Republic of Iraq
Ministry Of higher education and Scientific research
University of AL-Qadisiyah
College of Education

T-small Submodules

A research
Submitted to the department of education Al-Qadisiyah University as a partial fulfillment requirement for the degree of Bachelor of science in mathematics

By
 Zahra'a Ghani Umran

Supervisor

Dr. Tha'ar Younis Ghawi

Certification

I certify that this paper was prepared under my supervision at the university of AL-Qadisiyah, college of Education, Dep. of Mathematics, as a partial fulfillment for the degree of B.C. of science in Mathematics.

Signature:
Supervisor: Dr. Tha'ar Younis Ghawi
Date: / / 2018

In view of the available recommendations, I forward this paper for debate by the examining committee.

Signature:
Chairman of Dep. Dr. Mazin Umran Kareem
Date: / / 2018
新
लैज

Dedication

I dedicate this humble to cry resounding silence in the sky to the martyrs of Iraq wounded. Also, I dedicate my father treasured, also I dedicate to my supervisor Dr. Tha'ar Younis Ghawi. Finally, to everyone who seek knowledge, I dedicate this humble work.

Acknowledgment

And later the first to thank in this regard is the Almighty God for the blessing that countless, including the writing of this research modest. Then thanks and gratitude and deepest gratitude to my teacher Dr. Tha'ar Younis Ghawi, which prefer to oversee the research and guidance in spite of concern, and not to ask him reordering Almighty to help him I also wish to express my thanks to the staff of the department of mathematics.

Table of contents

Page

Introduction 1
Chapter one 2
Chapter two 8
References 16

INTRODUCTION

In this work, all rings have identity elements and all modules are right unitary. We use the notations " \subseteq " and " \leq " to denote inclusion and submodule, respectively. For two integers n and m, we denote n / m in ease n divides m and $\operatorname{gcd}(n, m)$ denotes the greatest common divisor of n and m. Let R be an ring and M be an R-module. Recall that a submodule X of M is small, denoted by $N \ll M$, if for any submodule X of $M, X+N=M$ implies that $\mathrm{X}=\mathrm{M}$. More details about small submodules can be found in $[2,3,4]$. The concept of small submodule has been extended by some researchers, for this see $[1,6]$. In [5], the authors extended the concept of essential submodule with respect to an arbitrary submodule. This motivates us to define a new generalization of small submodules. Let T be an arbitrary submodule of M. We say that a submodule N of M is an T-small submodule of M provided for each submodule $X \leq M, T \subseteq X+N$ implies that $T \subseteq X$. Note that the notions of smallness and T-smallness coincide if $T=M$. We investigate the basic properties of T-small submodules.

CHAPTER ONE

Some Properties of small submodules

Definition 1.1 [3] A submodule N of a module M is called small in M (denoted by $\mathrm{N} \ll \mathrm{M}$) if $\forall K \leq M$ with $\mathrm{N}+\mathrm{K}=\mathrm{M}$ implies $\mathrm{K}=\mathrm{M}$.

Example 1.2 For every module M we have $0 \ll$ M.

Theorem $1.3[3] \quad A \ll M \Leftrightarrow \forall U \leq M(A+U \leq M)$.
Proof \Rightarrow Let $A \ll M$ [WE will proof by using contradiction]
And since $\mathrm{A} \leq \mathrm{M}$ then $\mathrm{U}=\mathrm{M}$
Suppose $\exists \mathrm{U} \leq \mathrm{M} \ni \mathrm{A}+\mathrm{U}=\mathrm{M}$, And since $\mathrm{A} \leq \mathrm{M}$ then $\mathrm{U}=\mathrm{M}$
And this is contradiction \rightarrow Then $U=M$, So $A \ll M$

Definition 1.4 [6] An R module M is said to be semisimple if $\forall N \leq$ $M \exists K \leq M \ni N \oplus K=M$.

Theorem 1.5 [6] If M is a semisimple module then 0 is the only small submodule in M .

Proof Let $N \leq M$ so $N \leq \oplus M$ so (since M is semisimple)
$\exists K \leq M$ with $N \oplus K=M$ i.e $N \cap K=0$ and $N+K=M \Rightarrow K=$ M but $N \cap K=0$ so $N \cap M=0 \Rightarrow N=0$.

Definition 1.6 [6] Let M be an R-module A subset X of M is called basis of M if :
(i) X is generated M , i.e. $\mathrm{M}=\langle\mathrm{X}\rangle$
(ii) X is linearly independent, that is for every finite subset
$\left\langle X_{1}, X_{2}, \ldots, X_{2}\right\rangle$
of X with $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{Xi} \propto \mathrm{i}=0, \forall \propto \mathrm{i} \in \mathrm{R}$ then $\propto \mathrm{i}=0, \forall 1 \leq \mathrm{i} \leq \mathrm{n}$.

Definition 1.6 [2] An R-module M is said to be free if satisfy the following conditions:
(i) M has basis
(ii) $\mathrm{M}=\oplus_{\forall i \in \mathrm{I}} \mathrm{A}_{\mathrm{i}} \wedge \forall \mathrm{i} \in \mathrm{I}\left[\mathrm{A}_{\mathrm{i}} \equiv \mathrm{R}_{\mathrm{R}}\right]$.

Example $\mathbf{1 . 7}$ [2] Z as Z-module is a free module.

Example 1.8 Z as Z-module is free since $\langle 1\rangle=Z$
$<1>=\{1 . a \backslash a \in Z\}=\{\ldots-3,-2,-1,0,1,2,3, \ldots\}$
and $\forall \propto \in Z, \propto .1=0 \backslash \Rightarrow \propto=0$.

