Republic of Iraq
Ministry Of higher education and Scientific research
University of AL-Qadisiyah
College of Education

R-ANNIHILATOR SMALL SUBMODULES

A research
Submitted to the department of education Al-Qadisiyah University as a partial fulfillment requirement for the degree of Bachelor of science in mathematics

By

Raghda Jallel Al-assadi

Supervisor

Dr. Tha'ar Younis Ghawi

CERTIFICATION

I certify that this paper was prepared under my supervision at the university of AL-Qadisiyah, college of Education, Dep. of Mathematics, as a partial fulfillment for the degree of B.C. of science in Mathematics.

Signature:
Supervisor: Dr. Tha'ar Younis Ghawi
Date: / / 2018

In view of the available recommendations, I forward this paper for debate by the examining committee.

Signature:
Chairman of Dep. Dr. Mazin Umran Kareem
Date: / / 2018

$$
\begin{aligned}
& \text { انما سِّكُ'اولوُوالألبابِ }
\end{aligned}
$$

سورةالزمر(9)

DEDICATION

I dedicate this humble to cry resounding silence in the sky to the martyrs of Iraq wounded. Also, I dedicate my father treasured, also I dedicate to my supervisor Dr. Tha'ar Younis Ghawi. Finally, to everyone who seek knowledge, I dedicate this humble work.

ACKNOWLEDGMENT

And later the first to thank in this regard is the Almighty God for the blessing that countless, including the writing of this research modest. Then thanks and gratitude and deepest gratitude to my teacher Dr. Tha'ar Younis Ghawi, which prefer to oversee the research and guidance in spite of concern, and not to ask him reordering Almighty to help him I also wish to express my thanks to the staff of the department of mathematics.

CONTENTS

Page
Introduction 1
Chapter one 2
Chapter two 9
Section One 9
Section Two 13
References 18

INTRODUCTION

In this work, all rings have identity elements and all modules are right unitary. In [1], Nicholson and Zhou defined annihilator -small right (left) ideals as follows : a left ideal A of a ring R is called annihilator -small if $A+T=R$, where T is a left ideal , implies that $r(T)=0$, where $r(T)$ indicates the right annihilator. Kalati and Keskin consider this problem for modules in [2]as follows :let M be an R -module and $\mathrm{S}=\mathrm{End}(\mathrm{M})$. A submodule K of M is called annihilator - small if $\mathrm{K}+\mathrm{T}=\mathrm{M}$, T a submodule of M , implies that $r_{s}(T)=0$, where r_{s} indicates the right annihilator of T over $S=\operatorname{End}(M)$, where $r_{s}(T)=\{f \in S \mid f(T)=0 \quad \forall t \in T\}$.

These observation lead us to introduce the following concept. A submodule N of an R -module M is called R -annihilator small if $\mathrm{N}+\mathrm{T}=\mathrm{M}, \mathrm{T}$ a submodule of M, implies that $\operatorname{ann}_{R}(T)=0$, where $\operatorname{ann}_{R}(T)=$ $\{r \in R \mid r . T=0\}$. In fact, the set K_{M} of all elements K such that $R K$ is semisubmodule and annihilator-small and contains both the Jacobson radical and the singular submodule when M is finitely generated and faithful. The submodule A_{M} generated by K_{M} is a submodule of M analogue of the Jacobson radical that contains every R-annihilator-small submodules . in this work we give some basic properties of R -annihilator small submodules and various.

Chapter One

CHAPTER ONE

Background of Modules

Definition 1.1 [2] A submodule N of a module M is called small in M (denoted by $N \ll M$) if $\forall K \leq M$ with $\quad \mathrm{N}+\mathrm{K}=\mathrm{M}$ implies that $\mathrm{K}=\mathrm{M}$.

Example 1.2 For every module M, we have $0 \ll M$.

Theorem 1.3 [3] $A \ll M \Leftrightarrow \forall \mathrm{U} \leq_{\neq} M\left(A+\mathrm{U} \leq_{\neq} M\right)$.
Proof. \Rightarrow Let $A \ll M$ [we will proof by using contradiction] and since $A \leq M$ then $\mathrm{U}=\mathrm{M}$. Suppose $\exists U \leq M \ni A+U=M$, and since $A \leq M$ then $\mathrm{U}=\mathrm{M}$ and this is contradiction $(\mathrm{U}=\mathrm{M})$. So $\forall U \leq M(A+U \leq M)$.
\Longleftarrow Suppose $A M$, then $\exists U \leq_{\neq} M \ni A+U=M$. And this is a contradiction. Then $\mathrm{U}=\mathrm{M}$, so $A \leq M$.

