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INTRODUCTION

In this work, all rings have identity elements and all modules are right
unitary. In [1], Nicholson and Zhou defined annihilator -small right (left)
ideals as follows :a left ideal A of a ring R is called annihilator -small if
A+T=R, where T is a left ideal , implies that r(T)=0 , where r(T) indicates
the right annihilator. Kalati and Keskin consider this problem for modules
in [2]as follows :let M be an R-module and S=End(M) . A submodule K
of M is called annihilator —small if K+T=M , T a submodule of M,
implies that ri(T) = 0, where rg indicates the right annihilator of T over

S=End(M) , where r,(T) = {f € S|f(T) =0 Vte T}.

These observation lead us to introduce the following concept. A sub-
module N of an R-module M is called R-annihilator small if N+T=M , T
a submodule of M , implies that anng(T) = 0, where anng(T) =
{r e RIr.T = 0}. In fact , the set Ky, of all elements K such that RK is

semisubmodule and annihilator-small and contains both the Jacobson

radical and the singular submodule when M is finitely generated and

faithful . The submodule Ay generated by Ky is a submodule of M

analogue of the Jacobson radical that contains every R-annihilator-small

submodules . in this work we give some basic properties of R-annihilator
small submodules and various.
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CHAPTER ONE

Background of Modules

Definition 1.1 [2] A submodule N of a module M is called small in M
(denoted by N K M) if VK <M with N+K=M implies that
K=M .

Example 1.2 For every module M, we have 0 < M.

Theorem13[3] AKM & VU, M(A+U<_. M) .

Proof. = Let A < M [we will proof by using contradiction] and since
A < M then U=M. Suppose 3U <M 23A+U=M ,and since A<M
then U=M and this is contradiction (U=M). So VU < M(A+ U < M).

& Suppose AM ,then3U <, M 3 A+ U = M. And thisisa
contradiction. Then U=M ,s0 4 < M.

Theorem14[1]] M #0, ALK M = A + M.
Proof. LetM + 0 A A < M [We will proof it by using contradiction]

Suppose A=M , then A+0=M , but A « M so M=0 and that is
contradiction -»s0A # M.

Definition 1.5 [4] A module M is said to be semi simple if VYN < M3K <
M > NOK = M.

Theorem 1.6 If M is a semi simple module then 0 is the only small
submodule in M .

Proof. Let N <« M so N®M so (since M is semi simple), 3K < M

with N®K = M,i.e. NN K =0 and N+K=M .
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=K=MbutNNK=0soNNM=0= N =0.

Definition 1.7 Let M be an R module A subset X of M is called basis of
M iff :

1) X is generated M , i.e. M = (X).

2) X is linearly independent , that is for every finite subset(x,, x,, ..., x;,)
of X with }}7*.; X; ;= 0,V;E R then «;=0,V1 <i<n,

Definition 1.8 An R-module M is said to be free if satisfy the following
condition :

1) M has basis.

2) M = @VielAi /\Vl € I [Al = RR]

Example 1.9 Z as Z-module is a free module.

Example 1.10 Z as Z-module is free since (1)=Z
(1)={1l.alaez}={...,—-3,-2,-1,0,1,2,3, ...}

AndVxe Z,x.1 = 0 =>x= 0.

Theorem 2.1.11 In a free Z-module (0) is only submodule.
Proof. Let F = @;¢;x; Z be a free Z-module with basis {X;|i € I}

A<F,a€Aandletx=x;;2; + -+ X;pZm,Z; €EZ, with z; #0
letn € Z withg.c.d(z;,n) =1landn < 1

PutU = ®x;Z + x;,Z , then aZ+U=F , hence A+U=F with U # F.

Zoren's lemma 2.1.12 If A is non-empty partial order set such that
every chain in A has an upper bound in A , then A has maximal element .
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Proposition 1.13 [5] If finitely many arbitrary elements are omitted from
an arbitrary generating set X of Q,, then the set with out these elements
omitted is again generating .