Theorem 1.9 [1] In a free Z-module (0) is only small submodule.
Proof Let $\mathrm{F}=\oplus_{\mathrm{i} \in \mathrm{IXi}} \mathrm{Z}$ be a free Z -module with basis $\left\{\mathrm{X}_{\mathrm{i}} / \mathrm{i} \in \mathrm{I}\right\} \mathrm{A} \leq$ $F, a \in A$ and let $\propto=X_{i 1 Z 1}+. .+X_{i m} Z_{m}, Z_{i} \in Z$, with $\left.Z_{i} \neq I\right\} L e t \quad n \in$ Z with g. c. $\mathrm{d}\left(\mathrm{Z}_{1}, \mathrm{n}\right)=1$ and $\mathrm{n}<1$.
Put $\mathrm{U}=\oplus_{\mathrm{X}_{\mathrm{i}}} \mathrm{Z}+\mathrm{X}_{\mathrm{i}} \mathrm{nZ}$, then $\mathrm{aZ}+\mathrm{U}=\mathrm{F}$, hence $\mathrm{A}+\mathrm{U}=\mathrm{F}$ with $\mathrm{U} \neq \mathrm{F}$.

Zoren's lemma $\mathbf{1 . 1 0}$ [2] If A is non-empty partial order set such that every chain in A has an upper bound in A , then A has maximal element.

Proposition 1.11[3] If finitely many arbitrary elements are omitted from an arbitrary generating set X of Q_{z}, then the set with out these elements omitted is again generating.

Theorem 1.12 Every finitely generating submodule of Q_{z} is small in Q_{z}.
Proof Let $N \leq Q_{z}$ be a finitely generating sub module, So \exists $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\} \subseteq Q$ Such that $N=<q_{1}, q_{2}, \ldots, q_{n}>$ Let $K \leq Q_{z}$ with $Q_{z}=\ll q_{1}, q_{2}, \ldots, q_{n}>\cup K>$, by the proposition $Q=Z \Rightarrow N$ is small.

Modular law 1.13 [3] If $\mathrm{A}, \mathrm{B}, \mathrm{C} \leq \mathrm{M}$ and $\mathrm{B} \leq \mathrm{C}$, then $(\mathrm{A}+\mathrm{B}) \cap \mathrm{C}=$ $(\mathrm{A} \cap \mathrm{C})+(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \cap \mathrm{C})+\mathrm{B}$.

Lemma 1.14 [3] If $A \leq B \leq M \leq N$ and $B \ll M \Rightarrow A \ll N$
Proof Let $\mathrm{U} \leq \mathrm{N}$, Let $\mathrm{A}+\mathrm{U}=\mathrm{N}$ [We must proof that $\mathrm{U}=\mathrm{N}$]
Since $A \leq B$ then $B+U=N \Rightarrow(B+U) \cap M=N \cap M$
$\Rightarrow \mathrm{B}+(\mathrm{U} \cap \mathrm{M})=\mathrm{M}$ (by modular law)
Hence $U \cap M=($ since $B \ll M$, So $A \leq U$ and since $A+U=N$
Then $\mathrm{U}=\mathrm{N} \rightarrow \mathrm{A} \ll \mathrm{N}$.

Theorem 1.15 [3] If $A_{i} \ll M, i=1,2, \ldots \ldots, n \Rightarrow \sum_{i=1}^{n} A_{i} \ll M$
Proof Let $A_{i} \ll M, i=1,2, \ldots \ldots, n$
If $\mathrm{i}=1, \mathrm{~A}_{1}+\mathrm{U}=\mathrm{M} \Rightarrow \mathrm{U}=\mathrm{M}$ (by hypothesis) $\longrightarrow\left[\mathrm{A}_{\mathrm{i}} \ll \mathrm{M}\right]$
If $n=2 \rightarrow A_{1}+A_{2}+U=M \longrightarrow A_{1}+\left(A_{2}+U\right)=M$
Since $A_{1} \ll M$ then $A_{2}+U=M$
Since $A_{2} \ll M \Rightarrow U=M$, So $\sum_{i=1}^{2} A_{i} \ll M$
Let it be true at $n-1$, And we will proof it at n
Let $A=A_{1}+A_{2} \ldots+A_{n-1} \leq M \rightarrow A+A_{n}+U=M$
Then $A_{n}+U=M$ [since $\left.A \ll M\right]$, Then $U=M$ [since $\left.A_{2} \ll M\right]$
So $\sum_{i=1}^{n} A_{i} \ll M$.

Definition 1.16 A homomorphism $\propto: A \rightarrow B$ is called small $\Leftrightarrow k e r \propto \leq A$.

Theorem 1.17 [6] If $\propto: M \longrightarrow N$ modular homomorphism on R-ring. If
$B \leq N$ then $\propto\left(\alpha^{-1}(B)\right)=B \cap \operatorname{IM}(\propto)$.

Theorem 1.18 [6] If $A \ll M$ and $\varphi \in \operatorname{Hom}(M, N) \Rightarrow \varphi(A) \ll N$
Proof Let $\varphi(\mathrm{A})+\mathrm{U}=\mathrm{N}$ and $\mathrm{U} \leq \mathrm{N}$, so $\varphi(\mathrm{m}) \in \mathrm{N} \forall \mathrm{m} \in \mathrm{M}$
$\varphi(\mathrm{m})=\varphi(\mathrm{a})+\mathrm{u}$ with $\mathrm{a} \in \mathrm{A}, \mathrm{u} \in \mathrm{U} \rightarrow \varphi(\mathrm{m})-\varphi(\mathrm{a})=u$
$\rightarrow \varphi(\mathrm{m}-\mathrm{a})=\mathrm{u} \rightarrow \varphi^{-1}(\varphi(\mathrm{~m}-\mathrm{a}))=\varphi^{-1}=(\mathrm{u})$
$\rightarrow \mathrm{m}-\mathrm{a} \in \varphi^{-1}(\mathrm{U}) \rightarrow \mathrm{m} \in \mathrm{A}+\varphi^{-1}=(\mathrm{U})$
$\rightarrow A+\varphi^{-1}=(\mathrm{U})=\mathrm{M}$ but $\mathrm{A} \leq \mathrm{M}$, hence $\mathrm{M}=\varphi^{-1}=(\mathrm{U})$
$\rightarrow \varphi(\mathrm{m})=\varphi\left(\varphi^{-1}=(\mathrm{U})\right)=\mathrm{U} \cap \operatorname{Im}(\varphi)[$ by theorem (2.1.19)]
$\rightarrow \varphi(\mathrm{A}) \leq \varphi(\mathrm{m}) \leq \mathrm{U}$, hence $\mathrm{U}=\varphi(\mathrm{A})=\mathrm{N}$

