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INTRODUCTION 

 

    "In this work, all rings have identity elements and all modules are right 

unitary. We use the notations "⊆ " and "≤ " to denote inclusion and 

submodule, respectively. For two integers n and m, we denote n/m in ease 

n divides m and gcd (n, m) denotes the greatest common divisor of n and 

m. Let R be an ring and M be an R-module. Recall that a submodule X of 

M is small, denoted by N ≪ M, if for any submodule X of M, X + N = M 

implies that X = M. More details about small submodules can be found in 

[2, 3, 4]". The concept of small submodule has been extended by some 

researchers, for this see [1, 6]. In [5], the authors extended the concept of 

essential submodule with respect to an arbitrary submodule."This 

motivates us to define a new generalization of small submodules. Let T 

be an arbitrary submodule of M"."We say that a submodule N of M is an 

T-small submodule of M provided for each submodule X ≤ M, T⊆ X + N 

implies that T ⊆ X"."Note that the notions of smallness and T-smallness 

coincide if T = M. We investigate the basic properties of T-small 

submodules."  
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CHAPTER ONE 
 

Some Properties of small submodules 

 

Definition 1.1 [3] A submodule N of a module M is called small in M 

(denoted by N≪ M) if ∀ 𝐾 ≤ 𝑀 with N + K =M implies K = M.  

 

Example 1.2 For every module M we have 0 ≪ M. 

 

Theorem 1.3 [3]" 𝐴 ≪ 𝑀 ⟺ ∀ 𝑈 ≤ 𝑀(𝐴 + 𝑈 ≤ 𝑀).  

Proof  ⟹ 𝐿𝑒𝑡 𝐴 ≪ 𝑀 [WE will proof by using contradiction] 

And since A ≤ M then U = M  

Suppose ∃ U ≤ M ∋ A + U = M,  And since A ≤ M then U = M  

And this is contradiction ⟶ Then U = M, So A ≪ M"  

 

Definition 1.4 [6] "An R module M is said to be semisimple if ∀𝑁 ≤

𝑀∃𝐾 ≤ 𝑀 ∋ 𝑁⨁𝐾 = 𝑀."  

 

Theorem 1.5 [6] "If M is a semisimple module then 0 is the only small 

submodule in M". 

Proof  "Let 𝑁 ≤ 𝑀 𝑠𝑜 𝑁 ≤ ⨁𝑀 so (since M is semisimple)  

∃𝐾 ≤ 𝑀 𝑤𝑖𝑡ℎ 𝑁⨁𝐾 = 𝑀 𝑖. 𝑒 𝑁 ∩ 𝐾 = 0 𝑎𝑛𝑑 𝑁 + 𝐾 = 𝑀 ⟹ 𝐾 =

𝑀 𝑏𝑢𝑡 𝑁 ∩ 𝐾 = 0 𝑠𝑜 𝑁 ∩ 𝑀 = 0 ⇒ 𝑁 = 0."  

 

Definition 1.6 [6] "Let M be an R-module A subset X of M is called 

basis of M if : 

(i) X is generated M, i.e. M = ≺ X ≻   

(ii) X is linearly independent, that is for every finite subset  

≺ 𝑋1, 𝑋2, … . , 𝑋2 ≻  

of X with ∑ Xi ∝ i = 0n
i=1 , ∀∝ i ∈ R then ∝ i = 0, ∀1 ≤ i ≤ n."  
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Definition 1.6 [2] "An R-module M is said to be free if satisfy the 

following conditions: 

(i) M has basis 

(ii) M = ⨁∀i∈IAi  ∧ ∀i ∈ I[Ai ≡ RR]."  

 

Example 1.7 [2] Z as Z-module is a free module.  

 

Example 1.8  "Z as Z-module is free since < 1 >= 𝑍   

< 1 >= {1. 𝑎 ∖ 𝑎 ∈ 𝑍} = {… − 3, −2, −1,0,1,2,3, … }  

and ∀∝∈ 𝑍, ∝ .1 = 0 ∖⇒∝= 0."  

 

Theorem 1.9 [1] "In a free Z-module (0) is only small submodule.  

Proof  Let F = ⨁i∈IXiZ be a free Z-module with basis {Xi ∕ i ∈ I} A ≤

F, a ∈ A and let ∝= Xi1Z1+. . +XimZm, Zi ∈ Z, with Zi ≠ I}Let n ∈

Z with g. c. d(Z1, n) = 1 and n ≺ 1."     

Put U = ⊕Xi
Z + XinZ, then aZ + U = F, hence A + U = F with U ≠ F.   

  

Zoren's lemma 1.10 [2] "If A is non-empty partial order set such that 

every chain in A has an upper bound in A, then A has maximal element."  

