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INTRODUCTION

In this work, all rings have identity elements and all modules are right

unitary. We use the notations " " and "< " to denote inclusion and
submodule, respectively. For two integers n and m, we denote n/m in ease
n divides m and gcd (n, m) denotes the greatest common divisor of n and
m. Let R be an ring and M be an R-module. Recall that a submodule X of
M is small, denoted by N « M, if for any submodule X of M, X+ N =M
implies that X = M. More details about small submodules can be found in
[2, 3, 4] . The concept of small submodule has been extended by some
researchers, for this see [1, 6]. In [5], the authors extended the concept of
essential submodule with respect to an arbitrary submodule. This
motivates us to define a new generalization of small submodules. Let T
be an arbitrary submodule of M . We say that a submodule N of M is an
T-small submodule of M provided for each submodule X <M, TE X+ N
implies that T € X . Note that the notions of smallness and T-smallness
coincide if T = M. We investigate the basic properties of T-small

submodules.
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CHAPTER ONE

Some Properties of small submodules

Definition 1.1 [3] A submodule N of a module M is called small in M
(denoted by N« M) if V K < M with N + K =M implies K = M.

Example 1.2 For every module M we have 0 «< M.

Theorem13[3] AKM SVYUSMA+U<SM).

Proof = Let A < M [WE will proof by using contradiction]
Andsince A<MthenU=M

Suppose IU<M 3A+U=M, AndsinccA<MthenU=M
And this is contradiction — ThenU =M, SOA <K M

Definition 1.4 [6] An R module M is said to be semisimple if VN <
M3aK <M > NOK =M.

Theorem 1.5 [6] If M is a semisimple module then 0 is the only small
submodule in M .

Proof LetN <M so N < @M so (since M is semisimple)

AK < MwithN@K =Mi.eNNK=0and N+ K=M = K =
Mbut NNK=0soNNM=0= N =0.

Definition 1.6 [6] Let M be an R-module A subset X of M is called
basis of M if :

(i) X'is generated M, i.e. M =< X >

(it) X'is linearly independent, that is for every finite subset

< X1, X5, e, Xp >

of Xwith ¥, Xi «i=0,Vxi€Rthenxi=0,vl1<i<n.
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Definition 1.6 [2] An R-module M is said to be free if satisfy the
following conditions:

(i) M has basis

(i) M = Byic1A; A Vi EI[A; = RR].

Example 1.7 [2] Z as Z-module is a free module.

Example 1.8 ZasZ-moduleis freesince<1>=7Z7
<1>={l.a\a€Z}={.-3,-2,-10123,..}
and Ve Z,x .1 = 0 \>x= 0.

Theorem 1.9 [1] Ina free Z-module (0) is only small submodule.

Proof Let F = @;¢xiZ be a free Z-module with basis {X; /i €1} A <
F,a € Aand let o= Xiy7;+.. +XimZm, Z; € Z, with Z; # I}Let ne
Zwithg.c.d(Z;,n) =1landn < 1.

PutU = GBXi Z + X;nZ,thenaZ + U = F, hence A+ U = Fwith U # F.

Zoren's lemma 1.10 [2] If A is non-empty partial order set such that

every chain in A has an upper bound in A, then A has maximal element.

Proposition 1.11[3] If finitely many arbitrary elements are omitted from
an arbitrary generating set X of Q,, then the set with out these elements
omitted is again generating.

Theorem 1.12 Every finitely generating submodule of Q, is small in Q.
Proof Let N<Q, be a finitely generating sub module , So 3
{41,492, -,9n} € Q Such thatN =< q4,q5, ...,q, > Let K < Q, with
Q, =<< 41,92, -, qn >U K >, by the proposition Q = Z = N is small.

Modular law 1.13 [3] IfA,B,C<MandB<C(, then(A+B)nC=
(AN +(BNC)=(AnC)+B.




Lemma1l14[3] fA<B<M<NandBKM=AKN
Proof LetU < N,Let A+ U = N [We must proof that U = N]
Since A< B then B+U=N= (B+tU)n M=N N M

= B+(Un M)=M (by modular law)

Hence Un M= (since B&K M, So A < U and since A + U=N
Then U=N — A < N.