Theorem 1.19 [2] If $\propto: M \rightarrow N, B: N \rightarrow K$ modular homomorphism on $R-$ ring then $\operatorname{Ker}(\mathrm{B} \alpha)=\alpha^{-1}(\operatorname{Ker}(\mathrm{~B}))$.
Proof Let $\mathrm{X} \in \operatorname{Ker}(\mathrm{B} \propto) \rightarrow \mathrm{B} \propto(\mathrm{X})=0 \rightarrow(\alpha(\mathrm{X}))=0 \rightarrow \propto(\mathrm{X}) \in$ $\operatorname{Ker}(\mathrm{B}) \rightarrow \mathrm{X} \in \propto^{-1}(\operatorname{Ker}(\mathrm{~B}))$
So $\operatorname{Ker}(B \propto) \subseteq \propto^{-1}(\operatorname{Ker}(B)) \ldots(1)$
Let $\mathrm{X} \in \propto^{-1}(\operatorname{Ker}(\mathrm{~B})) \rightarrow \propto(\mathrm{X}) \in(B) \rightarrow(\propto(\mathrm{X}))=0 \rightarrow \mathrm{~B} \propto(X)=$ $0 \rightarrow X \in \operatorname{Ker}(B \propto) \operatorname{So}^{-1}(\operatorname{Ker}(\mathcal{B})) \subseteq \operatorname{Ker}(\mathcal{B} \propto) \ldots$. (2) From (1),
(2) $\rightarrow \operatorname{Ker}(\mathcal{B} \propto)=\propto^{-1}(\operatorname{Ker}(\mathcal{B}))$.

Theorem 1.20 [2] If $\propto: \mathrm{M} \rightarrow \mathrm{N}, \mathcal{B}: N \rightarrow K$ modular homomorphism on R-ring. If $\mathrm{A} \leq \mathrm{M}$ then $\alpha^{-1}(\propto(\mathrm{~A}))=\mathrm{A}+\operatorname{Ker}(\propto)$.

Proof Let $\mathrm{X} \in \propto^{-1}(\propto(\mathrm{~A})) \rightarrow \propto(\mathrm{X}) \in \propto(\mathrm{A})$, Then $\exists \mathrm{b} \in \mathrm{A} \ni \propto(\mathrm{X})=\propto$ (b) $\rightarrow \propto(X-b)=0 \rightarrow X-b \in \operatorname{Ker}(\propto)$, then $\exists K \in \operatorname{Ker}(\propto) \ni X-$ $\mathrm{b}=\mathrm{K} \quad \rightarrow X=b+K \rightarrow \mathrm{X} \in \mathrm{A}+\operatorname{Ker}(\propto)[$ since $\mathrm{K} \in \operatorname{Ker}(\propto), \mathrm{b} \in \mathrm{A}]$ So $\propto^{-1}(\propto(\mathrm{~A})) \subseteq A+\operatorname{Ker}(\propto) \ldots .$. (1) Let $\mathrm{X} \in \mathrm{A}+$
$\operatorname{Ker}(\propto)$, Then $\exists \mathrm{b} \in \mathrm{B}, \mathrm{K} \in \operatorname{Ker}(\alpha) \ni \mathrm{X}=\mathrm{b}+\mathrm{K} \rightarrow \propto(x)=\propto$ $(\mathrm{b}+\mathrm{K}) \rightarrow \alpha(\mathrm{X})=\alpha(\mathrm{b})+\alpha(\mathrm{K}) \rightarrow \alpha(x)=\alpha(\mathrm{b})[$ since $K \in$ $\operatorname{Ker}(\propto)] \rightarrow \mathrm{X} \in \propto^{-1}(\propto(\mathrm{~A}))$ So $\mathrm{A}+\operatorname{Ker}(\propto) \subseteq \propto^{-1}(\propto(\mathrm{~A})) \ldots(2)$ So from (1), (2) we get $\alpha^{-1}(\alpha(A))=A+\operatorname{Ker}(\alpha)$.

Theorem 1.21 [2] If $\propto: \mathrm{A} \rightarrow \mathrm{B}, \mathcal{B}: B \rightarrow C$ are small epimorphisms, then $\mathcal{B} \propto: A \rightarrow \mathrm{C}$ also small epimorphism.

Proof By theorem $\mathcal{B} \propto$ is also epimorphism Now we must proof $\operatorname{Ker}(\mathcal{B} \propto$ $) \ll \mathrm{A}$ Let $\mathrm{U} \leq \mathrm{A}$ with $\operatorname{Ker}(\mathcal{B} \propto)+\mathrm{U}=\mathrm{A}$, Then $\propto(\operatorname{Ker}(\mathcal{B} \propto)+\mathrm{U})=$ $\alpha(\mathrm{A})$
$\Rightarrow \propto(\operatorname{Ker}(\mathcal{B} \propto))+\propto(\mathrm{U})=\mathrm{B} \Rightarrow \propto\left(\propto^{-1}(\operatorname{Ker}(\mathcal{B} \propto))+\propto(\mathrm{U})=\right.$ B (by theorem (2.1.21)) $\Rightarrow \operatorname{Ker}(\mathcal{B})+\alpha(U)=B, \operatorname{But} \operatorname{Ker}(\mathcal{B})<B \Rightarrow \alpha$ $(U)=B \Rightarrow \propto(U)=\alpha(A)$ $\Rightarrow \propto^{-1}(\propto(U))=\propto^{-1}(\propto(A)) \Rightarrow \mathrm{U}+\operatorname{Ker}(\propto)=$ A (by theorem (2.1.22))But $\operatorname{Ker}(\propto) \ll A \Rightarrow \mathrm{U}=\mathrm{A}$