 

Proposition 1.11[3] "If finitely many arbitrary elements are omitted from 

an arbitrary generating set X of Qz, then the set with out these elements 

omitted is again generating."  

 

Theorem 1.12 "Every finitely generating submodule of Qz is small in Qz.  

Proof  Let N ≤ Qz be a finitely generating sub module , So ∃ 

{q1, q2, … , qn} ⊆ Q Such that N =< q1, q2, … , qn > Let K ≤ Qz with   

Qz =<< q1, q2, … , qn >∪ K >, by the proposition Q = Z ⇒ N is small." 

 

Modular law 1.13 [3] "If A, B, C ≤ M and B ≤ C, then (A + B) ∩ C =

(A ∩ C) + (B ∩ C) = (A ∩ C) + B. " 
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Lemma 1.14 [3] " If A ≤ B ≤ M ≤ N and B ≪ M ⇒ A ≪ N  

Proof  Let U ≤ N, Let A + U = N [We must proof that U = N] 

Since A≤ B then B+U=N⇒ (B+U) ∩ M=N ∩ M 

⇒ B+(U∩ M)=M (by modular law)  

Hence U∩ M= (since B≪ M, So A ≤ U and since A + U=N 

Then U=N ⟶  A ≪ N." 

 

Theorem 1.15 [3]  "If Ai ≪ M, i = 1,2,……, n⇒ ∑ Ai
n
i=1 ≪ M   

Proof  Let Ai ≪ M, i = 1,2,……, n  

If i=1, A1 + U = M ⇒ U = M (by hypothesis) ⟶ [Ai ≪ M] 

If n=2 ⟶ A1 + A2 + U=M ⟶ A1+(A2 + U) = M  

Since  A1 ≪ M then A2 + U = M  

Since A2 ≪ M ⇒ U=M, So ∑ Ai
2
i=1 ≪ M  

Let it be true at n-1, And we will proof it at n  

Let A= A1 + A2…+An−1 ≤ M ⟶ A+An+U=M  

Then An+U=M [since A ≪ M], Then U=M [since A2 ≪ M] 

So ∑ Ai
n
i=1 ≪ M."  

 

Definition 1.16 A homomorphism ∝: A ⟶ B is called small ⇔ ker∝≤ A.   

 

Theorem 1.17 [6]  "If ∝: M ⟶ N modular homomorphism on R-ring. If 

B≤ N then ∝ (∝−1 (B)) = B ∩ IM(∝)."   

 

Theorem 1.18 [6] "If A≪ M and φ ∈ Hom(M, N) ⇒ φ(A) ≪ N  

Proof  Let φ(A) + U = N and U ≤ N, so φ(m) ∈ N∀m ∈ M   

φ(m) = φ(a) + u with a ∈ A, u ∈ U ⟶ φ(m) − φ(a) = 𝑢  

⟶ φ(m − a) = u ⟶ φ−1(φ(m − a)) = φ−1 = (u)  

⟶ m − a ∈ φ−1(U) ⟶ m ∈ A + φ−1 = (U)  

⟶ 𝐴 + φ−1 = (U) = M  but  A ≤ M, hence M = φ−1 = (U)"  



 
 

5 
 

 Chapter One : Some Properties of small submodules 2018 

⟶ φ(m) = φ(φ−1 = (U)) = U ∩ Im(φ)[by theorem (2.1.19)]    

⟶ φ(A) ≤ φ(m) ≤ U, hence U = φ(A) = N   

  

Theorem 1.19 [2]"If  ∝: M ⟶ N, B: N ⟶ K modular homomorphism on R-

ring then Ker (B∝) =∝−1 (Ker(B)).   

Proof  Let X ∈ Ker(B ∝) ⟶ B ∝ (X) = 0 ⟶ (∝ (X)) = 0 ⟶∝ (X) ∈

Ker(B) ⟶ X ∈∝−1 (Ker(B))  

So Ker (B ∝)  ⊆ ∝−1 (Ker(B)). . . (1)  

Let  X ∈∝−1 (Ker(B)) ⟶∝ (X) ∈ (𝐵)  ⟶ (∝ (X)) = 0 ⟶  B ∝ (𝑋) =

0 ⟶  X ∈ Ker(B ∝)  So∝−1 (Ker(ℬ)) ⊆ Ker (ℬ ∝) … . (2) From (1), 

(2) ⟶ Ker (ℬ ∝) =∝−1 (Ker(ℬ)). "   

 

Theorem 1.20 [2] "If ∝: M ⟶ N, ℬ: 𝑁 ⟶ 𝐾 modular homomorphism on 

R-ring. If A ≤ M then ∝−1 (∝ (A)) = A + Ker(∝).   