Theorem 1.15[3] IfA; K M,i=1,2,...... ,n= YL A KM
Proof LetA; K M,i=1,2,...... ,n

Ifi=1, A; + U =M = U = M (by hypothesis) — [A; K M]
Ifn=2 - A, + A, +U=M = A;+(A, +U) =M

Since A; K MthenA, +U=M

SinceA, K M=>U=M,S0 Y2 A, KM

Let it be true at n-1, And we will proof it at n

LetA=A; +A,... A1 <M — A+A,+U=M

Then A,+U=M [since A « M], Then U=M [since A, < M]
SoYL A KM

Definition 1.16 A homomorphism o: A — B is called small & kerx< A.

Theorem 1.17 [6] If <: M — N modular homomorphism on R-ring. If
B< Nthen « (7 (B)) = B N IM().

Theorem 1.18 [6] If AK M and ¢ € Hom(M,N) = ¢@(A) K N
Proof Let (A)+ U =NandU < N,so @(m) € NVvm € M
@(m) =@(a) +uwitha€eAuelU— e(m)—¢(@)=u

— @em—-a)=u— @ (em-a)) =" = (v
—m-a€@l(U)mmeA+¢ =0

— A+ @ 1=(U)=M but A<M, henceM = ¢~ ! = (U)

Chapter One : Some Properties of small submodules
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— @(m) = (p((p_1 = (U)) = U N Im(¢)[by theorem (2.1.19)]
— @(A) < o(m) < U,henceU = @(A) =N

Theorem 1.19 [2] If «x:M — N, B: N — K modular homomorphism on R-
ring then Ker (B) =~ (Ker(B)).

Proof LetX € Ker(Bx) —» B« (X) =0 — (x (X)) =0 —x (X) €
Ker(B) — X ex™! (Ker(B))

So Ker (B «) < o™t (Ker(B))... (1)

Let X ex™? (Ker(B)) —x (X) € (B) — (x (X)) =0— B (X) =

0 — X € Ker(B «) Sox~! (Ker(B)) E Ker (B ) .... (2) From (1),

(2) — Ker (B «) =1 (Ker(B)).

Theorem 1.20 [2] If <:M — N, B: N — K modular homomorphism on
R-ring. If A < M then o< (¢ (A)) = A + Ker().

Proof LetX ex™! (o (A)) —o (X) €x (A), Then3I b € A 3¢ (X) =«
(b) »x (X—b) =0 — X—Db € Ker(x),then 3 K € Ker(x) 3 X —
b=K — X=b+K— X€A+Ker(x)[since K € Ker(x),b € A]
Soo! (o (A)) € A+ Ker(x).....(1) LetXEA +

Ker(«),Then3db € B K€ Ker(x) 3X =b+ K —x (x) =«

(b +K) —»x (X) =x (b)+x (K) = (x) = (b)[since K €

Ker(«)] — X €x™t (e (A)) So A + Ker() o™t (o (A)) ... (2)

So from (1), (2) we get <™t (e (A)) = A + Ker(x).

Theorem 1.21 [2] If <: A — B,B: B — ( are small epimorphisms, then
B x: A — C also small epimorphism.

Proof By theorem B « is also epimorphism Now we must proof Ker(B «
) <A LetU < AwithKer(B ) + U= A, Then « (Ker(B «) + U) =
x (A)




= (Ker(B x))+x (U) = B = (<! (Ker(B x))+x (U) =

B (by theorem(2.1.21)) = Ker(B)+« (U) = B,But Ker(B) < B =«
(U) =B =« (U) =x (A)

=t (o« (U)) =71 (x (4)) = U + Ker(x) =

A (by theorem (2.1.22))But Ker(x) K A= U=A

Definition 1.22 [4] Let A< M then A-B < M is called addition
complement of A in M (briefly adico) iff :

(A+B=M

(i) B < M minimal in A+B=M, i.e. V B < M with A+B=M,ieVU <M
with A+U=M and UK B imply U =B

B- D < M is called intersection complement of A in M (briefly inco) iff :
(i) AnD=0

(if) D is a maximal in AnD=0

.e. VC<MwithANnC=0 AD < Cimplies C = D.

Corollary 1.23[4] Let A< M and B < M, then A@B=M < B is adco
and inco of A in M.