Definition 1.22 [4] Let $\mathrm{A} \leq \mathrm{M}$ then $\mathrm{A}-\mathrm{B} \leq \mathrm{M}$ is called addition complement of A in M (briefly adico) iff :
(i) $\mathrm{A}+\mathrm{B}=\mathrm{M}$
(ii) $\mathrm{B} \leq \mathrm{M}$ minimal in $\mathrm{A}+\mathrm{B}=\mathrm{M}$, i.e. $\forall B \leq M$ with $\mathrm{A}+\mathrm{B}=\mathrm{M}$, i.e $\forall U \leq M$ with $\mathrm{A}+\mathrm{U}=\mathrm{M}$ and $\mathrm{U} \ll \mathrm{B}$ imply $\mathrm{U}=\mathrm{B}$
$\mathrm{B}-\mathrm{D} \leq \mathrm{M}$ is called intersection complement of A in M (briefly inco) iff :
(i) $\mathrm{A} \cap \mathrm{D}=0$
(ii) D is a maximal in $\mathrm{A} \cap \mathrm{D}=0$
i.e. $\forall \mathrm{C} \leq \mathrm{M}$ with $\mathrm{A} \cap \mathrm{C}=0 \wedge \mathrm{D} \leq \mathrm{C}$ implies $\mathrm{C}=\mathrm{D}$.

Corollary 1.23 [4] Let $A \leq M$ and $B \leq M$, then $A \oplus B=M \Leftrightarrow B$ is adco and inco of A in M .

Proof \Rightarrow suppose that B is adco and inco of A
Then $A+B=M$ resp. $A \cap B=0 \Rightarrow M=A \oplus B$
\Leftarrow suppose that $\mathrm{A} \oplus \mathrm{B}=\mathrm{M}$, hence $\mathrm{A}+\mathrm{B}=\mathrm{M}$ and $\mathrm{A} \cap \mathrm{B}=0$
Let $\mathrm{C} \leq \mathrm{M}$ with $\mathrm{A}+\mathrm{C}=\mathrm{M}$ and $\mathrm{C} \leq \mathrm{B},(\mathrm{A}+\mathrm{C}) \cap \mathrm{B}=\mathrm{M} \cap \mathrm{B} \Rightarrow$
$(A+C) \cap B=B \rightarrow(A \cap B)+C=B \Rightarrow C+B[A \cap B=0]$
So B is adco of A in M Let $C \leq M$ with $A \cap C=0$ and $B \leq C$
Since $A+B=M \Rightarrow A+C=M[$ since $A+B \subseteq A+C]$
$\rightarrow \mathrm{A} \oplus \mathrm{C}=\mathrm{M} \Rightarrow \mathrm{A} \oplus \mathrm{C}=\mathrm{A} \oplus \mathrm{B}[\mathrm{A} \oplus \mathrm{B}=\mathrm{M}$ by assumption $]$
$\frac{A \oplus C}{A}=\frac{A \oplus B}{A} \Rightarrow C=B \rightarrow$ so B is inco of A in M.

Lemma 1.24 [4] Let $M=A+B$, then B is adco of A in $M \Leftrightarrow A \cap B \leq B$.
Proof \Rightarrow let $U \leq B$ and $(A \cap B)+U=B$
Then $\mathrm{M}=\mathrm{A}+(\mathrm{A} \cap \mathrm{B})+\mathrm{U} \Rightarrow \mathrm{A}+\mathrm{U}=\mathrm{M}$ [since $\mathrm{A} \cap \mathrm{B} \subseteq \mathrm{A}$]
But B is so $A \cap B \leq B$
\Longleftarrow we have by assumption $\mathrm{M}=\mathrm{A}+\mathrm{B}$, Let $\mathrm{U} \leq \mathrm{B}$ with $\mathrm{A}+\mathrm{U}=\mathrm{M}$ and $\mathrm{U} \leq \mathrm{B}$
$\rightarrow(A+U) \cap B=M \cap B \rightarrow(A+U) \cap B=B[B \leq M] \rightarrow(A+B) \cap$
$\mathrm{U}=\mathrm{B}$ [by modular law]
But $\mathrm{A} \cap \mathrm{B} \leq \mathrm{B}$, hence $\mathrm{U}=\mathrm{B}$, thus B is adco to A in M .

CHAPTER TWO

T-small submodules

Let M be an R -module. A submodule N of M is called T -small in M provided for each submodule X of $\mathrm{M}, \mathrm{T} \subseteq \mathrm{X}+\mathrm{N}$ implies that $\mathrm{T} \subseteq \mathrm{X}$. We study this mentioned notion which is a generalization of the small submodules and we obtain some related results .

Definition 2.1. [1] Let R be a ring and T be a submodule of an R -module M. A submodule N of M is called T -small (in M), denoted, by $\mathrm{N} \ll_{T} M$, in case for any submodule $\mathrm{X} \leq \mathrm{M}, \mathrm{T} \subseteq \mathrm{X}+\mathrm{N}$ implies that $\mathrm{T} \subseteq \mathrm{X}$. Under the notations of the above definition, if $\mathrm{T}=0$, then every submodule of M is T -small in M . Also if $\mathrm{T} \neq 0$. Then $\mathrm{N} \ll_{T} M$ implies that $\mathrm{T} \nsubseteq \mathrm{N}$, for if not, $\mathrm{T} \subseteq \mathrm{N}+(0)$ and hence $\mathrm{T} \subseteq(0)$, a contradiction. If $\mathrm{T}=\mathrm{M}$, then $\mathrm{N} \ll_{T} M$ if and only if $\mathrm{N} \ll \mathrm{M}$.