Theorem $1.4[1] M \neq 0, A \ll M \Longrightarrow A \neq M$.
Proof. Let $M \neq 0 \wedge A \ll M$ [We will proof it by using contradiction] Suppose $\mathrm{A}=\mathrm{M}$, then $\mathrm{A}+0=\mathrm{M}$, but $A<M$ so $\mathrm{M}=0$ and that is contradiction $\rightarrow \operatorname{so} A \neq M$.

Definition 1.5 [4] A module M is said to be semi simple if $\forall N \leq M \exists K \leq$ $M \ni N \oplus K=M$.

Theorem 1.6 If M is a semi simple module then 0 is the only small submodule in M .

Proof. Let $N \ll M$ so $N \oplus M$ so (since M is semi simple), $\exists K \leq M$ with $N \oplus K=M$, i.e. $N \cap K=0$ and $\mathrm{N}+\mathrm{K}=\mathrm{M}$.

Chapter One

$$
\Rightarrow \mathrm{K}=\mathrm{M} \text { but } N \cap K=0 \text { so } N \cap M=0 \Rightarrow N=0
$$

Definition 1.7 Let M be an R module A subset X of M is called basis of M iff :

1) X is generated M, i.e. $M=\langle X\rangle$.
2) X is linearly independent, that is for every finite subset $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ of X with $\sum_{i=1}^{n} X_{i} \propto_{i}=0, \forall \propto_{i} \in R$ then $\propto_{i}=0, \forall 1 \leq i \leq n$.

Definition 1.8 An R-module M is said to be free if satisfy the following condition :

1) M has basis.
2) $M=\oplus_{\forall i \in I} A_{i} \wedge \forall i \in I\left[A_{i} \equiv R_{R}\right]$.

Example 1.9 Z as Z-module is a free module.

Example 1.10 Z as Z-module is free since $\langle 1\rangle=\mathrm{Z}$ $\langle 1\rangle=\{1 . a \mid a \in Z\}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

And $\forall \propto \in Z, \propto .1=0 \Rightarrow \propto=0$.

Theorem 2.1.11 In a free Z-module (0) is only submodule.
Proof. Let $F=\oplus_{i \in I} x_{i} \mathrm{Z}$ be a free Z-module with basis $\left\{X_{i} \mid i \in I\right\}$ $A \leq F, a \in A$ and let $\propto=x_{i 1} z_{1}+\cdots+x_{i m} z_{m}, z_{i} \in Z$, with $\quad z_{1} \neq 0$ let $n \in Z$ with g.c.d $\left(z_{1}, n\right)=1$ and $n<1$

Put $U=\oplus x_{i} Z+x_{i n} Z$, then $\mathrm{aZ}+\mathrm{U}=\mathrm{F}$, hence $\mathrm{A}+\mathrm{U}=\mathrm{F}$ with $U \neq F$.

Zoren's lemma 2.1.12 If A is non-empty partial order set such that every chain in A has an upper bound in A , then A has maximal element .

Proposition 1.13 [5] If finitely many arbitrary elements are omitted from an arbitrary generating set X of Q_{z}, then the set with out these elements omitted is again generating .

Theorem $\mathbf{1 . 1 4}$ [2] Every finitely generating submodule of Q_{z} is small in Q_{z}.

Proof. Let $N \leq Q_{z}$ be a finitely generating submodule, so $\exists\left\{q_{1}, q_{2}, \ldots, q_{n}\right\} \subseteq Q$ such that $N=\left\langle q_{1}, q_{2}, \ldots, q_{n}\right\rangle$ Let $K \leq Q_{z}$ with $Q_{z}=\left\langle\left\langle q_{1}, q_{2}, \ldots, q_{n}\right\rangle \cup K\right\rangle$, so by the proposition $\Rightarrow \mathrm{Q}=\mathrm{Z} \Rightarrow \mathrm{N}$ is small.

Modular law 1.15 [3] If $A, B, C \leq M \wedge B \leq C$, then $(A+B) \cap C=$ $(A \cap C)+(B \cap C)=(A \cap C)+B$.

Lemma 1.16 If $A \leq B \leq M \leq N$ and $B \ll M \Rightarrow A \ll N$.
Proof. Let $U \leq N$, let $\mathrm{A}+\mathrm{U}=\mathrm{N}$ [we must proof that $\mathrm{U}=\mathrm{N}$] Since $A \leq B$ then $B+U=N \Rightarrow(B+U) \cap M=N \cap M \Rightarrow B+$ $(U \cap M)=M($ by modular law $)$

Hence $U \cap M=M($ since $B \ll M)$, and so $M \leq U$ and since assub $B \ll$ M, so $A \leq U$ and since $\mathrm{A}+\mathrm{U}=\mathrm{N}$ then $U=N \rightarrow A \ll N$.

