (1.2.1)

Let f be a function whose domain of definition contains a
neighborhood |Z — Z,| < € of a point Z,. The derivative of f at Z, is

the limit

£z = tim TO =S @)

Z-Z2y L —1Z
And the function f is said to be differentiable at Z, when f (Z,) exist
by expressing.
The variable Z in definition (1.1.1) in terms of the new complex
variable
ANZ=2—-2, ;Z#Z,

Example (1.2.2) f(Z) = Z?

(Z + AZy)? - 77
AZ

f@=pm, = ljm @7 +02) = 27
Definition (1.2.3)

A function of f the complex variable Z is analytic at a point Z, if
it has a derivative at each point in some neighborhood of Z, it follows
that f is analytic at point Z.

A single valued function which is defined in the domain D and is
differentiable for all the point of D is called the analytic in the domain
D.

The term Holomorphic function is also used to denote analytic

function in domain D.



Chapter One Taylor of Power Series and Convergence

Proposition (1.2.4)
Let Z € C, suppose that

. |Zn+1|
lim =

ne [Z,]

L

if L <1 Then Z Z, is absolutely convergent

n=0

and if L > 1 Then z Z, isdiverges.
n=0

Proposition (1.2.5)
Let Z € C, suppose that

1
lim|Z,|n =L
n—oo

If L <1 Then z Z, is absolutely convergentand,

n=0

If L > 1 Then z Z, is diverges.
n=0

o0 in
Example (1.2.6): —Consider the series Z o
n=0

n

Here Zn=;7 we can use the ratio test to show that this series

converges absolutely indeed not that

|Zn+1|_ in+1 2" _ L _1
1Z,|  |2ntiin| 2] 2
Z 1
Hence lim 1Zn 1] ==<1
now [Z,] 2



Chapter One Taylor of Power Series and Convergence

An so by the ratio test the series converges absolutely. We could also

have used the root test to show that this series converges absolutely.
To see this note that

1 1
o1\t 1
- (z) =

101
lim|Z,|"n ==-<1
n—oo 2

1
A

iTl

27’l

Hence

And so by the root test the series converges absolutely.

Definition (1.2.7)

A series of the form

0

Z a,(Z—Zy)" where a, €C, Z€C

n=0

Is called a power series at Z,.By changing variable and replacing

Z —Zy, by Z we need only consider power series at 0 i.e. power series
of the form

z a,Z" where a,€C, Z€eC
n=0

When does a power series a converge. Let

R = sup {r > 0/There exist Z € C such that |Z| = r and Z a,Z" converge}
n

=0
We allow R = oo if no finite supermom exists.



Chapter One Taylor of Power Series and Convergence

Theorem (1.2.8)

0

Let Z a,Z"™ be a power series and let R be define as (xx), then

n=0

1. z a,Z™ converges absolutely for |Z] < R.
n=0

2. Z a,Z™ divergesfor |Z| > R.
n=0
Definition (1.2.9)

The number R given in the theorem is called the radius of

convergence of the power series

o0

z a,Z"

n=0

We will call the set {Z € C / |Z| < R} the disk of convergence.

Proposition (1.2.10)

o0

Let z a,Z™ be a power series :

n=0
. lan 111
i. If lim ntl exist, then
n—o |an|

1
ii. If lim|Z,|» exist, then
n—oo

1 lim |a, [
— = lim |a,|n
R n—-oo n
_ 1
Here we interpret 0 as o and = as 0.



Chapter One Taylor of Power Series and Convergence

a
Proof: (i) Suppose that | ZH

n

converges to a limitsay L,asn — o, i.e.

An+1
a,

=L

lim

n—oo

Then

= L|Z]|

By the ratio test the power series Z a,Z" converges for L|Z| < 1 and diverges

n=0
for L|Z| > 1. Hence the radius of convergence
R = 1
L

1
(ii) Suppose that |a,|* = L an n — o by the root test.