Remarks 2.2.

(i) If $\mathrm{T}=0$, then every submodule of M is T -small in M .

Proof. Let $\mathrm{N} \leq \mathrm{M}$ and let $\mathrm{X} \leq \mathrm{M}$, where $\mathrm{T}=0$. Since $\nexists 0 \leq \mathrm{X}+\mathrm{N}$ it clear that $0 \leq \mathrm{X}$ then $\mathrm{N} \ll_{T} M$.
(ii) If $\mathrm{T} \neq \mathrm{o}, \mathrm{N} \ll_{T} M$ implies $\mathrm{T} \nsubseteq \mathrm{N}$.

Proof. If $\mathrm{T} \leq \mathrm{N}$ and let $x=o, x \leq N$ then $T \subseteq N+(0)$ but $\mathrm{N} \ll_{T} M$, $\mathrm{T} \leq \mathrm{o}$ which is a contradiction, $\mathrm{T} \nsubseteq \mathrm{N}$.
(iii) If $\mathrm{T}=\mathrm{M}$, then $\mathrm{N} \ll_{T} M$ if and only if $N \ll M$.

Proof. Let $\mathrm{N} \ll_{T} M$ where $\mathrm{T}=\mathrm{M}$ to prove $N \ll M$.
Suppose $K \ll M$ such that $\mathrm{N}+\mathrm{K}=\mathrm{M}$ implies $\mathrm{N}+\mathrm{K}=\mathrm{T}$, so $T \subseteq N+K$ but $\mathrm{N} \ll_{T} M$ implies $T \subseteq K, M \subseteq K$ implies $M=K$ and hence $N \ll M$.

Let $N \ll M$ to prove $\mathrm{N} \ll_{T} M$ suppose $\mathrm{K} \leq \mathrm{M}$ such that $T \subseteq K+N$. So, $M \subseteq K+N$. But $\mathrm{K}+\mathrm{N} \leq \mathrm{M}$ (clear). Then $\mathrm{M}=\mathrm{K}+\mathrm{N}$ but $N \ll M$, hence $\mathrm{M}=\mathrm{K}$, so $\mathrm{T}=\mathrm{K}$, thus $T \subseteq K$. Therefore $\mathrm{N} \ll_{T} M$.

Example 2.3.

(i) Let \mathbb{Z} be the ring of integers. It is easy to see that (0) is the only small submodule of \mathbb{Z} and also for any nonzero integer m, the submodule (0) is the only $m \mathbb{Z}$-small submodule of \mathbb{Z}.

Solution. Suppose $n \mathbb{Z} \leq \mathbb{Z}$ where $n \neq \pm 1$ such that $m \mathbb{Z} \leq n \mathbb{Z}+o$
Then $m \mathbb{Z} \leq n \mathbb{Z}$. Therefore $\mathrm{o} \ll_{m Z} \mathbb{Z}$.
(ii) In \mathbb{Z}_{12} as \mathbb{Z}-module. Let $N_{1}=<4>, N_{2}=<6>$,
$T_{1}=<2>$ and $T_{2}=<3>$ be submodules of \mathbb{Z}_{12}.
Is N_{1} is a $T_{1}-$ small submodule ?
Is N_{2} is a $T_{2}-$ small submodule ?
Solution. All submodules of \mathbb{Z}_{12} are :

$$
\begin{aligned}
& X_{1}=\{0\} \\
& X_{2}=<2>=\{0,2,4,6,8,10\} \\
& X_{3}=<3>=\{0,3,6,9\} \\
& X_{4}=<4>=\{0,4,8\} \\
& X_{5}=<6>=\{0,6\} \\
& X_{6}=\mathbb{Z}_{12}
\end{aligned}
$$

When $N_{1}=<4>$ and $T_{1}=<2>. T \subseteq X+N \quad$ implies $T \subseteq X$
$<2>\subseteq<2>+<4>=<2>$ implies $<2>\subseteq<2>$
$<2>\subseteq<3>+<4>=\mathbb{Z}_{12}$ implies $<2>\nsubseteq<3>$
Then N_{1} is not $T_{2}-$ small submodule.
when $N_{2}=<6>$ and $T_{1}=<3>$
$<3>\subseteq<3>+<6>=<3>$ implies $<3>\subseteq<3>$
$<3>\subseteq \mathbb{Z}_{12}+<6>=\mathbb{Z}_{12}$ implies $<3>\subseteq \mathbb{Z}_{12}$
Then N_{2} is $T_{1}-$ small submodule.
(iii) $4 \mathbb{Z}_{24} \ll_{3 \mathbb{Z} 24} \mathbb{Z}_{24}$ is not small in \mathbb{Z}_{24}.

Solution.

$4 \mathbb{Z}_{24}=\{0,4,8,12,16,20\}$
$3 \mathbb{Z}_{24}=\{0,3,6,9,12,15,18,21\}$
$4 \mathbb{Z}_{24}+3 \mathbb{Z}_{24}=\{0,1,2,3, \ldots, 23\}=\mathbb{Z}_{24}$ but $3 \mathbb{Z}_{24}+4 \mathbb{Z}_{24}$. Hence
$4 \mathbb{Z}_{24}$ is not small in \mathbb{Z}_{24}. To prove $4 \mathbb{Z}_{24}$. To prove $4 \mathbb{Z}_{24} \ll_{3 \mathbb{Z} 24} \mathbb{Z}_{24}$.
$4 \mathbb{Z}_{24} \ll 3_{Z 24} \mathbb{Z}_{24}$
$\mathrm{T}=<3>$ and $\mathrm{N}=<4>$
All submodules of \mathbb{Z}_{24} are:
$X_{1}=\{0\}$
$X_{2}=<2>=\{0,2,4,6,8,10,12,14,16,18,20,22\}$
$X_{3}=<3>=\{0,3,6,9,12,15,18,21\}$
$X_{4}=<4>=\{0,4,8,12,16,20\}$
$X_{5}=<6>=\{0,6,12,18\}$
$X_{6}=<8>=\{0,8,16\}$
$X_{7}=<12>=\{0,12\}$
$X_{8}=\mathbb{Z}_{24}$
$\mathrm{T} \subseteq X+N$ implies $\mathrm{T} \subseteq X$
$<3>\subseteq<3>+<4>=\mathbb{Z}_{24}$ implies $<3>\subseteq<3>$
$<3>\subseteq \mathbb{Z}_{24}+<4>=\mathbb{Z}_{24} \quad$ implies $<3>\subseteq \mathbb{Z}_{24}$