Theorem 1.17
$A_{i} \ll M, \quad i=1,2, \ldots, n \Rightarrow \sum_{i=1}^{n} A_{i} \ll M$

Proof. Let $A_{i} \ll M, \mathrm{i}=1,2, \ldots, \mathrm{n}$
If $\mathrm{i}=1, A_{1}+U=M \Rightarrow U=M$ (by hypothesis) $\rightarrow\left[A_{i} \ll M\right]$

$$
\text { If } \mathrm{i}=2, A_{1}+A_{2}+U=M \rightarrow A_{1}+\left(A_{2}+U\right)=M
$$

Chapter One

 Since $A_{2} \ll M \Rightarrow U=M$, so $\sum_{i=1}^{2} A_{i} \ll M$ Let it be true at $\mathrm{n}-1$, and we will proof it at nLet $A=A_{1}+A_{2}+\cdots+A_{n-1} \leq M \leq \rightarrow A+A_{n}+U=M$
Then $A_{n}+U=M[$ since $A \ll M]$, then $\mathrm{U}=\mathrm{M}$ [since $A_{n} \ll$ $M]$ so $\sum_{i=1}^{n} A_{i} \ll M$.

Definition 1.18 A homomorphism $\propto: A \rightarrow B$ is called small $\Leftrightarrow k a r \propto$ $\ll A$.

If $\propto: M \rightarrow N$ modular homomorphism on R-ring then if $B \leq N$ then \propto

$$
\left(\alpha^{-1}(B)\right)=B \cap \operatorname{Im}(\alpha) .
$$

Theorem $1.19[1]$ If $A \ll M$ and $\emptyset \in \operatorname{Hom}(M, N) \Rightarrow \emptyset(A) \ll N$.
Proof. Let $\emptyset(A)+U=N$ and $U \leq N$, so $\emptyset(m) \in N \forall m \in$ $\emptyset(m)=\emptyset(a)+u \quad$ with $a \in A, u \in U \rightarrow \emptyset(m)-\emptyset(a)=u$
$\rightarrow \emptyset(m-a)=u \rightarrow \emptyset^{-1}(\varnothing(m-a))=\emptyset^{-1}(u)$
$\rightarrow m-a \in \emptyset^{-1}(U) \rightarrow m \in A+\emptyset^{-1}(U)$
$\rightarrow A+\emptyset^{-1}(U)=M$ but $A \ll M$,hence $M=\emptyset^{-1}(U)$
$\rightarrow \varnothing(M)=\varnothing\left(\varnothing^{-1}(U)\right)=U \cap \operatorname{Im}(\varnothing) \quad[b y$ theorem 2.1.19]
$\rightarrow \emptyset(A) \leq \emptyset(M) \leq U$, hence $U=\varnothing(A)=N$.

Theorem 1.20 If $\propto: M \rightarrow N, \beta N \rightarrow K$ modular homomorphism on Rring then $\operatorname{ker}(\beta \alpha)=\alpha^{-1}(\operatorname{ker}(\beta))$.

Proof. Let $x \in \operatorname{ker}(\beta \propto) \rightarrow \beta \propto(x)=0^{\prime} \rightarrow(\alpha(x))=0^{\prime} \rightarrow \alpha(x) \in$ $\operatorname{ker}(\beta) \rightarrow x \in \propto^{-1}(\operatorname{ker}(\beta))$. So $\operatorname{ker}(\beta \propto) \subseteq \alpha^{-1}(\operatorname{ker}(\beta)) \ldots(1)$

Let $x \in \alpha^{-1}(\operatorname{ker}(\beta)) \rightarrow \alpha(x) \in \operatorname{ker}(\beta) \rightarrow(\alpha(x))=0^{\prime} \rightarrow \beta \propto(x)=$ $0^{\prime} \rightarrow x \in \operatorname{ker}(\beta \propto)$. So $\alpha^{-1}(\operatorname{ker}(\beta)) \subseteq \operatorname{ker}(\beta \propto) \ldots$ (2)

Form (1),(2) $\rightarrow \operatorname{ker}(\beta \alpha)=\alpha^{-1}(\operatorname{ker}(\beta))$.