Proof  Let X ∈∝−1 (∝ (A)) ⟶∝ (X) ∈∝ (A), Then ∃ b ∈ A ∋∝ (X) =∝

(b) ⟶∝ (X − b) = 0 ⟶ X − b ∈ Ker(∝), then ∃ K ∈ Ker(∝) ∋ X −

b = K    ⟶ 𝑋 = 𝑏 + 𝐾 ⟶ X ∈ A + Ker(∝)[since K ∈ Ker(∝), b ∈ A] 

So ∝−1 (∝ (A)) ⊆ 𝐴 + 𝐾𝑒𝑟(∝) … . . (1) Let X ∈ A +

𝐾𝑒𝑟(∝), 𝑇ℎ𝑒𝑛 ∃ b ∈ B, K ∈ Ker(∝) ∋ X = b + K ⟶∝ (𝑥) =∝

(b + K) ⟶∝ (X) =∝ (b)+∝ (K) ⟶∝ (𝑥) =∝ (b)[𝑠𝑖𝑛𝑐𝑒 𝐾 ∈

Ker(∝)] ⟶ X ∈∝−1 (∝ (A)) So A + 𝐾𝑒𝑟(∝) ⊆∝−1 (∝ (A)) … (2)  

So from (1), (2) we get ∝−1 (∝ (A)) = A +  𝐾𝑒𝑟(∝)."    

 

Theorem 1.21 [2] "If ∝: A ⟶ B, ℬ: 𝐵 ⟶ 𝐶 are small epimorphisms, then 

ℬ ∝: 𝐴 ⟶ C also small epimorphism.  

Proof By theorem ℬ ∝ is also epimorphism Now we must proof Ker(ℬ ∝

) ≪ A   Let U ≤ A with Ker(ℬ ∝) + U = A, Then ∝ (Ker(ℬ ∝) + U) =

∝ (A)"  
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⟹∝ (Ker(ℬ ∝))+∝ (U) = B ⟹∝ (∝−1 (Ker(ℬ ∝))+∝ (U) =

B (by theorem(2.1.21)) ⟹ 𝐾𝑒𝑟(ℬ)+∝ (U) = B, But Ker(ℬ) ≪ B ⟹∝

(𝑈) = 𝐵 ⟹∝ (𝑈) =∝ (𝐴)  

⟹∝−1 (∝ (𝑈)) =∝−1 (∝ (𝐴)) ⟹ U + Ker(∝) =

A (by theorem (2.1.22))𝐵𝑢𝑡 𝐾𝑒𝑟(∝) ≪ 𝐴 ⟹ U = A  

 

Definition 1.22 [4] "Let A≤ M then A-B ≤ M is called addition 

complement of A in M (briefly adico) iff : 

(i) A + B = M  

(ii) B ≤ M minimal in A+B=M, i.e. ∀ 𝐵 ≤ 𝑀 with A+B=M, i.e ∀ 𝑈 ≤ 𝑀 

with A+U=M and U≪ B imply U = B  

B- D ≤ M is called intersection complement of A in M (briefly inco) iff : 

(i) A∩D=0 

(ii) D is a maximal in A∩D=0 

i.e. ∀ C ≤ M with A ∩ C = 0 ∧ D ≤ C implies C = D."  

 

Corollary 1.23 [4] "Let A≤ M and B ≤ M, then A⨁B=M ⟺ B is adco 

and inco of A in M. 

Proof  ⟹ suppose that B is adco and inco of A  

Then A+B=M resp. A∩B=0 ⟹ M= A⨁B 

⟸ suppose that A⨁B=M, hence A+B=M and A∩B=0 

Let C ≤ M with A+C=M and C≤ B, (A+C) ∩B=M∩B⟹ 

(A+C)∩B=B ⟶ (A ∩ B) + C = B ⟹ C + B[A ∩ B = 0]  

So B is adco of A in M Let C≤ M with A∩ C = 0 and B≤C 

Since A+B=M⟹ A+C=M [since A+B⊆ A + C]  

⟶ A ⊕ C = M ⟹ A⨁C = A⨁B [A⨁B = M by assumption]   

A⊕C

A
=

A⨁B

A
⟹ C = B ⟶ so B is inco of A in M ." 
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Lemma 1.24 [4] "Let M=A+B, then B is adco of A in M ⟺A∩B≤ B.  

Proof  ⟹ let U≤B and (A∩B)+U=B 

Then M=A+(A∩B)+U⟹A+U=M [since A∩B⊆A]  

But B is so A∩B≤B  

⟸ we have by assumption M=A+B, Let U≤B with A+U=M and U≤B 

⟶ (A + U) ∩ B = M ∩ B ⟶ (A + U) ∩ B = B [B ≤ M] ⟶ (A + B) ∩

U = B [by modular law]  

But A∩ B ≤ B, hence U=B, thus B is adco to A in M. " 
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CHAPTER TWO 
 

T-small submodules 

 

     "Let M be an R-module. A submodule N of M is called T-small in M 

provided for each submodule X of M, T ⊆ X + N implies that T⊆ X. We 

study this mentioned notion which is a generalization of the small 

submodules and we obtain some related results".  