Theorem 1.14 [2] Every finitely generating submodule of Q, is small in

Q-

Proof. Let N < Q, Dbe a finitely generating submodule , so
3{q1,9,, ---,q,} S Q suchthat N ={(qy, 95, ..-,qy)

Let K < Q, with Q, = ({(q1,92, ---, qn) U K) , SO by the proposition
=0Q=Z=N is small.

Modular law 1.15[3] IfA,B,C <M AB <C,then(A+B)NC =
AnC)+(BNC)=ANC)+B.

Lemmall6 IfA<SB<M<NandB<KM = AKN.
Proof. Let U < N , let A+U=N [we must proof that U=N]

SinceA<BthenB+U=N=B+U)NM=NnNnM= B+
(Un M) = M ( by modular law )

Hence U N M = M(since B <K M), and so M < U and since assub B «
M ,so A < U and since A+tU=N thenU = N — A < N.

Theorem 1.17

n
A<M,  i=12,..n =>2Ai <M
i=1

Proof. LetA; K M, i=1,2,...,n
If i=1,A, +U =M = U = M (by hypothesis)— [4; K M]

If |=2,A1+A2+U=M_)A1+(A2+U)=M
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Since A KM thenA,+U =M

Sinced, K M =U=M,so Y, A; <M

Let it be true at n-1, and we will proof it at n

letA=A; +A,++A, <M<—A+A,+U=M

Then A,, + U = M [since A K M], then U=M [since 4,, <
M]so YL A K M.

Definition 1.18 A homomorphism oc: A — B is called small & kar «
KA.

If <: M — N modular homomorphism on R-ring then if B < N then «
(<71 (B)) = B n Im().

Theorem 1.19[1] IfA <K Mand @ € Hom(M,N) = @(4) < N.
Proof. Let®(A)+ U =N and U <N ,so®(m) E NVmE€
o(m)=0(a)+u witha€Ad,uelU->0(m)—0(a)=u
S@Pm—-—a)=u->0"(d(m—-a))=0"1(w
m—-a€@t(U)->meA+ @ 1(U)
A+ 0% (U)=M but AL M, hence M = ¢~ (V)
> (M) = ¢(0~1(U)) = U n Im(®) [by theorem 2.1.19]
- @(A) <O(M) < U, henceU = @(A) = N.
Theorem 1.20 Ifc:M - N, BN — K modular homomorphism on R-
ring then ker(B «) =x~1 (ker(B)).

Proof. Let x € ker(f <) » f « (x) = 0" - («x (x)) = 0" > (x) €
ker(B) - x €x™t (ker(B)). So ker(B «) S~ (ker(B)) ... (1)



Chapter One

2018 1439

Let x €x™t (ker(B)) »x (x) € ker(B) - (x (x)) =0 > B « (x) =
0" - x € ker(B ). So ™1 (ker(B)) € ker(B «) ... (2)

Form (1),(2)— ker(fB «) =x~1 (ker(B)).

Theorem 1.21[2] If«<:M — N ,(: N — K modular homomorphism on
R-ring then if A <M then o™ (o (4)) = A + ker().

Proof. Let x €x™1 (xx (4)) »ox (x) €x (4).
Then3b € A 3x (x) =x (b)
> (x—b)=0">x—b €ker(x) ,thenk e ker(x) 3x—b =k
—-x=b+k—->x€A+Kker(x) [sincek € ker(x),b € A]
So ! (< (4)) € A + ker() ... (1)
Letx € A+ ker(x),thendb € B,k €eker(x) 2x=b+k
- (x) =x (b + k) »ox (x) =« (b)+x (k)
o (x) = (b)[since k € ker(«)] = x €x~t (« (4))
S0 A + ker() €t (¢ (4)) ... (2)

So from (1) ,(2) we get o< (< (A)) = A + ker().

Theorem 1.22 [3] If«x:A - B,[:B — C are small epimorphism then
p x: A — C also small epimorphism.

Proof. By theorem S o is also epimorphism
Now we must proof ker(f «) < A

Let U < A with ker(f «) + U = A, then < (ker(f <) + U) =x
(4) =« (ker(B x))+x (U) = B =« (x~ 1 ker(B))+x (U) = B (by
theorem2.1.21).
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= ker(B) +x (U) = B, butker(f) K B =« (U) =B =« (U) =«
(4) = (o (U)) =<7t (o (A)) = U + ker(«) = A (by theorem
2.1.22). Butker(x) < A= U = A.