Theorem 1.21 [2] If $\propto: M \rightarrow N, \beta: N \rightarrow K$ modular homomorphism on R-ring then if $A \leq M$ then $\alpha^{-1}(\propto(A))=A+\operatorname{ker}(\alpha)$.

Proof. Let $x \in \propto^{-1}(\propto(A)) \rightarrow \propto(x) \in \propto(A)$.
Then $\exists b \in A \quad \ni \propto(x)=\propto(b)$
$\rightarrow \propto(x-b)=0^{\prime} \rightarrow x-b \in \operatorname{ker}(\propto)$, then $\exists k \in \operatorname{ker}(\propto) \ni x-b=k$
$\rightarrow x=b+k \rightarrow x \in A+\operatorname{ker}(\propto) \quad[$ since $k \in \operatorname{ker}(\propto), b \in A]$

$$
\begin{equation*}
\text { So } \propto^{-1}(\propto(A)) \subseteq A+\operatorname{ker}(\propto) . \tag{1}
\end{equation*}
$$

Let $x \in A+\operatorname{ker}(\propto)$, then $\exists b \in B, k \in \operatorname{ker}(\propto) \ni x=b+k$
$\rightarrow \alpha(x)=\alpha(b+k) \rightarrow \alpha(x)=\alpha(b)+\propto(k)$
$\rightarrow \propto(x)=\propto(b)[$ since $k \in \operatorname{ker}(\propto)] \rightarrow x \in \propto^{-1}(\propto(A))$

$$
\begin{equation*}
\text { So } A+\operatorname{ker}(\alpha) \subseteq \alpha^{-1}(\propto(A)) \ldots \tag{2}
\end{equation*}
$$

So from (1), (2) we get $\propto^{-1}(\propto(A))=A+\operatorname{ker}(\alpha)$.

Theorem 1.22 [3] If $\propto: A \rightarrow B, \beta: B \rightarrow C$ are small epimorphism then $\beta \propto: A \rightarrow C$ also small epimorphism.

Proof. By theorem $\beta \propto$ is also epimorphism
Now we must proof $\operatorname{ker}(\beta \propto) \ll A$
Let $U \leq A$ with $\operatorname{ker}(\beta \propto)+U=A$, then $\propto(\operatorname{ker}(\beta \alpha)+U)=\propto$ $(A) \Rightarrow \alpha(\operatorname{ker}(\beta \propto))+\alpha(U)=B \Rightarrow \alpha\left(\alpha^{-1} \operatorname{ker}(\beta)\right)+\alpha(U)=B$ (by theorem2.1.21).

Chapter One

$\Rightarrow \operatorname{ker}(\beta)+\alpha(U)=B$, but $\operatorname{ker}(\beta) \ll B \Rightarrow \alpha(U)=B \Rightarrow \alpha(U)=\alpha$ $(A) \Rightarrow \alpha^{-1}(\alpha(U))=\alpha^{-1}(\alpha(A)) \Rightarrow U+\operatorname{ker}(\propto)=A$ (by theorem 2.1.22). But $\operatorname{ker}(\alpha) \leq A \Rightarrow U=A$.

Definition 1.23 [2] Let $A \leq M$ then $A-B \leq M$ is called addition complement of A in M (briefly adco) iff :

$$
\text { 1) } A+B=M
$$

2) $B \leq M$ minimal in $\mathrm{A}+\mathrm{B}=\mathrm{M}$, i.e $\forall B \leq M$ with $\mathrm{A}+\mathrm{B}=\mathrm{M}$, i.e $\forall U \leq M$ with $\mathrm{A}+\mathrm{U}=\mathrm{M}$ and $U \leq B$ imply $\mathrm{U}=\mathrm{B}$
$B-D \leq M$ is called intersection complement of A in M (beieflyinco) iff

$$
\text { 1) } A \cap D=0
$$

2) D is a maximal in $A \cap D=0$
i.e. $\forall C \leq M$ with $A \cap C=0 \wedge D \leq C$ implies $\mathrm{C}=\mathrm{D}$.

Corollary 1.24 Let $A \leq M$ and $B \leq M$ then $A \oplus B=M \Leftrightarrow \mathrm{~B}$ is adco and inco of A in M .