Proposition 2.4. Let M be an R-module, $\mathrm{L} \leq \mathrm{T} \leq \mathrm{M}$ and $\mathrm{K} \leq \mathrm{M}$.
(i) If $\mathrm{K}<_{T} M$, then $\mathrm{K} \cap T \ll M$.
(ii) $\mathrm{L}<_{T} M$ if and only if $\mathrm{L} \ll \mathrm{T}$.

Proof. (i) Suppose that $(K \cap T)+X=M$ for some $X \leq M$. Then $T<$ ($K \cap T)+X$ and hence $T \leq M$ then $T \subseteq K+X$ but $\mathrm{K} \lll_{T} M$, we have $T \subseteq X$. Thus $K \cap T \subseteq T \subseteq X$ implies $K \cap T \subseteq X$ and hence $X=$ $(K \cap T)+X=M$.
(ii) Suppose that $\mathrm{L} \lll_{T} M$ and $T \subseteq L+X$ for some $X \subseteq T$ then $T \subseteq L+$ X and so $T \subseteq X$. Thus $X=T$. Conversely, suppose that $\mathrm{L} \ll \mathrm{T}$ and $T \subseteq$ $L+X$ for some $X \leq M$ then $T=(L+X) \cap T$ by module Law $T=L+$ ($X \cap T$) but $\mathrm{L} \ll \mathrm{T}$ and hence $X \cap T=T$ Thus $T \subseteq X$.

Proposition 2.5. [4] Let M be an R-module with submodules $\mathrm{N} \leq \mathrm{K} \leq$ M and $\mathrm{T} \leq \mathrm{K}$. If $\mathrm{N}<_{T} K$, then $\mathrm{N}<_{T} M$.
Proof. Suppose that $\mathrm{T} \subseteq \mathrm{N}+X$ for some $X \subseteq M$. Then $T \subseteq(N+X) \cap K$ for some $T \subseteq K$ and $T \subseteq N+X$ and by modular Law $T \subseteq(N+X) \cap$ $K=N+(X \cap K)$, since $\mathrm{N}<_{T} K$, we have $T \subseteq X \cap K \subseteq X$ implies $T \subseteq X$.

Proposition 2.6. [4] Let M be an R-module with submodules N_{1}, N_{2} and T. Then $N_{1} \ll_{T} M$ and $N_{2} \ll_{T} M$ if and only if $N_{1}+N_{2}<_{T} M$.

Proof. Suppose that $N_{1}<_{T} M$ and $N_{2}<_{T} M$ to prove $N_{1}+N_{2}<_{T} M$. Let $X \leq M$ such that $\mathrm{T} \subseteq\left(N_{1},+N_{2}\right)+x$ implies $\mathrm{T} \subseteq N_{1}+\left(N_{2}+X\right)$ $\mathrm{T} \subseteq N_{2}+X$, since $N_{1}<_{T} M . \mathrm{T} \subseteq X$, since $N_{2}<_{T} M$.

Proposition 2.7.[4] Let M be an R-module with submodules $\mathrm{K} \leq \mathrm{N} \leq \mathrm{M}$ and $\mathrm{K} \leq \mathrm{T}$. Then $\mathrm{N}<_{T} M$ if and only if $\mathrm{K}<_{T} M$ and $\mathrm{N} / \mathrm{K}<_{T / K} \mathrm{M} / \mathrm{K}$. Proof. Suppose $N \ll_{T} M$,to prove $\mathrm{T} \subseteq K+X$ for some $X \leq M$. Then T $\subseteq N+X$ and by hypothesis, $\mathrm{T} \subseteq X$. Thus $K \ll_{T} M$. Now assume that T / K $\subseteq \mathrm{N} / \mathrm{K}+X / K=(N+X) / K$ for some $K \leq X \leq M$. Then $T \leq N+X$ and so $T \leq X$. Thus $T / K \subseteq X / K$. Conversely, suppose that $\mathrm{K}<_{T} M$ and $\mathrm{N} / \mathrm{K} \ll \mathrm{M} / \mathrm{K}$ and also $\mathrm{T} \subseteq K+X$ for some $X \leq M$. Then $\mathrm{T} / \mathrm{K} \subseteq$
$(N+X) / K=N / K+(X+K) / K$. Since $\mathrm{N} / \mathrm{K}<_{T / K} \mathrm{M} / \mathrm{K}, \mathrm{T} / \mathrm{K}=$ $(X+K) / K$ and so $\mathrm{T} \subseteq K+X$. Since $\mathrm{K}<_{T} M$, we have $\mathrm{T} \subseteq X$, as desired.

Proposition 2.8.[3] Let M be an R-module with submodules $K_{1} \leq M_{1}$ $\leq \mathrm{M}$ and $K_{2} \leq M_{2} \leq \mathrm{M}$ such that $T \subseteq M_{1} \cap M_{2}$. Then $K_{1} \lll T M_{1}$ and K_{2} $<_{T} M_{2}$ if and only if $K_{1}+K_{2} \lll T_{T} M_{1}+M_{2}$.