Definition 1.23 [2] Let A < M then A — B < M is called addition
complement of A in M (briefly adco ) iff :

1)A+B=M

2)B < M minimal in A+B=M ,i.e VB < M with A+B=M ,ievVU <M
with A+U=M and U < B imply U=B

B — D < M is called intersection complement of A in M (beieflyinco) iff
DAND =0
2)DisamaximalinAnD =0

.e. VC<MwithAnC =0 AD < C implies C=D.

Corollary 1.24 Let A<M and B<M then A@B=M < B s
adco and inco of A in M.

Proof. = Suppose that B is adco and inco of A
Then A+B=Mresp. ANB =0 = M = A@B
& Suppose that A@B = M , hence A+B=MandANB =0

LetC < M with A+C=M andC < B,(A+C)NB=MnNB =
(A+C)NB=B->(ANB)=C=B=C=B[ANB =0]

SoBisadcoof Ain M
LetC <M withANC=0and B<C
Since A+B=M=A+C=M [since A+ B € A + (]

- A®C =M = ADC = A®B [ABB = Mby assumption]

APC ADB .. .
%=%=C=B—>soBlsmcoofAmM.
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Lemma 1.25 [3] Let M=A+B , then we have B is adco of Ain M <
ANB K B.

Proof. = letU<B(ANB)+U=8B
ThenM =A+(ANB)+ U= A+ U= M [since AN B C A]
ButBisso ANB K B

< We have by assumption M=A+B , let U < M with A+U=M and U <
B

- (A+U)NB=MnNnB->(A+U)NB=B[B<M]->(A+B)n
U = B [by modular law]

But AN B < B, hence U=B , thus B is adco to A in M.
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CHAPTER TWO

1. R-annihilator-small submodules

Definition 2.1.1 [3] A submodule N of a module M is called R- a-small,
If N + X = M, X asubmodule of M implies that annzyX = 0, we write
N «% M in this

case .

[3] Examples 2.1.2

(i) In Z as Z module every proper submodule is Z-a-small. Let nZ be
a proper submodule in Z 3 n # +1, and let mZ be a submodule of Z
such that nZ+mzZ=Z. We have ann,mZ ={r € Z|[ra =0 Va € mZ}
where a=m.b 3beZ. So ann,mZ = {0}, and hence nZ is Z-a-small
submodule . In particular {0} is a-small submodule in Z as Z-module.

(i) {0} is a small in Z, as Z-module, but we have 0 + Z, = Z, with
annZ, = 4Z # 0 so {0} is not a-small submodule in Z,.

Proposition 2.1.3 [4] Let A and B be submodule of M such that A < B,
IfA<K*BthenA K* M .

Proof. Let M=A+X, where X < M, by modular law, we have M N B =
(A + X) n B,B=A+(XNB). Since A <K% B,then ann(XNB)=0but X N B <
X ,annX € annX N B = 0then annX = 0, thus 4 K% M.

Proposition 2.1.4 [2] Let A and B be submodules of M such that A < B
If B <% M then A «* M.

Proof. Let M=A+X, where X < M. Then M=B+X. Since A € B, then
A+XCEB+X soMcB+X butB+ X & M, thus M=B+X . Since
B «% M, then annX=0.
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Corollary 2.1.5 Let {A;};; , I =1{1,23,..,n} be a family of submodules
of a module M. If A; «* M then N}L; A; K* M forsome tel.

Proof. Since N[, 4; =4, N4, N ..NA;N..NA, <A, and A; K* M

So by Proposition 2.1.4, we get Nj=; 4; K* M.

Proposition 2.1.6 [3] Let M and N be two R-modules and f:M—N be an
epimorphism if H «* N then f~1(H) «% M.

Proof. Let M = f~1(H) + X, since f is an epimorphism, N=H+f(X).
But H «* N therefore ann f(X)=0. To prove ann X < ann f(X). Let
reannX, then rX=0, for all xeX, so f(rX)=f(0)=0 , So f(rX)=0 , but
f(rX)=rf(X), then rf(X)=0 for all xeX, then reannf(X). Hence annX=0 .