Proof. \Rightarrow Suppose that B is adco and inco of A
Then $\mathrm{A}+\mathrm{B}=\mathrm{M}$ resp. $A \cap B=0 \Rightarrow M=A \oplus B$
\Leftarrow Suppose that $A \oplus B=M$, hence $\mathrm{A}+\mathrm{B}=\mathrm{M}$ and $A \cap B=0$
Let $C \leq M$ with $\mathrm{A}+\mathrm{C}=\mathrm{M}$ and $C \leq B,(A+C) \cap B=M \cap B \Rightarrow$ $(A+C) \cap B=B \rightarrow(A \cap B)=C=B \Rightarrow C=B[A \cap B=0]$

So B is adco of A in M
Let $C \leq M$ with $A \cap C=0$ and $B \leq C$ Since $\mathrm{A}+\mathrm{B}=\mathrm{M} \Rightarrow \mathrm{A}+\mathrm{C}=\mathrm{M}[$ since $A+B \subseteq A+C]$
$\rightarrow A \oplus C=M \Rightarrow A \oplus C=A \oplus B[A \oplus B=M$ by assumption $]$

$$
\frac{A \oplus C}{A}=\frac{A \oplus B}{A} \Rightarrow C=B \rightarrow \text { so } \mathrm{B} \text { is inco of } \mathrm{A} \text { in } \mathrm{M} \text {. }
$$

Chapter One

Lemma 1.25 [3] Let $\mathrm{M}=\mathrm{A}+\mathrm{B}$, then we have B is adco of A in $\mathrm{M} \Leftrightarrow$ $A \cap B \ll B$.

$$
\text { Proof. } \Rightarrow \text { let } U \leq B(A \cap B)+U=B
$$

Then $M=A+(A \cap B)+U \Longrightarrow A+U=M[\operatorname{since} A \cap B \subseteq A]$
But B is so $A \cap B \ll B$
\Longleftarrow We have by assumption $\mathrm{M}=\mathrm{A}+\mathrm{B}$, let $U \leq M$ with $\mathrm{A}+\mathrm{U}=\mathrm{M}$ and $U \leq$ B
$\rightarrow(A+U) \cap B=M \cap B \rightarrow(A+U) \cap B=B[B \leq M] \rightarrow(A+B) \cap$ $U=B$ [by modular law]

But $A \cap B \ll B$, hence $\mathrm{U}=\mathrm{B}$, thus B is adco to A in M .

CHAPTER TWO

1. R-annihilator-small submodules

Definition 2.1.1 [3] A submodule N of a module M is called R - a-small, if $N+X=M, X$ a submodule of M implies that $a n n_{R} \mathrm{X}=0$, we write $N \ll{ }^{a} M$ in this case .
[3] Examples 2.1.2
(i) In Z as Z module every proper submodule is Z -a-small. Let $n \mathrm{Z}$ be a proper submodule in $\mathrm{Z} \ni n \neq \mp 1$, and let $m \mathrm{Z}$ be a submodule of Z such that $\mathrm{nZ}+\mathrm{mZ}=\mathrm{Z}$. We have $a n n_{Z} m Z=\{r \in Z \mid r a=0 \quad \forall a \in m Z\}$ where $\quad \mathrm{a}=\mathrm{m} . \mathrm{b} \quad \ni \mathrm{b} \in \mathrm{Z}$. So $a n n_{Z} m Z=\{0\}$, and hence $n Z$ is Z-a-small submodule. In particular $\{0\}$ is a-small submodule in Z as Z -module.
(ii) $\{0\}$ is a small in Z_{4} as Z-module, but we have $0+Z_{4}=Z_{4}$ with $\operatorname{ann} Z_{4}=4 Z \neq 0$ so $\{0\}$ is not a-small submodule in Z_{4}.

Proposition 2.1.3 [4] Let A and B be submodule of M such that $A \leq B$, if $A \ll^{a} B$ then $A \ll^{a} M$.

Proof. Let $\mathrm{M}=\mathrm{A}+\mathrm{X}$, where $X \leq M$, by modular law, we have $M \cap B=$ $(A+X) \cap B, B=\mathrm{A}+(\mathrm{X} \cap \mathrm{B})$. Since $A \ll^{a} B$, then ann $(\mathrm{X} \cap \mathrm{B})=0$ but $X \cap B \subseteq$ $X, a n n X \subseteq a n n X \cap B=0$ then $a n n X=0$, thus $A \ll^{a} M$.

Proposition 2.1.4 [2] Let A and B be submodules of M such that $A \leq B$,if $B \ll^{a} M$ then $A \ll^{a} M$.

Proof. Let $\mathrm{M}=\mathrm{A}+\mathrm{X}$, where $X \leq M$. Then $\mathrm{M}=\mathrm{B}+\mathrm{X}$. Since $A \subseteq B$, then $A+X \subseteq B+X$ so $M \subseteq B+X$ but $B+X \subseteq M$, thus $\mathrm{M}=\mathrm{B}+\mathrm{X}$. Since $B \ll^{a} M$, then annX=0.