 

Definition 2.1. [1] Let R be a ring and T be a submodule of an R-module 

M. A submodule N of M is called T-small (in M), denoted, by N≪𝑇 𝑀, in 

case for any submodule X ≤M, T ⊆ X + N implies that T ⊆ X"."Under 

the notations of the above definition, if T=0, then every submodule of M 

is T-small in M. Also if T ≠ 0. Then N ≪𝑇 𝑀 implies that T ⊈ N, for if 

not, T ⊆ N +(0) and hence T ⊆ (0), a contradiction. If T = M, then 

N≪𝑇 𝑀 if and only if N ≪ M".  

 

Remarks 2.2.  

 

(i) If T = 0, then every submodule of M is T-small in M. 
  

Proof.  "Let N ≤ M and let X ≤ M, where T = 0. Since ∌ 0 ≤  X + N  it 

clear that 0 ≤ X  then N ≪𝑇 𝑀".     

 

(ii) If T ≠ o, N≪𝑇 𝑀 implies  T ⊈ N.  

Proof. "If T ≤ N and let 𝑥 = 𝑜 , 𝑥 ≤ 𝑁  then 𝑇 ⊆ 𝑁 + (0) but  N≪𝑇 𝑀 

, T ≤ o which is a contradiction, T ⊈ N".  

 

(iii) If T = M, then N≪𝑇 𝑀 if and only if  𝑁 ≪ 𝑀.  

Proof.  "Let N≪𝑇 𝑀 where T = M to prove 𝑁 ≪ 𝑀.  

"Suppose 𝐾 ≪ 𝑀 such that N + K = M implies N + K = T, so 𝑇 ⊆ 𝑁 + 𝐾 

but N≪𝑇 𝑀 implies 𝑇 ⊆ 𝐾 , 𝑀 ⊆ 𝐾 implies 𝑀 = 𝐾  and hence 𝑁 ≪ 𝑀.  
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Let 𝑁 ≪ 𝑀 to prove N≪𝑇 𝑀  suppose K ≤ M such that 𝑇 ⊆ 𝐾 + 𝑁. So, 

𝑀 ⊆ 𝐾 + 𝑁. But  K + N ≤ M  (clear). Then M = K + N  but 𝑁 ≪ 𝑀, 

hence M = K , so  T = K, thus 𝑇 ⊆ 𝐾.  Therefore  N≪𝑇 𝑀".  

 

Example 2.3. 

 

(i) "Let ℤ be the ring of integers. It is easy to see that (0) is the only small 

submodule of ℤ and also for any nonzero integer m, the submodule (0) is 

the only mℤ -small submodule of ℤ".  

Solution. Suppose n ℤ ≤ ℤ where n ≠ ±1 such that m ℤ   ≤  n ℤ + o    

Then mℤ ≤ nℤ. Therefore o ≪𝑚𝑍 ℤ.  

 

(ii) "In ℤ12 as ℤ-module. Let 𝑁1 =< 4 >  ,  𝑁2 =< 6 >  ,  

 𝑇1 =< 2 >   and 𝑇2 =< 3 >  be submodules of  ℤ12.  

Is  𝑁1  is a  𝑇1 − small submodule ?  

Is 𝑁2  is a  𝑇2 − small submodule"? 
 

Solution. All submodules of ℤ12 are :  

𝑋1 = {0}  

𝑋2 =< 2 >= {0, 2, 4, 6, 8, 10}  

𝑋3 =< 3 > = {0, 3, 6, 9}  

𝑋4 =< 4 > = {0, 4, 8}  

𝑋5 =< 6 > = {0, 6}  

𝑋6 = ℤ12   
 

When 𝑁1 =< 4 >    and  𝑇1 =< 2 > . 𝑇 ⊆ 𝑋 + 𝑁    implies  𝑇 ⊆ 𝑋   

< 2 >  ⊆  < 2 >  +  < 4 > = < 2 >   implies  < 2 >   ⊆  < 2 >    

< 2 >  ⊆   < 3 > +  < 4 > = ℤ12  implies  < 2 >   ⊈  < 3 >   

Then 𝑁1 is not  𝑇2 − small submodule. 

when 𝑁2 =< 6 >   and  𝑇1 =< 3 >   

 < 3 > ⊆   < 3 > + < 6 > = < 3 >   implies  < 3 > ⊆   < 3 >  
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 < 3 >  ⊆ ℤ12 + < 6 > = ℤ12   implies < 3 >  ⊆ ℤ12   

Then  𝑁2  is  𝑇1 − small submodule. 