Notes 2.1.7

(i) Let f:M—N be an epimorphism, the image of R-a-small submodule of
M need not be R-a-small in N as the following example shows : Consider
the natural epimorphism m: Z — Z,. Since {O}is a-small in Z as Z-module
but 7(0) = 0 is not a-small in Z, as Z-module, since 0 + Z,_Z, but
annZ, = 4Z # 0.

(if) The sum of two R-a-small submodules of a module M need not be
R-a-small submodule for example . In Z as Z-module , 2Z and 3Z are
a-small submodules but 2Z+3Z=Z is not a-small in itself .

Theorem 2.1.8 [3] Let M be a faithful module if N «< M, then N K% M.

Proof. Let X < M such that N+X=M. Since N «< M implies that X=M,
hence annX=annM. But M is faithful, annM=0 , thus annX=0, therefore
N ¢ M .

Proposition 2.1.9 Let M be a module and A < B be submodules of M,
then anngyB € annzA .

Proof . Let r € anngyB, then r.a=0, forall a€ B, but we have A < B,
hence r.a = 0 for all a € A, therefore r € annzA.

-10 -
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The following example show the application of previous proposition.
anng _(4) ={0,3,6,..} = 3Z

anng _(2) ={0,6,..} = 6Z but 6Z € 3Z

This means ann; ,(2) € ann; ,(4).

Proposition 2.1.10 [3] Let M, , M, be modules, if K; «* M; and
K, K*M,,then K, ® K, K* M; &M,

Proof. LetP;:M, @M, — M;,i = 1,2 be the projection maps. Since
K, <% M, ,K, <* M,, (by proposition 2.1.6) K, ®M, = P, ' (K;) «¢
M,®M, and M,;®K, = P,”* (K,) «* M;@®M, (by proposition2. 1.7)

(K1®M2)n(M1®K2) = K1®K2 <<a Ml@Mz (by COI’O”aI'y 2.1.5) .

Let M be a module over an integral domain R. Define the set T(M) =
{m e M|rm =0 forsome (r # 0) € R}. If T(M)=M, then M is called
torsion, if T(M)=0 then M is called torsion free .

Remark 2.1.11[5] Let R be an integral domain and let M be a torsion
free module then every proper submodule of M is R-a-small in M .

Proposition 2.1.12 Let N and K be two submodules of a module M then
ann( N + K) = annN N annk .

Proof. Since NS N+ K, KS N+ K,ann(N + K) € annN, and
ann(N+ K) S annK. Let reann N andr € ann K ra=0 for all
a €N and r.b = 0. For all be Kr(ath)=0 for all ac N and be K,
then reann(N+K), so ann NnannK € ann(N + K) ...(2) from 1 and 2
we get ann(N+K)=annNn annK .

Proposition 2.1.13 [1] Let M be a faithful R-module, N be a submodule
of M such that annN <€ R, then N <M.

-11 -
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Proof. Let M=N+K ,then 0=ann M=ann (N+K) ann (N+K)=ann N n ann
K, by proposition 2.1.12, then O=ann N n ann K, but ann N<°R therefor
annK=0 thus N«“*M.

Proposition 2.1.14 [1] Let R be an integral domain, let M be a faithful
R-module, then every submodule N of M with annN=0 is R-a-small.

Proof. Assume that M=N+K, then O0=annM=ann(N+K)=annNnannK,
since annN=0 and R is an integral domain, then annN<®R. Therefor
annK=0. Thus N is R-a-small .

Proposition 2.1.15 Let R be an integral domain and M be a faithful and
torsion module, every finitely generated submodule N of M is R-a-small.

Proof. Let N=Rx; + Rx, + -+ Rx,, be a submodule of M and
M=N+K. Then O=annM=ann(N+K)=annN n annK = (ann(Rx; + Rx, +
«++ Rx,)) NannK = (N}, ann Rx;) N annK. Since M is torsion, then
annRx; # 0 forall i = 1,2,...,n. But R is an integral domain, there for
annRx; is essential in R, for all i, hence UL, ann Rx;= annK=0. Thus
N KM .