Corollary 2.1.5 Let $\left\{A_{i}\right\}_{i \in I}, I=\{1,2,3, \ldots, n\}$ be a family of submodules of a module M. If $A_{t} \ll^{a} M$ then $\bigcap_{i=1}^{n} A_{i} \ll^{a} M$ for some $t \in I$.

Proof. Since $\cap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \ldots \cap A_{t} \cap \ldots \cap A_{n} \leq A_{t}$, and $A_{t}<{ }^{a} M$ So by Proposition 2.1.4, we get $\bigcap_{i=1}^{n} A_{i} \ll^{a} M$.

Proposition 2.1.6 [3] Let M and N be two R -modules and $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ be an epimorphism if $H<^{a} N$ then $f^{-1}(H) \ll^{a} M$.

Proof. Let $M=f^{-1}(H)+X$, since f is an epimorphism, $\mathrm{N}=\mathrm{H}+\mathrm{f}(\mathrm{X})$. But $H \ll^{a} N$ therefore ann $\mathrm{f}(\mathrm{X})=0$. To prove ann $\mathrm{X} \subseteq$ ann $\mathrm{f}(\mathrm{X})$. Let $r \in \operatorname{ann} X$, then $r X=0$, for all $x \in X$, so $f(r X)=f(0)=0$, So $f(r X)=0$, but $f(r X)=r f(X)$, then $r f(X)=0$ for all $x \in X$, then $r \in \operatorname{annf}(X)$. Hence $a n n X=0$.

Notes 2.1.7

(i) Let $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ be an epimorphism, the image of R - a -small submodule of M need not be $\mathrm{R}-\mathrm{a}$-small in N as the following example shows: Consider the natural epimorphism $\pi: Z \rightarrow Z_{4}$. Since $\{0\}$ is a-small in Z as Z-module but $\pi(0)=\overline{0}$ is not a-small in Z_{4} as Z-module, since $\overline{0}+Z_{4}=Z_{4}$ but $a n n Z_{4}=4 Z \neq 0$.
(ii) The sum of two R -a-small submodules of a module M need not be R -a-small submodule for example . In Z as Z -module, 2 Z and 3 Z are a-small submodules but $2 \mathrm{Z}+3 \mathrm{Z}=\mathrm{Z}$ is not a-small in itself .

Theorem 2.1.8 [3] Let M be a faithful module if $N \ll M$, then $N \ll{ }^{a} M$.
Proof. Let $X \leq M$ such that $\mathrm{N}+\mathrm{X}=\mathrm{M}$. Since $N<M$ implies that $\mathrm{X}=\mathrm{M}$, hence $\operatorname{ann} \mathrm{X}=\mathrm{annM}$. But M is faithful, $\mathrm{annM}=0$, thus $\mathrm{ann} \mathrm{X}=0$, therefore $N \ll{ }^{a} M$.

Proposition 2.1.9 Let M be a module and $A \leq B$ be submodules of M , then $a n n_{R} B \subseteq a n n_{R} A$.

Proof. Let $r \in a n n_{R} B$, then r.a=0, for all $a \in B$, but we have $A \leq B$, hence $r . a=0$ for all $a \in A$, therefore $r \in a n n_{R} A$.

The following example show the application of previous proposition.
In Z_{12} as Z-module , $\langle 4\rangle=\{\overline{0}, \overline{4}, \overline{8}\},\langle 2\rangle=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\}$
$a n n_{Z_{12}}\langle 4\rangle=\{\overline{0}, \overline{3}, \overline{6}, \ldots\}=3 Z$
$\operatorname{ann}_{Z_{12}}\langle 2\rangle=\{\overline{0}, \overline{6}, \ldots\}=6 Z$ but $6 Z \subseteq 3 Z$
This means $a n n_{Z_{12}}\langle 2\rangle \subseteq a n n_{Z_{12}}\langle 4\rangle$.

Proposition 2.1.10 [3] Let M_{1}, M_{2} be modules, if $K_{1} \ll^{a} M_{1}$ and $K_{2}<^{a} M_{2}$, then $K_{1} \oplus K_{2} \ll^{a} M_{1} \oplus M_{2}$.