 

(iii) 4ℤ24 ≪3ℤ24  ℤ24 is not small in ℤ24. 
 

 

Solution.  

4ℤ24 = {0, 4, 8, 12, 16, 20}  

3ℤ24 = {0, 3, 6, 9, 12, 15, 18, 21}  

4ℤ24 + 3ℤ24 = {0, 1, 2, 3, … ,23} = ℤ24  but 3ℤ24 + 4ℤ24. Hence  

4ℤ24  is not small in ℤ24. To prove 4ℤ24. To prove 4ℤ24   ≪3ℤ24   ℤ24.  

4ℤ24  ≪ 𝟑𝒁𝟐𝟒   ℤ24  

T = < 3 >      and  N =  < 4 >    

All submodules  of  ℤ24 are:  

𝑋1 = {0}  

𝑋2 =< 2 > = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22}   

𝑋3 =< 3 > = {0, 3, 6, 9, 12, 15, 18, 21}  

𝑋4 =< 4 > = {0, 4, 8, 12, 16, 20}  

𝑋5 =< 6 > = {0, 6, 12, 18}  

 𝑋6 =< 8 > = {0, 8, 16}  

𝑋7 =< 12 > = {0, 12}  

𝑋8 = ℤ24  

T    ⊆   𝑋 + 𝑁  implies   T    ⊆   𝑋   

< 3 > ⊆   < 3 > + < 4 > = ℤ24   implies  < 3 > ⊆   < 3 >   

< 3 > ⊆  ℤ24 +  < 4 > = ℤ24    implies < 3 > ⊆  ℤ24 

  

Proposition 2.4.  "Let M  be an R-module, L ≤ T  ≤ M and K ≤ M".  

(i) If K ≪𝑇 𝑀, then K ∩ 𝑇 ≪ 𝑀.  

(ii) L ≪𝑇 𝑀 if and only if  L ≪ T.  
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Proof. (i) "Suppose that (𝐾 ∩ 𝑇) + 𝑋 = 𝑀  for some 𝑋 ≤ 𝑀. Then 𝑇 <

(𝐾 ∩ 𝑇) + 𝑋 and hence 𝑇 ≤ 𝑀 then 𝑇 ⊆ 𝐾 + 𝑋 but K ≪𝑇 𝑀, we have 

𝑇 ⊆ 𝑋. Thus 𝐾 ∩ 𝑇 ⊆ 𝑇 ⊆ 𝑋 implies 𝐾 ∩ 𝑇 ⊆ 𝑋  and hence𝑋 =

(𝐾 ∩ 𝑇) + 𝑋 = 𝑀 ".  

 

(ii) "Suppose that L ≪𝑇 𝑀 and 𝑇 ⊆ 𝐿 + 𝑋 for some 𝑋 ⊆ 𝑇 then 𝑇 ⊆ 𝐿 +

𝑋 and so 𝑇 ⊆ 𝑋. Thus 𝑋 = 𝑇"."Conversely, suppose that L ≪ T and 𝑇 ⊆

𝐿 + 𝑋 for some𝑋 ≤ 𝑀 then 𝑇 = (𝐿 + 𝑋) ∩ 𝑇  by module Law  𝑇 = 𝐿 +

(𝑋 ∩ 𝑇)  but L ≪ T and hence  𝑋 ∩ 𝑇 = 𝑇  Thus 𝑇 ⊆ 𝑋".  

 

Proposition 2.5. [4] "Let M be an R-module with submodules N ≤ K  ≤ 

M and T ≤ K. If  N ≪𝑇 𝐾, then N ≪𝑇 𝑀. 

Proof. Suppose that T⊆ N +𝑋  for some 𝑋 ⊆ 𝑀. Then 𝑇 ⊆ (𝑁 + 𝑋) ∩ 𝐾 

"for some  𝑇 ⊆ 𝐾 and  𝑇 ⊆ 𝑁 + 𝑋  and by modular Law 𝑇 ⊆ (𝑁 + 𝑋) ∩

𝐾 = 𝑁 + ( 𝑋 ∩ 𝐾), since N ≪𝑇 𝐾, we have 𝑇 ⊆ 𝑋 ∩ 𝐾   ⊆ 𝑋   implies 

𝑇 ⊆ 𝑋".   

 

Proposition 2.6. [4] Let M be an R-module with submodules  𝑁1, 𝑁2 and 

T. Then  𝑁1 ≪𝑇 𝑀  and 𝑁2 ≪𝑇 𝑀  if and only if  𝑁1 + 𝑁2  ≪𝑇 𝑀. 

Proof."Suppose that 𝑁1 ≪𝑇 𝑀  and 𝑁2 ≪𝑇 𝑀   to prove 𝑁1 + 𝑁2  ≪𝑇 𝑀. 