-12 -
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2. Characterizations of R-a-small submodules

Proposition 2.2.1[1] Let M be a finitely generated module and K <% M,
then K + Rad (M) + Z(M) K* M.

Proof. LetM =Rm; +Rm, +--+Rm,, m;e M ,Vi=12,..,n

and M=K+Rad(M)+Z(M)+X . Since M is finitely generated. Then
Rad(M) « M, and hence M=K+Z(M)+X.Som; = k; +z; +x; k; €
K, x,;€X, zz€Z(M), Vi=12,..,n

M=K+Rzy+Rz,+ -+ Rz, + X ,but K K* M, therefore

ann(Rz; + Rz, + -+ Rz, + X) = 0. Hence (Nj=; ann(Rz;)) N
annX = 0 since z; € Z(M) ,Vi =1,2,...,n. Then ann(z;) <° R, Vi =
1,2,...,n and hence N}, ann(z;) <¢ R. So annX=0

Thus K + Rad(M) + Z(M) <% M .

Proposition 2.2.2 [3] Let M be a module and K «% M. If Rad (M) <
M and Z(M) is finitely generated, then K + Rad (M) + Z(M) <K* M.

Theorem 2.2.3 [2] Let M = Y cA RX, be amodule and K € M, then the
following statements are equivalent :

(i) Rk <*M.
(i) Neepann(x, —1k) = 0 Vr, € R.

Proof. (i)—(ii) Let, € R for each x€A then x, = x — 1k + 1k,
VXEA, then M = ) cp R(xs — 7ck) + Rk since Rk <
K*M then 0 = ann(Quepr R(Xe — k) = Neep annR (xo — 1ck)

(ii)— (i) Let M=RK+B . then for each x€ A . x =10k + by 74 €

R and b, € B . Now let tx, = tryk+tb, , since tb, =

0 then t(xy —1k) =0, VXEA so t € ann(x, —1k) =0 ,VXE
A. Hence t € Ngepann(x, — k) = 0.

-13 -
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Theorem 2.2.4 [5] Let R be a commutative ring, and M = ).\ Rx, be
a module and k € M then the following statements are equivalent™ :

(i) Rk <*M

(il) Ngepann(x, —1.k) =0 Vrge €R

(iii) there exists x€EA such that bx, € Rbk V0 # b € R.
Proof. (i)—(ii) By Theorem 2.2.3.

(i)—(iii) "Let0 + b € R, assume that bx, € Rbk, V. € A then
bx, let 0 = b € R. There for b € ann(x, — x.k), V4EA
and hence 0 # b € Nyepann(x, — k) = 0 which is a contradiction.

(iii)—=(ii) let b € Ngepann (xo — 1k) and hence b € ann(x, —
Xuk) VXEA.there for bx, = rybk ,VXEA . sobx, € Rbk V€
A By our assumption , b=0 .

Theorem 2.2.5[2] Let R be a commutative ring, and let M = Y o\ Rx
be amodule and K < M then the following statements are equivalent:

()K «*M
(i)NepannR (xo — ks ) =0, Vk, EK

Proof. (i)—(ii) let k, € K VXEA then x, = Xy — ko + ko, YVXEA
and hence M = Y crR(x — ky) + k. But k &% M, therefor

0=ann( Yecen R (X — ko)) =Nocep annR (xo — ko)
(ii)—(i) let M=K+A. then for each x€A, x = ko + ay, ax € Ak €
Hence a, = xo — ko, foreach <en, soM =Y cpnR(xs — ko) + k

Now let t € annA there for t(xx —ky) =0, VXEA sotE
NuepannR(x, — ko) =0 thus annA =0 and k <K* M.

Definition 2.2.6 [3] Let M be an R-module and k € M, we say that k is
R-a-small in M if Rk «* M. Letk,, = {k € M|Rk K% M}.

-14 -
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Example 2.2.7 In Z as Z-module we know that every proper submodule
is R-a-small, this implies the set all R-a-small elements are Z|{—1,1}.