0

The power series Z a,Z" convergence if:

n=0
1 1
lim|a,Z™|n = lim|a,|"|Z| = L|Z| < 1
n—oo n—oo
And diverges if:
1 1
lim|a,Z™|» = lim|a,|?|Z| = L|Z| > 1
n—oo n—oo

Hence the radius of convergence

Example (1.2.11)



Chapter One Taylor of Power Series and Convergence

o0
AL 1 _
— here a,, = — in this case:
n n
n=0
n

= 1=
n+1_)

an+1
a,

1
R

As n — oo, Hence the radius of convergence to 1.

Lemma (1.2.12)

o0

Let f(Z) = Z a,Z™ have radius of convergence R. Then
n=0

9(2) = ) na,z"!
n=1
Converges for |Z| < R.

o0

Proof: — Let |Z| < R and choose r such that |Z| < r < R, then Z a,r"

n=1

converges absolutely. Hence the summands must be bounded. So there

exists k > 0 such that |a,,r™| < k forall n = 0.

Z
Letqg = 9 and note that 0 < g < 1 then

n—1

Tn—1_< n__qn—l
Tr

Ina,z"~'| = nla,|

0

But Z nq"~! convergesto (1 — q)~2. Hence by the comparison test
n=1

o0 o0

Z |na,, Z"1| converges. Hence Z na, Z"! converges absolutely and so

converges.
Proposition (1.2.13)

10



Chapter One Taylor of Power Series and Convergence

0

Let f(Z) = Z a,Z™ have radius of convergence R. Then all of

n=0
the higher derivatives f',f ,f ,..,f®,..of f exist for Z within the

disc of convergence moreover,

0

f(k)(Z) = z Tl(Tl — 1) (‘n —k+ 1)anzn—k

n=~k

- n! X
= E a,Z™""
—_ |n
P (n—k)!

11



Chapter Two Univalent Function & Libera Integral

Chapter Two
Univalent Functions and Libera Integral

(2.1) Univalent Functions
Definition (2.1.1)

wy € C be a domain; that is, in open and connected non—empty sub
set of the complex plane. A function f:D — C is analytic at Z, if it is
complex differentiable at every point in some neighborhood of Z, €
D. We say that f is analytic on D if f is analytic at Z, for every
Z, € D.

Definition (2.1.2)
A function f:D — C is called univalent on D (or schlict or one—to—
one) if f(Zy) # f(Z,) forall Z;,Z, € D with Z; + Z,.

Example (2.1.3)

z: 73 :
f(Z2)=12 + =+ isunivalent in |Z] < 1.

Since Z; =

rG)=3+r) ="z

[
,ZZ=§ = Zl¢ZZ

N =

12



Chapter Two Univalent Function & Libera Integral

Definition (2.1.4)
A function f:D — C is called Locally univalent at Z, if f is

univalent in some neighborhood of Z,.

Lemma (2.1.5)
Let f:D — C, if f analytic on D, then f'(Z,) #0 if and only if f

Locally univalent at Z,.

Remark (2.1.6)
It is also important to note that an analytic function may be Locally
univalent throughout a domain although it need not be univalent in

that domain.

Example (2.1.7)
Let f: D — C given by f(Z) = Z?%, where

3
D={ZEC:1< |Z|<2,O<arg(Z)<7}

It is clear that f is analytic on D and Locally univalent at every
Zo €D, since f (Zy) =2Z,+#0 for all Z,€D but f is not univalent

onD.
3 -3 3

2 S

3
Since Z; = ——=+
"2 2z

2V2 7
f(Zy) =f(Z,) =Zi

13



Chapter Two Univalent Function & Libera Integral

Definition (2.1.8)
A function f:D — C which is both analytic on D and univalent on D

is called conformal mapping on D.

Example (2.1.9)
Let f:D — D n H be a function given by f(Z) = Z?, where
D={ZeC0<|Z]|<1,Im{Z} > 0,Re{Z} > 0}

s
and H={Z€C:O< |Z] < 1,0 < arg(2) <§}

We note that f is conformal, since f is analytic and univalent on D

andonto D N H.