Proof. First assume that $K_{1}<_{T} M_{1}$ and $K_{2}<_{T} M_{2}$. By proposition (2.5), $K_{1}<_{T} M_{1} \leq M_{1}+M_{2}$ implies $K_{1} \subseteq M_{1}+M_{2}$ and $K_{2}<_{T} M_{2} \subseteq$ $M_{1}+M_{2}$ implies $K_{2} \subseteq M_{1}+M_{2}$, Also by proposition (2.6) $K_{1}+K_{2}$ $<_{T} M_{1}+M_{2}$. Suppose that $K_{1}+K_{2} \lll_{T} M_{1}$ to prove $K_{1} \lll T_{T} M_{1}$ and K_{2} $<_{T} M_{2} . T \subseteq K_{1}+X \quad \forall X_{1} \subseteq M_{1} . T \subseteq K_{1}+X \subseteq K_{1}+K_{2}+X$ $T \subseteq K_{1}+K_{2}+$ X. Since $X \leq M_{1}$ implies $M_{1} \subseteq M_{1}+M_{2}, X \subseteq M_{1}+M_{2}$ and since $K_{1}+K_{2} \ll_{T} M_{1}+M_{2}$ Then $T \subseteq X$.

Theorem 2.9. [4] Let $\left\{T_{i}\right\}_{i \in I}$ be an indexed set of submodules of an Rmodule M and K be a submodule of M . If for each $i \in I, \mathrm{~K}<_{T i} M$, then $\mathrm{K}<_{\sum i \in I T i} M$.
Proof. Suppose $\sum_{i \in I} T_{i} \subseteq K+X$ for some $X \leq M$. Since $T_{i} \subseteq \sum T_{i} \subseteq$ $K+X$ Then $T_{i} \subseteq K+X$, since $\mathrm{K}<_{T i} M$ this implies that $T_{i} \subseteq X$. Then $\sum T_{i} \subseteq X$.

Corollary 2.10. [3] Let K_{1} and K_{2} be submodules of an R-module M such that $K_{1}<_{K_{2}} M$ and $K_{2}<_{K 1} M$. Then $K_{1} \cap K_{2} \ll_{K_{1}+K_{2}} M$.

Proof. Since $K_{1}{\ll K_{2}} M$ and $K_{2}<_{K_{1}} M$, by theorem 2.6, $K_{1} \cap K_{2} \subseteq$ $K_{2} \leq M$ and $K_{1} \cap K_{2} \subseteq K_{1} \leq M$. Since $K_{1} \ll_{K_{2}} M$ and $K_{2}{\ll K_{1}} M$. Then by theorem 2.9, $K_{1} \cap K_{2}<_{K_{1}} M$ and $K_{1} \cap K_{2} \ll_{K_{2}} M$ implies $K_{1} \cap K_{2}$ ${\lll K_{1}+K_{2}} M$.

Proposition 2.11. [3] Let K and $0 \neq T$ be two submodules of a right Rmodule M . The following statements are equivalent:
(i) $\mathrm{K}<_{T} M$;
(ii) The natural map $\pi: M \rightarrow M / K$ is T-small;
(iii) For every right R-module N and R-homomorphism $h: N \rightarrow M, T \subseteq$ $K+I m h$ implies that $T \subseteq I m h$.

Proof. (i) \Leftrightarrow (ii) Suppose that $\mathrm{K}<_{T} M$ to prove $\pi: M \rightarrow M / K$ is Tsmall. By definition (1) A monomorphism $f: M \rightarrow \grave{M}$ is called T-small if $\operatorname{Im} \mathrm{f} \ll_{\mathrm{T}} \dot{M}$.
(ii) An epimorphism $f: M \rightarrow \grave{M}$ is called T-small if $\operatorname{ker} \mathrm{f} \ll_{T} M$

We must find $\operatorname{ker} \pi$ and prove is T-small.
$\pi: M \rightarrow M / K$ and $\pi(\mathrm{x})=\mathrm{x}+\mathrm{K}$
$\leftrightarrow \operatorname{ker} \pi=\{x \in M: f(x)=0\}=\left\{x \in M: x+K=0 \frac{M}{K}\right\}$
$\leftrightarrow \quad=\{x \in M: x+K=0+K\}$
$\leftrightarrow \quad=\{x \in M: x+K=K\}=\{x \in M: x \in K\}=\mathrm{K}$
\leftrightarrow Hence ker $\pi=K$
\leftrightarrow then $\pi: M \rightarrow M / K$ is T-small.
(i) \Rightarrow (iii) Clear.
(iii) $\Rightarrow(i)$ Suppose that $T \subseteq K+X$ for some $X \subseteq M$. Let $i: X \rightarrow M$ be the inclusion map. Since $i(x)=x$ and $\operatorname{Im}(X)=X$ Then $T \subseteq K+$ Imi $=K+X$ and $f(T)=0$ then by $($ iii) $f(x) \ll M$ and $f(T) \neq 0$ then $T \subseteq X$.

Lemma 2.12. [4] Let M and N be right R -modules and $f: N \rightarrow M$ be an R-homomorphism. If K and T are submodules of M such that $\mathrm{K}<_{T} M$,

Proof. We may assume that $f(T) \neq 0$. Let $f(T) \subseteq f(K)+X$, for some $X \leq N$. We claim that $T \subseteq K+f^{-1}(x)$. Let $t \in T$. Then $f(t) \in f(T)$ implies $f(t) \in f(K)+X$, then $f(t)=f(k)+x$ for some $x \in X$ and $k \in$ K Thus $f(t)-f(K)=x, f(t-K)=x \in X$ and so $f(t-K) \in X$. $t-k \in f^{-1}(x)$. This implies that $t \in k+f^{-1}(x)$ implies $t \subseteq k+$ $f^{-1}(x)$. Since $K \ll M$, We have $t \subseteq f^{-1}(x)$ and hence $f(T) \subseteq X$.

Corollary 2.13. [4] Let M and N be right R -modules and $f: M \rightarrow N$ be an R-homomrphism, then $f(K) \ll_{f(T)} N$.