Proof. Let $P_{i}: M_{1} \oplus M_{2} \rightarrow M_{i}, i=1,2$ be the projection maps. Since $K_{1} \ll^{a} M_{1}, K_{2} \ll^{a} M_{2}$, (by proposition 2.1.6) $K_{1} \oplus M_{2}=P_{1}{ }^{-1}\left(K_{1}\right) \ll^{a}$ $M_{1} \oplus M_{2}$ and $M_{1} \oplus K_{2}=P_{2}^{-1}\left(K_{2}\right) \ll{ }^{a} M_{1} \oplus M_{2}$ (by proposition2. 1.7) $\left(K_{1} \oplus M_{2}\right) \cap\left(M_{1} \oplus K_{2}\right)=K_{1} \oplus K_{2} \ll^{a} M_{1} \oplus M_{2}$ (by corollary 2.1.5) .

Let M be a module over an integral domain R. Define the set $T(M)=$ $\{m \in M \mid r m=0$ for some $(r \neq 0) \in R\}$. If $\mathrm{T}(\mathrm{M})=\mathrm{M}$, then M is called torsion, if $\mathrm{T}(\mathrm{M})=0$ then M is called torsion free .

Remark 2.1.11[5] Let R be an integral domain and let M be a torsion free module then every proper submodule of M is R - a -small in M .

Proposition 2.1.12 Let N and K be two submodules of a module M then $\operatorname{ann}(N+K)=a n n N \cap \operatorname{annK}$.

Proof. Since $N \subseteq N+K, K \subseteq N+K$, $a n n(N+K) \subseteq a n n N$, and $\operatorname{ann}(N+K) \subseteq \operatorname{ann} K$. Let $r \in \operatorname{ann} N$ and $r \in$ ann $K r a=0$ for all $a \in N$ and $r . b=0$. For all $\mathrm{b} \in K \mathrm{r}(\mathrm{a}+\mathrm{b})=0$ for all $\mathrm{a} \in N$ and $\mathrm{b} \in K$, then $\mathrm{r} \in \operatorname{ann}(\mathrm{N}+\mathrm{K})$, so ann N nannK $\subseteq \operatorname{ann}(N+K) \ldots(2)$ from 1 and 2 we get $\operatorname{ann}(\mathrm{N}+\mathrm{K})=\mathrm{annN} \mathrm{N}$ annK .

Proposition 2.1.13 [1] Let M be a faithful R-module, N be a submodule of M such that ann $N \leq^{e} R$, then $N<^{a} \mathrm{M}$.

Proof. Let $\mathrm{M}=\mathrm{N}+\mathrm{K}$, then $0=$ ann $\mathrm{M}=$ ann $(\mathrm{N}+\mathrm{K})$ ann $(\mathrm{N}+\mathrm{K})=$ ann $\mathrm{N} \cap$ ann K, by proposition 2.1.12, then $0=$ ann $\mathrm{N} \cap$ ann K , but ann $\mathrm{N} \leq^{e} \mathrm{R}$ therefor annK=0 thus $\mathrm{N} \ll{ }^{a} \mathrm{M}$.

Proposition 2.1.14 [1] Let R be an integral domain, let M be a faithful R-module, then every submodule N of M with annN $\neq 0$ is R - a -small.

Proof. Assume that $\mathrm{M}=\mathrm{N}+\mathrm{K}$, then $0=\mathrm{annM}=\mathrm{ann}(\mathrm{N}+\mathrm{K})=\mathrm{annN}$ nannK, since $\operatorname{ann} \mathrm{N} \neq 0$ and R is an integral domain, then ann $\mathrm{N} \leq^{e} \mathrm{R}$. Therefor $a n n K=0$. Thus N is $R-a-s m a l l$.

Proposition 2.1.15 Let R be an integral domain and M be a faithful and torsion module, every finitely generated submodule N of M is R - a -small.

Proof. Let $\mathrm{N}=\mathrm{R} x_{1}+R x_{2}+\cdots+R x_{n}$ be a submodule of M and $\mathrm{M}=\mathrm{N}+\mathrm{K}$. Then $0=\mathrm{annM}=\operatorname{ann}(\mathrm{N}+\mathrm{K})=\mathrm{annN} \cap \operatorname{annK}=\left(\operatorname{ann}\left(\mathrm{R} x_{1}+R x_{2}+\right.\right.$ $\left.\left.\cdots+R x_{n}\right)\right) \cap$ ann $K=\left(\cap_{i=1}^{n}\right.$ ann $\left.R x_{i}\right) \cap$ annK. Since M is torsion, then annRx $x_{i} \neq 0$ forall $i=1,2, \ldots, n$. But R is an integral domain, there for $a n n R x_{i}$ is essential in R , for all i, hence $\bigcup_{i=1}^{n} \operatorname{ann} R x_{i}=a n n \mathrm{~K}=0$. Thus $N \ll{ }^{a} \mathrm{M}$.