Proof = suppose that B is adco and inco of A

Then A+B=M resp. AnNB=0 = M= A@B

& suppose that A@B=M, hence A+B=M and ANB=0

Let C < M with A+C=M and C< B, (A+C) NnB=MnB=
(A+C)NB=B — (ANB) +C=B = C+B[ANB = 0]
SoBisadcoof Ain M Let C< M with An C = 0 and B<C

Since A+B=M= A+C=M [since A+BC A + (]

— AP C=M= ADC = A®B [ADB = M by assumption]

ADC A®B . .
%:%:}C=B—>SOBISIHCOOfA1nM.

Chapter One : Some Properties of small submodules
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Lemma 1.24 [4] Let M=A+B, then B is adco of A in M <ANB< B.

Proof = let U<B and (AnB)+U=B

Then M=A+(ANB)+U=A+U=M [since ANBCA]

But B is so ANB<B

< we have by assumption M=A+B, Let U<B with A+U=M and U<B
— (A+U)NB=MNB— (A+U)NnB=B[B<M]— (A+B)n
U = B [by modular law]

But An B < B, hence U=B, thus B is adco to A in M.




CHAPTER TWO

T-small submodules

Let M be an R-module. A submodule N of M is called T-small in M
provided for each submodule X of M, T € X + N implies that TS X. We
study this mentioned notion which is a generalization of the small

submodules and we obtain some related results .

Definition 2.1. [1] Let R be aring and T be a submodule of an R-module
M. A submodule N of M is called T-small (in M), denoted, by N« M, in
case for any submodule X <M, T <€ X + N implies that T € X . Under
the notations of the above definition, if T=0, then every submodule of M
is T-small in M. Also if T # 0. Then N «<; M implies that T £ N, for if
not, T € N +(0) and hence T < (0), a contradiction. If T = M, then
Ny Mifandonly if N <K M .

Remarks 2.2.

(i) If T =0, then every submodule of M is T-small in M.

Proof. LetN<Mandlet X <M, whereT=0.Since0< X+N it
clearthat 0 < X then N &<y M .

(i) If T # 0, N&; M implies T € N.
Proof. f T<Nandletx =0, x <N thenT € N + (0) but N&; M

, T < o which is a contradiction, T € N .

(iii) If T =M, then N M ifand only if N < M.

Proof. Let N&; M where T=M to prove N & M.

Suppose K « M suchthat N+ K=M impliesN+K=T,s0T € N+ K
but N« M impliesT € K ,M < K implies M = K and hence N «< M.

A

Chapter Two : T-small submodules
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Let N < M to prove Ny M suppose K < M suchthatT € K + N. So,
MCK+N.But K+N<M (clear). Then M = K+ N but N K M,
hence M=K ,so T=K,thusT € K. Therefore N<; M .

Example 2.3.

(i) Let Z be the ring of integers. It is easy to see that (0) is the only small
submodule of Z and also for any nonzero integer m, the submodule (0) is
the only mZ -small submodule of Z .

Solution. Suppose nZ < Z wheren # t+1suchthatmZ < nZ+o

Then mZ < nZ. Therefore 0 «,,,7 Z.

(i) InZ,, asZ-module. Let N; =<4 > , N, =< 6> ,
T, =<2> and T, =< 3 > be submodules of Z,,.
Is N; isa T; — small submodule ?

IsN, isa T, — small suomodule ?

Solution. All submodules of Z,, are :

X, ={0}

X, =<2 >={0,2,4,6,8,10}

X; =<3 >=1{0,3,6,9}

X, =<4>=1{0,4,8)

Xs =<6>=1{0, 6}

Xe = L1

When N, =<4> and T, =<2>.TS X+ N implies TS X
<2>C <2>+<4>=<2> implies <2> € <2>
<2>C <3>+<4>=7q4, implies <2> € <3>
Then N; isnot T, — small submodule.

when N, =< 6> and T;, =<3 >

<3>C <3>+<6>=<3> implies <3><c <3>
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<3>CZ,+<6>=7Z;, implies<3> c7Z,,

Then N, is T; — small submodule.
(ill) 4Z,4 <3794 Zo4 1S notsmall in Z.,.

Solution.