Notes 2.2.8 [5]

(i) That Z(M) € k), and rad (M) € ky, when M is finitely generated
and faithful .

(i1) k,, is not closed under addition in general. For example consider Z
as Z- module the sum of R-a-small need not be R-a-small. clearly that
3Z K%Z and 2Z K% Z but Z=3Z+2Z is not R-a-small in Z.

Remark 2.2.9 Let M be a module and k € k,,, then Rk € k,,.

Proof. Let r € R clearly that Rrk € Rk «<* M by proposition (2.1.4)
Rrk «* M and hence rk € K, thus Rk € K.

Remark 2.2.10 [4] Let M beamoduleand A «* M then A € K.
Let x € A, then Rx € K K% M and hence Rx <* M by proposition
(2.1.4) Thus x € K;, as we have seen , the sum of R-a-small submodules
need not be R-a-small (consider 3Z+2Zin Z).

Definition 2.2.11 [1] Let M be a module and let R-a-small submodule
Ay of M be the sum of R-a-small submodule of M . If M has no R-a-
small submodule , we write Ay, = M. Itisclear that K, S A,, inevery
module , but this may not be equality (consider Z as Z-module) .

Proposition 2.2.12 [2] Let M be a module such that K,, + @ then :

(i) Ay, is a submodule of M, 4,, contains all R-a-small submodule of M .
(ii)Ay ={k; +k,+ -+ kylk; €Ky foreachi,n = 1}

(iii) Ay 1s generated by K.

(iv) If M finitely generated , then Rad (M) € Ay, and Z(M) S Ay.

Proposition 2.2.13 [5] Let M be a module such that K,, # @ then the
following are equivalent:
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(i) Ky, is closed under addition , that is a finite sum of R-a-small elements
Is R-a-small.

Proof. (i)—(ii) let ky + k, + -+ k, € Ay, k; €

K, and K; K*M, Vi=1.2,..,n

Then RK; «* M by proposition (2.1.4) hence K; € Ky, Vi =

1,2, ...,n. By our assumption , k; + k, + -+ k,, € Ky, thus 4y, = K.
(i)=(i) assume that Ay, = Ky, and let x,y € K, since Ky, €

Ay, thenx,y € A, .But Ay is asubmodule of M by proposition
(2.2.11). Therefor x + y € Ay, = K;, thus K, is closed under addition.

Proposition 2.2.14 [3] Let M be a module such that K,, # @ consider
the following statements :

() Ay <* M.

(()fFKK*M and L<K*M thenK + L K% M.

(iii) K, is closed under addition , that is the sum of R-a-small elements is
R-a-small.

(iV)A,, = K.

Then (i)— (ii) < (iii) < (iv), if M is finitely generated (i)« (ii).

Proof. (i)— (ii) Assume that Ay <* M and let Kand L be R-a-small
submodule of M, then K + L € A,;. ButAy <% M therefor K +

L «* M by proposition (2.1.4)

(iii)—=(iv) by proposition (2.2.12)

To show that (ii)—(i) LetM = R, + Ry, + -+ Ry, andlet M =
Ay +X then m;y=a;+x;,, a €Ay andx; €X, Vi=
1,2,..,n there for M =Y Ra; +X since a; € Ay, Vi =
1,2,..,n,then a; +a, +--+a, € Ay, hence Ra; K* M, Vi=
1,2,...,n (by our assumption) Y-, Ra; K* M. So annX=0 .

Proposition 2.2.15 [1] Let M be a finitely generated module such that
Ay K* M then:

(i) Ay, is the unique largest R-a- small submodule of M

(ii) Ay =N {W|W maximal submodule of M with A, € W}
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Proof.(ii) Leta en {W|W maximal submodule of M with Ay, € W}
Claim that Ra «% M assume not , then M=Ra+X,

X<M and annX # 0.Since Ay; K* M, then M # Ay + X .butM
Is finitely generated then there exist a maximal submodule such that

Ay + X € B.Now, if a € B we get B=M which is a contradiction so a ¢
B.But a en {W|W maximal submodule of M with A,; € W}

which is a contradiction .Thus Ra K* M and hence a € Ay,.
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