Let  𝑋 ≤ 𝑀  such that T ⊆ (𝑁1, +𝑁2) + 𝑥  implies T  ⊆ 𝑁1 + (𝑁2 + 𝑋)  

T  ⊆ 𝑁2 + 𝑋 , since 𝑁1 ≪𝑇 𝑀 . T  ⊆ 𝑋  , since 𝑁2 ≪𝑇 𝑀".   

 

Proposition 2.7.[4] Let M be an R-module with submodules  K ≤ N ≤ M 

and K ≤ T . Then  N ≪𝑇 𝑀 if and only if  K ≪𝑇 𝑀 and  N/K ≪𝑇/𝐾 M/K.  

Proof."Suppose 𝑁 ≪𝑇 𝑀 ,to prove T  ⊆ 𝐾 + 𝑋 for some 𝑋 ≤ 𝑀. Then T  

⊆ 𝑁 + 𝑋 and by hypothesis, T ⊆ 𝑋. Thus 𝐾 ≪𝑇 𝑀. Now assume that T/K  

⊆  N/K + 𝑋/𝐾 = (𝑁 + 𝑋)/𝐾  for some 𝐾 ≤ 𝑋 ≤ 𝑀. Then 𝑇 ≤ 𝑁 + 𝑋  

and so 𝑇 ≤ 𝑋. Thus T/K ⊆ 𝑋/𝐾". "Conversely, suppose that  K ≪𝑇 𝑀 

and N/K ≪ M/K and also T⊆ 𝐾 + 𝑋 for some 𝑋 ≤ 𝑀. Then T/K ⊆
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(𝑁 + 𝑋)/𝐾 = 𝑁/𝐾 + (𝑋 + 𝐾)/𝐾. Since N/K ≪𝑇/𝐾 M/K, T/K = 

(𝑋 + 𝐾)/𝐾  and so  T  ⊆ 𝐾 + 𝑋. Since K ≪𝑇 𝑀, we have T  ⊆ 𝑋, as 

desired".    

 

Proposition 2.8.[3]  Let M be an R-module with submodules  𝐾1 ≤ 𝑀1  

≤ M and 𝐾2 ≤ 𝑀2 ≤ M such that 𝑇 ⊆ 𝑀1 ∩ 𝑀2. Then  𝐾1 ≪𝑇 𝑀1 and 𝐾2 

≪𝑇 𝑀2  if and only if 𝐾1 + 𝐾2 ≪𝑇 𝑀1 + 𝑀2.   

Proof. "First assume that  𝐾1 ≪𝑇 𝑀1 and  𝐾2 ≪𝑇 𝑀2. By proposition 

(2.5), 𝐾1 ≪𝑇 𝑀1 ≤ 𝑀1 + 𝑀2 implies 𝐾1 ⊆ 𝑀1 + 𝑀2 and 𝐾2 ≪𝑇 𝑀2 ⊆

𝑀1 + 𝑀2  implies 𝐾2 ⊆ 𝑀1 + 𝑀2 , Also by proposition (2.6) 𝐾1 + 𝐾2 

≪𝑇 𝑀1 + 𝑀2. Suppose that 𝐾1 + 𝐾2 ≪𝑇 𝑀1 to prove 𝐾1 ≪𝑇 𝑀1 and 𝐾2 

≪𝑇 𝑀2. 𝑇 ⊆ 𝐾1 + 𝑋   ∀𝑋1 ⊆ 𝑀1 . 𝑇 ⊆ 𝐾1 + 𝑋 ⊆ 𝐾1 + 𝐾2 + 𝑋  

𝑇 ⊆ 𝐾1 + 𝐾2+X. Since 𝑋 ≤ 𝑀1  implies 𝑀1 ⊆ 𝑀1 + 𝑀2 ,  𝑋 ⊆ 𝑀1 + 𝑀2  

and since 𝐾1 + 𝐾2   ≪𝑇 𝑀1 + 𝑀2   Then 𝑇 ⊆ 𝑋. "   

 

Theorem 2.9. [4] Let {𝑇𝑖}𝑖∈𝐼 be an indexed set of submodules of an R-

module M and K be a submodule of M. If for each 𝑖 ∈ 𝐼, K ≪𝑇𝑖 𝑀, then 

K ≪∑ 𝑖∈𝐼 𝑇𝑖 𝑀.    

Proof. "Suppose ∑𝑖∈𝐼 𝑇𝑖  ⊆ 𝐾 + 𝑋 for some 𝑋 ≤ 𝑀. Since 𝑇𝑖 ⊆∑ 𝑇𝑖 ⊆

𝐾 + 𝑋  Then 𝑇𝑖  ⊆ 𝐾 + 𝑋 ,  since K ≪𝑇𝑖 𝑀 this implies that 𝑇𝑖  ⊆ 𝑋.  