47.,, = {0,4,8,12,16,20}

3Z,, = {0,3,6,9,12,15,18,21}

47,4 + 3Z,, =1{0,1,2,3,...,23} = Z,, but 3Z,, + 47Z,,. Hence
47,4 isnotsmall inZ,,. To prove 4Z,,. To prove 4Z,, <Kszza Zog.
4Z34 K 3724 Ly

T=<3> and N=<4>

All submodules of Z,, are:

X; = {0}

X, =<2>={0,2,4,6,810,12,14,16,18, 20,22}

X; =<3>=1{0,3,6,9,12,15,18,21}

X, =<4>=1{0,4,8,12,16,20}

Xs =< 6 >={0,6,12,18}

X, =< 8>=1{0,8,16}

X, =< 12 >={0,12}

Xg = Ly

T € X+N implies T € X

<3>C <3>+<4>=7,, implies <3>C <3>
<3>C 7o+ <4>=7,, implies<3>cC Z,,

Proposition 2.4. LetM beanR-module, L<T <MandK<M .
(i) K<y M, thenKNT < M.
(i L<y Mifandonlyif LK T.
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Proof. (i) Suppose that (KNT)+ X =M forsome X < M. Then T <
(KNT)+ X and hence T <M then T € K + X but K «; M, we have
TS X. Thus KNTESTC<X implies KNT<SX and henceX =
(KNT)+X=M .

(i) SupposethatL < MandT € L+ X forsome X C TthenT C L +
XandsoT € X. Thus X =T . Conversely, suppose that L < Tand T €
L+ X forsomeX <MthenT =(L+X)NT by module Law T =L +
(XNT) butL«< Tandhence XNT =T ThusT € X .

Proposition 2.5. [4] Let M be an R-module with submodules N < K <

Mand T < K. If N« K,then N «; M.

Proof. Suppose that TS N +X forsome X € M. ThenT € (N + X) N K
forsome TS Kand T € N + X and by modular LawT € (N + X) N
K=N+(X nK),sinceN<; K,wehaveT S X NnK < X implies

TCX.

Proposition 2.6. [4] Let M be an R-module with submodules N,, N, and
T.Then N; &Ky M and N, <y M ifandonlyif N; + N, <; M.
Proof. Suppose that N; < M and N, < M toprove N; + N, < M.
Let X <M suchthatT < (N;,+N,) +x impliesT € N; + (N, + X)
TCSN,+X,sinceN;, K M. T €X ,sinceN, LK M .

Proposition 2.7.[4] Let M be an R-module with submodules K< N <M
and K<T.Then N Ky Mifandonly if K<z M and N/K <7,k M/K,
Proof. Suppose N < M jtoprove T € K + X forsome X < M. Then T
C N + X and by hypothesis, T € X. Thus K < M. Now assume that T/K
c NK+X/K=(N+X)/K forsome K<X<M. ThenT<N+X
and so T < X. Thus T/K € X/K . Conversely, suppose that K < M
and N/K « M/K and also TS K + X for some X < M. Then T/K

AR
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(N+X)/K=N/K+(X+K)/K. Since NK <p, MK, TIK =
(X+K)/K andso T S K+ X. Since K «r M, we have T C X, as

desired .

Proposition 2.8.[3] Let M be an R-module with submodules K, < M;
<Mand K, <M, <Msuchthat T € M; N M,. Then K; <y M; and K,
Lr M, ifandonly if K; + K, <y My + M,.

Proof. First assume that K; <y M; and K, <y M,. By proposition
(2.5), K; & M; < M; + M, implies K; € M; + M, and K, < M, €
M; + M, implies K, € M; + M, , Also by proposition (2.6) K; + K,
<r M; + M,. Suppose that K; + K, < M; to prove K; < M; and K,
Ky M, TSK, +X VX,€M, TSK,+X CK,+K,+X

T €K, +K,+X.Since X < M; impliesM; S M;+M,, X €S M, + M,
andsince K; + K, <y M;+ M, ThenT C X.

Theorem 2.9. [4] Let {T;};c; be an indexed set of submodules of an R-
module M and K be a submodule of M. If for each i € I, K <; M, then
K<sierri M.

Proof. Suppose Y,c; T; € K+ X for some X <M. Since T; S T; <
K+ X Then T; € K+ X, since K «<g; M this implies that T; < X.
Then Y T; € X .

Corollary 2.10. [3] Let K; and K, be submodules of an R-module M
suchthat K; <, M and K, <gq M. Then K; N K, Kk g, M.

Proof. Since K; <Kk, M and K, <k, M, by theorem 2.6 , K; N K, <
K, <M and K; N K, € K; < M. Since K; Kk, M and K, <k M. Then
by theorem 2.9, K; N K, Kx, M and K; N K, K, M implies K; N K,

Kkrk, M .