Note. Let M and N be R -modules and $f: M \rightarrow N$ is a homomorphism. If consider $f: \mathbb{Z}_{10} \rightarrow \mathbb{Z}_{20}$ with $f(\bar{x})=2 \bar{x}$. Then $10 \mathbb{Z}_{20} \ll \mathbb{Z}_{20}$ but $f^{-1}\left(10 \mathbb{Z}_{20}\right)=5 \mathbb{Z}_{10}$ is not small in \mathbb{Z}_{10}.

Example 2.14. Let $\mathrm{f}: \mathbb{Z} \rightarrow \mathbb{Z}_{4}$ be a homomrphism defined by $f(x)=\bar{x}$ for all $x \in Z$. Put $K=2 Z_{4}$ and $\mathrm{T}=\{\overline{0}\}$. We note that $2 Z_{4} \ll_{\{0\}} \mathbb{Z}_{4}$. Now, $f^{-1}(K)=f^{-1}\left(2 Z_{4}\right)=f^{-1}\{\overline{0}, \overline{2}\}=\{\ldots .,-4,-2,0,2,4, \ldots\}=2 Z$ $f^{-1}(T)=f^{-1}(\{\overline{0}\})=\{\ldots . .,-8,-4,0,4,8, \ldots\}=.4 Z$. So $f^{-1}(T), f^{-1}(K)$ are submodules of \mathbb{Z}. Now, let $\mathrm{X}=3 \mathbb{Z} \leq \mathbb{Z}$. Hence $f^{-1}(T) \subseteq X+f^{-1}(K)$ (i.e $4 \mathbb{Z} \subseteq 3 \mathbb{Z}+2 \mathbb{Z}=\mathbb{Z}$), but $4 \mathbb{Z} \nsubseteq 3 \mathbb{Z}$ (i.e $f^{-1}(T) \nsubseteq X$). Therefore $f^{-1}(K)$ is not $f^{-1}(T)$-small in \mathbb{Z}.

Definition 2.15. Let M be an R -module and $\mathrm{N} \subseteq \mathrm{M}$. If $\mathrm{N}^{\prime} \leq \mathrm{M}$ is minimal with respect to $\mathrm{N}+\mathrm{N}^{\prime}=\mathrm{M}$, then N^{\prime} is called a supplement of N in M .

Proposition 2.16. [3] Let N and T be submodules of an R -module M and N^{\prime} be a supplement of N in M . If $\mathrm{N} \ll_{T} M$, then $\mathrm{T} \subseteq \mathrm{N}^{\prime}$. Moreover, if N $<_{T} M$ and $\mathrm{N}+\mathrm{T}=\mathrm{M}$, then $\mathrm{N}^{\prime}=\mathrm{T}$.

Proof: Since N^{\prime} is supplement of N in M and N^{\prime} is minimal with respect to $\mathrm{N}+\mathrm{N}^{\prime}=\mathrm{M}$ and $\mathrm{T} \subseteq \mathrm{M}$ then $\mathrm{T} \subseteq \mathrm{N}+\mathrm{N}^{\prime}$ but $\mathrm{N} \lll_{T} M$ then $\mathrm{T} \subseteq \mathrm{N}^{\prime}$ and moreover, since $N+T=M$ and since N^{\prime} is supplement of N in M then N^{\prime} is minimal with respect to $\mathrm{N}+\mathrm{N}^{\prime}=\mathrm{M}$ but $\mathrm{N}+\mathrm{T}=\mathrm{M}$ implies $\mathrm{N}^{\prime} \subseteq \mathrm{T}$ but $\mathrm{T} \subseteq \mathrm{N}^{\prime}$ then $\mathrm{T}=\mathrm{N}$.

Theorem 2.17. [3] Let K be a submodule of an R-module M and K^{\prime} is a supplement of K in M . The following are equivalent:
(i) $\mathrm{K}<_{K}, M$;
(ii) For each submodule N of M , the relation $\mathrm{K}+\mathrm{N}=\mathrm{M}$ implies $\mathrm{K}^{\prime} \subseteq \mathrm{N}$.

Proof: $(i) \Longrightarrow(i i)$ suppose that $\mathrm{K}+\mathrm{N}=\mathrm{M}$ and since $\mathrm{K}^{\prime} \subseteq \mathrm{K}+\mathrm{N}$ by definition $\mathrm{K}^{\prime} \subseteq \mathrm{N}$
(ii) \Rightarrow (i) Suppose that $\mathrm{K}^{\prime} \subseteq \mathrm{K}+\mathrm{X}$ some $X \subseteq M$. Since $\mathrm{M}=\mathrm{K}+\mathrm{K}^{\prime} \subseteq$ $\mathrm{K}+\mathrm{X}$ hence $\mathrm{M} \subseteq \mathrm{K}+X$ and since $\mathrm{X} \subseteq \mathrm{M}$ and $\mathrm{K} \leq \mathrm{M}$ then $\mathrm{K}+X \subseteq M$ we have $\mathrm{M}=\mathrm{K}+\mathrm{X}$ and by hypothesis $\mathrm{K}^{\prime} \subseteq X$.

References

[1] T. Amonzegar Kalati and D. Keskin Tutuncu, Annihilators small submodules, Bull. Iran. Math. Soc. (39) 6 (2013), 1053-1063.
[2] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Newyork: Springer Verlag, 1974.
[3] T. Y. Lam, A first course in noncommutative rings, Newyork, Springer-Verlag, 1991.
[4] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Math. New York-Heidelberg Berlin: Springer-Verlag 1999.
[5] S. Safaeeyan and N. Saboori Shirazi, Essential submodules with respect to an arbitrary submodule, J. Mathematical Extension (7)

3 (2013), 15-27.
[6] Y. Talebi and M. Hosseinpour, Generalizations of δ-lifting modules, J. Algebraic Systems (1) 1 (2013), 67-77.