Then ∑ 𝑇𝑖 ⊆ 𝑋".    

 

Corollary 2.10. [3] Let 𝐾1 and 𝐾2 be submodules of an R-module M 

such that 𝐾1 ≪𝐾2
𝑀 and 𝐾2 ≪𝐾1 𝑀. Then 𝐾1 ∩ 𝐾2  ≪𝐾1+𝐾2

𝑀.    

Proof. "Since 𝐾1 ≪𝐾2
𝑀 and 𝐾2 ≪𝐾1

𝑀, by theorem 2.6 , 𝐾1 ∩ 𝐾2 ⊆

𝐾2 ≤ 𝑀 and 𝐾1 ∩ 𝐾2 ⊆ 𝐾1 ≤ 𝑀. Since 𝐾1 ≪𝐾2
𝑀 and 𝐾2 ≪𝐾1

𝑀. Then 

by theorem 2.9, 𝐾1 ∩ 𝐾2 ≪𝐾1
𝑀 and 𝐾1 ∩ 𝐾2 ≪𝐾2

𝑀 implies 𝐾1 ∩ 𝐾2 

≪𝐾1+𝐾2
𝑀".      
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Proposition 2.11. [3] Let K and 0 ≠ 𝑇 be two submodules of a right R-

module M. The following statements are equivalent:  

(i)  K ≪𝑇 𝑀;  

(ii)  The natural map 𝜋 ∶ 𝑀 ⟶ 𝑀/𝐾 is T-small;  

(iii) For every right R-module N and R-homomorphism ℎ ∶ 𝑁 ⟶ 𝑀,  𝑇 ⊆

𝐾 + 𝐼𝑚ℎ implies that 𝑇 ⊆ 𝐼𝑚ℎ. 
   

Proof.  (𝑖) ⇔ (𝑖𝑖) Suppose that  K ≪𝑇 𝑀 to prove 𝜋 ∶ 𝑀 ⟶ 𝑀/𝐾 is T-

small. By definition (1) A monomorphism 𝑓: 𝑀 ⟶ 𝑀̀ is called T-small if 

Im f ≪T 𝑀̀ .   

(ii) An epimorphism 𝑓: 𝑀 ⟶ 𝑀̀ is called T-small if ker f ≪𝑇 𝑀  

We must find  ker 𝜋  and prove is T-small.   

𝜋 : 𝑀 ⟶ 𝑀/𝐾    and   𝜋 (x) = x + K  

⟷ ker 𝜋 = {𝑥 ∈ 𝑀 ∶ 𝑓(𝑥) = 0} = {𝑥 ∈ 𝑀: 𝑥 + 𝐾 =  0𝑀
𝐾

}    

⟷    = { 𝑥 ∈ 𝑀 ∶ 𝑥 + 𝐾 = 0 + 𝐾} 

⟷     = { 𝑥 ∈ 𝑀 ∶ 𝑥 + 𝐾 = 𝐾} =  {𝑥 ∈ 𝑀: 𝑥 ∈ 𝐾} =K 

⟷  Hence ker 𝜋 = 𝐾  

⟷  then     𝜋 ∶ 𝑀 ⟶ 𝑀/𝐾  is T-small.   

 

(𝑖) ⇒ (𝑖𝑖𝑖) Clear.      

 

(𝑖𝑖𝑖) ⇒ (𝑖) Suppose that 𝑇 ⊆ 𝐾 + 𝑋 for some 𝑋 ⊆ 𝑀. Let 𝑖 ∶ 𝑋 ⟶ 𝑀 be 

the inclusion map. Since 𝑖(𝑥) = 𝑥   𝑎𝑛𝑑  Im(𝑋) = 𝑋 Then 𝑇 ⊆ 𝐾 +

𝐼𝑚𝑖 = 𝐾 + 𝑋  and 𝑓(𝑇) = 0  then by (iii) 𝑓(𝑥) ≪ 𝑀 and 𝑓(𝑇) ≠ 0   then 

𝑇 ⊆ 𝑋.   