\Y




Proposition 2.11. [3] Let K and 0 # T be two submodules of a right R-
module M. The following statements are equivalent:

() K< M;

(i) The natural map m : M — M /K is T-small;

(iii) For every right R-module N and R-homomorphismh: N — M, T <
K + Imh implies that T < Imh.

Proof. (i) & (ii) Suppose that K < Mtoprover : M — M/K is T-

small. By definition (1) A monomorphism f: M — M is called T-small if

Imf < M.

(i) An epimorphism f: M — M is called T-small if ker f <, M

We must find ker = and prove is T-small.

n:M—M/K and w(X)=x+K

—kerr={xeEM:f(x)=0}={xeEM:x+K = 0%}
={xeEM:x+K=0+K}
={xeM:x+K=K}={xeM:xeK}=K

Hence kerm = K

then mw:M — M/K is T-small.

1111

(i) = (iii) Clear.

(iii) = (i) Suppose that T € K + X for some X € M. Leti : X — M be
the inclusion map. Since i(x) =x and Im(X) =X Then TS K +
Imi =K+ X and f(T) = 0 then by (iii) f(x) K M and f(T) # 0 then
T cX.

Lemma 2.12. [4] Let M and N be right R-modules and f : N — M be an
R-homomorphism. If K and T are submodules of M such that K < M,
then f(K) K¢y N. In particular, if K <z M < N, then K K7 N.

'y
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Proof. We may assume that f(T) # 0. Let f(T) < f(K) + X, for some
X < N. We claim that TS K+ f~1(x). Let t € T. Then f(t) € f(T)
implies f(t) € f(K) + X, then f(t) = f(k) + x forsome x € X and k €
KThus f(t) —f(K)=x, f(t—K)=x€eXandso f(t —K) € X.
t—k € f~(x). This implies that t € k+ f~1(x) implies t S k +
f~1(x). Since K « M, We have t € f~1(x) and hence f(T) € X .

Corollary 2.13. [4] Let M and N be right R-modules and f : M — N be
an R-homomrphism, then f(K) <z N.

Note. Let M and N be R-modules and f : M — N is a homomorphism.
If consider f:Z,y — Z,o, with f(x) = 2x. Then 10Z,, < Z,, but
f~Y(10Zyo) = 5Z,4 is not small in Z, .

Example 2.14. Let f: Z — Z, be a homomrphism defined by f(x) = x
forall x € Z. Put K = 2Z, and T = {0}. We note that 2Z, < Z,. Now,
FUK) = F71(22,) = F40,2} = {....,—4,-2,0,2,4,...} = 2Z
FUT) = F1{0}) ={.....,—8,—4,0,4,8, ...} = 4Z.

So f~Y(T),f~1(K) are submodules of Z. Now, let X = 3Z < Z. Hence
FFUT)S X+ f 1K) (i.e 4ZCS3Z+2Z=17),but 4Z ¢ 37Z

(i.e f~1(T) ¢ X). Therefore f~1(K) isnot f~1(T)-small in Z.

Definition 2.15. Let M be an R-module and N € M. If N' < M is minimal
with respect to N + N' = M, then N' is called a supplement of N in M.

Proposition 2.16. [3] Let N and T be submodules of an R-module M and
N' be a supplement of N in M. If N <, M, then TS N'. Moreover, if N
LKrMandN+T=M,thenN' =T .

V¢
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Proof: Since N'is supplement of N in M and N' is minimal with respect
toN+N=Mand TS MthenTS N+ N'DbutN <« MthenT € N'"and
moreover, since N + T = M and since N' is supplement of N in M then N'
is minimal with respectto N+ N'=M but N+ T = M implies N' € T but
TS NthenT=N.

Theorem 2.17. [3] Let K be a submodule of an R-module M and K' is
a supplement of K in M. The following are equivalent:

(i) K<k, M;

(if) For each submodule N of M, the relation K + N = M implies K' € N.
Proof: (i) = (ii) suppose that K + N = M and since K' € K + N by
definition K' € N

(ii) = (i) Suppose that K' € K+ X some X € M. Since M=K +K' c
K+ XhenceMc K+ Xandsince XS MandK<MthenK+X < M
we have M = K + X and by hypothesis K' € X .

\e
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