Example (2.1.10)
Let g: D — D be a function given by g(Z) = Z2, where
D={ZeC0<|Z|<1,Im{Z} > 0,Re{Z} > 0}

Note that f is conformal onto the disk D,
Since f analytic, but not univalent; for instance

@)=

2 2 4

And £ (0) =0 which means that there is no neighborhood of 0 in

which f is univalent.

14



Chapter Two Univalent Function & Libera Integral

(2.2) Univalent Function defined by Libera Integral

Operator

Definitions (2.2.1)
(1) Let E = {Z:|Z| < 1} be a unite disk and

A= fif(A) =27+ z a,Z*,Z € E is analyticin E and normalized by
k=2
f(0)=0,f(0)=1

(2) we say that f is bounded if there exists M > 0 such that
If (Z)|<M,vZE€EN

(3) for every 8 € R, the map
g2 =e U +f(eZ)=Z+e%ayZ? +e?%azZ3 + -
Belongs to S. This property implies that for every integral k > 1 the

set {f*(0): f € S} is invariant under the rotation about 0.

Definition (2.2.2)
Let

B(a) = [f:f(Z) =7 +ZakZ" such thatR(f'(Z)) > aine,where0<a<1l;cA
k=2

The functions in B(a) are called functions of bounded turning.

15



Chapter Two Univalent Function & Libera Integral

Definition (2.2.3)
The Libera integral operator F of f € A is given by

Z
2 2
F(2) = ZJ fdt =27+ z D a,Zk
0

The n-th partial sums E,(Z) of the Libera integral operator F(Z) are

given by

=~ 2
—_— k
E(Z)=17+ kE—Z CESY a,Z

Definition (2.2.4)

For function @ analytic in E the convolution function P x(Q takes
values in the convex hull of the image on E under Q, where P(Z)
analytic in E.

The operator (*) stands for the Hadamard prod net or convolution of

two power series

f(2) = Z a,Z* and g(Z) = z b, Z*
k=1 k=1
Denoted by:

o0

(f D@ =) ayh, 2"

k=1

16



Chapter Two Univalent Function & Libera Integral

Lemma (2.2.5)
Let 8 be a real number and M and k be natural numbers. Then:

1 « cos(k0O)
~+ >
3 k+2

Lemma (2.2.6)

M Zk
oY

1
>>—§, VZ € E.
k=1

Proof:-for0 <r < 1andfor0 <68 < m write
Z =re'® =r(cos0 + isind)

By Demoiver's Law, we have

P i A B irk cos(kO) S L cos(kB)
k+2) k+2 k+2
k=1 k=1 k=1
& cos(k6) 1
By lemma 2. 2. 5, we conclude that z 17 is grater than or equal to — 3

k=1

Lemma (2.2.7)
Let P(Z) be analyticin E, P(0) = 1,and R(P(Z)) > % inE.

17



Chapter Two Univalent Function & Libera Integral

Theorem (2.2.8):- If %s a < 1landf € B(a), then

4a —1
hes(t)

Proof:- let f € B(a) and % < a < ¢y. Since R(f (Z)) > a we have

Rl1+ . ik zZk-1 >1
20— 4 T 2

Applying the convolution properties of power series to f,(Z). We may

write

'(Z)—1+i 2k oz
ful2) = k_2k+1a"

1 X _
:<1+2(1_a)kz=2kaka 1> <1+(1—a)zk+1Zk 1)

=P(2)*Q(2)

From lemma (2.2.6), for M = n — 1 we obtain

Thus we have

4751\ 4 -1
R(Q(2)) = R(1+(1—a)zk+1> “3

On the other hand, since

R 1+;ika Zk1]>
21-a) & k

Therefore by lemma (2.2.7),
—1
3

R(E,(2)) > ta

18
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