 

Lemma 2.12. [4]"Let M and N be right R-modules and 𝑓 ∶ 𝑁 ⟶ 𝑀 be an     

R-homomorphism. If K and T are submodules of M such that K ≪𝑇 𝑀, 

then 𝑓(𝐾) ≪𝑓(𝑇) 𝑁. In particular, if K ≪𝑇 𝑀 ≤ 𝑁, then K ≪𝑇 𝑁." 
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Proof. "We may assume that 𝑓(𝑇) ≠ 0. Let 𝑓(𝑇) ⊆ 𝑓(𝐾) + 𝑋,  for some 

𝑋 ≤ 𝑁. We claim that 𝑇 ⊆ 𝐾 + 𝑓−1(𝑥). Let 𝑡 ∈ 𝑇. Then 𝑓(𝑡) ∈ 𝑓(𝑇) 

implies 𝑓(𝑡) ∈ 𝑓(𝐾) + 𝑋,  then 𝑓(𝑡) = 𝑓(𝑘) + 𝑥 for some 𝑥 ∈ 𝑋 and 𝑘 ∈

𝐾 Thus 𝑓(𝑡) − 𝑓(𝐾) = 𝑥,  𝑓(𝑡 − 𝐾) = 𝑥 ∈ 𝑋 and so 𝑓(𝑡 − 𝐾) ∈ 𝑋.  

𝑡 − 𝑘 ∈ 𝑓−1(𝑥). This implies that 𝑡 ∈ 𝑘 + 𝑓−1(𝑥) implies 𝑡 ⊆ 𝑘 +

𝑓−1(𝑥).  Since 𝐾 ≪ 𝑀, We have  𝑡 ⊆ 𝑓−1(𝑥) and hence 𝑓(𝑇) ⊆ 𝑋".  

 

Corollary 2.13. [4] Let M and N be right R-modules and 𝑓 ∶ 𝑀 ⟶ 𝑁 be 

an R-homomrphism, then  𝑓(𝐾) ≪𝑓(𝑇) 𝑁.  

 

Note. Let M and N be R-modules and 𝑓 ∶ 𝑀 ⟶ 𝑁  is a homomorphism. 

If  consider 𝑓: ℤ10 ⟶ ℤ20 with 𝑓(𝑥̅) = 2𝑥̅. Then 10ℤ20 ≪ ℤ20 but  

𝑓−1(10ℤ20) = 5ℤ10 is not small in ℤ10. 

 

Example 2.14. Let f: ℤ ⟶ ℤ4 be a homomrphism defined by 𝑓(𝑥) = 𝑥̅ 

for all 𝑥 ∈ 𝑍. Put K = 2𝑍4 and T = {0̅}. We note that 2𝑍4 ≪{0̅} ℤ4. Now, 

𝑓−1(𝐾) = 𝑓−1(2𝑍4) = 𝑓−1{0̅, 2̅} = {… . , −4, −2, 0, 2, 4, . . . } = 2𝑍   

𝑓−1(𝑇) = 𝑓−1({0̅}) = {… . . , −8, −4, 0, 4, 8, … . } = 4𝑍. 

So 𝑓−1(𝑇), 𝑓−1(𝐾)   are submodules of  ℤ.  Now, let X = 3ℤ ≤ ℤ.  Hence 

𝑓−1(𝑇) ⊆ 𝑋 + 𝑓−1(𝐾)   (𝑖. 𝑒    4ℤ ⊆ 3ℤ + 2ℤ = ℤ), but   4ℤ ⊈ 3ℤ   

(𝑖. 𝑒   𝑓−1(𝑇) ⊈ 𝑋).  Therefore  𝑓−1(𝐾) is not 𝑓−1(𝑇)-small in ℤ.    

 

 

Definition 2.15. Let M be an R-module and N ⊆ M. If N' ≤ M is minimal 

with respect to N + N' = M, then N' is called a supplement of N in M. 

 

Proposition 2.16. [3]"Let N and T be submodules of an R-module M and 

N' be a supplement of N in M. If N ≪𝑇 𝑀, then T⊆ N'. Moreover, if N 

≪𝑇 𝑀 and N + T = M, then N' = T".  
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Proof: "Since N' is supplement of N in M and N' is minimal with respect 

to N + N' = M and T ⊆ M then T ⊆ N + N' but N ≪𝑇 𝑀 then T ⊆ N' and 

moreover, since N + T = M and since N' is supplement of N in M then N' 

is minimal with respect to N + N' = M but N + T = M implies N' ⊆ T but 

T ⊆ N' then T = N".   

 

Theorem 2.17. [3] Let K be a submodule of an R-module M and K' is     

a supplement of K in M. The following are equivalent:  

(i)  K ≪𝐾′ 𝑀;  

(ii) For each submodule N of M, the relation K + N = M implies K' ⊆ N. 
 

Proof: (𝑖) ⟹ (𝑖𝑖) suppose that K + N = M  and since K' ⊆ K + N by 

definition K' ⊆ N  

(𝑖𝑖) ⟹ (𝑖) "Suppose that K' ⊆ K + X some 𝑋 ⊆ 𝑀. Since M = K + K' ⊆ 

K + X hence M ⊆ K + 𝑋 and since X ⊆ M and K ≤ M then K + 𝑋 ⊆ 𝑀  

we have M = K + X and by hypothesis K' ⊆ 𝑋 ".  
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