2. Characterizations of \mathbf{R}-a-small submodules

Proposition 2.2.1[1] Let M be a finitely generated module and $K \ll^{a} M$, then $K+\operatorname{Rad}(M)+Z(M) \ll{ }^{a} M$.

Proof. Let $M=R m_{1}+R m_{2}+\cdots+R m_{n}, \quad m_{i} \in M, \forall i=1,2, \ldots, n$ and $M=K+\operatorname{Rad}(M)+Z(M)+X$. Since M is finitely generated. Then $\operatorname{Rad}(M) \ll M$, and hence $\mathrm{M}=\mathrm{K}+\mathrm{Z}(\mathrm{M})+\mathrm{X}$. So $m_{i}=k_{i}+z_{i}+x_{i}, k_{i} \in$ $K, x_{i} \in X, \quad z_{i} \in Z(M), \forall i=1,2, \ldots, n$
$M=K+R z_{1}+R z_{2}+\cdots+R z_{n}+X$, but $K \ll^{a} M$, therefore
$\operatorname{ann}\left(R z_{1}+R z_{2}+\cdots+R z_{n}+X\right)=0$. Hence $\left(\cap_{i=1}^{n} \operatorname{ann}\left(R z_{i}\right)\right) \cap$ $a n n X=0$ since $z_{i} \in Z(M), \forall i=1,2, \ldots, n$. Then ann $\left(z_{i}\right) \leq^{e} R, \forall i=$ $1,2, \ldots, n$ and hence $\bigcap_{i=1}^{n} \operatorname{ann}\left(z_{i}\right) \leq^{e} R$. So annX=0

Thus $K+\operatorname{Rad}(M)+Z(M) \ll^{a} M$.

Proposition 2.2.2 [3] Let M be a module and $K<{ }^{a} M$. If $\operatorname{Rad}(M) \ll$ M and $\mathrm{Z}(\mathrm{M})$ is finitely generated, then $K+\operatorname{Rad}(M)+Z(M) \ll^{a} M$.

Theorem 2.2.3 [2] Let $M=\sum_{\alpha \in \wedge} R X_{\alpha}$ be a module and $K \in M$, then the following statements are equivalent :
(i) $R k \ll^{a} \mathrm{M}$.
(ii) $\bigcap_{\alpha \in \wedge} a n n\left(x_{\alpha}-r_{\alpha} k\right)=0 \forall r_{\alpha} \in R$.

Proof. (i) \rightarrow (ii) Let $r_{\alpha} \in R$ for each $\alpha \in \Lambda$ then $x_{\alpha}=x_{\alpha}-r_{\alpha} k+r_{\alpha} k$, $\forall \propto \in \wedge$, then $M=\sum_{\alpha \in \Lambda} R\left(x_{\alpha}-r_{\alpha} k\right)+R k$ since $R k \ll$ $\ll^{a} M$ then $0=\operatorname{ann}\left(\sum_{\alpha \in \Lambda} R\left(x_{\alpha}-r_{\alpha} k\right)\right)=\bigcap_{\alpha \in \Lambda} \operatorname{ann} R\left(x_{\alpha}-r_{\alpha} k\right)$
$($ ii $) \rightarrow$ (i) Let $\mathrm{M}=\mathrm{RK}+\mathrm{B}$. then for each $\propto \in \wedge . x_{\alpha}=r_{\alpha} k+b_{\alpha} \quad r_{\alpha} \in$ R and $b_{\alpha} \in B$. Now let $t x_{\alpha}=t r_{\alpha} k+t b_{\alpha}$, since $t b_{\alpha}=$ 0 then $t\left(x_{\alpha}-r_{\alpha} k\right)=0, \forall \propto \in \wedge$ so $t \in \operatorname{ann}\left(x_{\alpha}-r_{\alpha} k\right)=0, \forall \propto \in$ \wedge. Hence $t \in \bigcap_{\alpha \in \Lambda} \operatorname{ann}\left(x_{\alpha}-r_{\alpha} k\right)=0$.

Theorem 2.2.4 [5] Let R be a commutative ring, and $M=\sum_{\alpha \in \wedge} R x_{\alpha}$ be a module and $k \in M$ then the following statements are equivalent" :
(i) $R k \lll{ }^{a} \mathrm{M}$
(ii) $\bigcap_{\alpha \in \wedge} a n n\left(x_{\alpha}-r_{\alpha} k\right)=0 \quad \forall r_{\alpha} \in R$
(iii) there exists $\propto \in \wedge$ such that $b x_{\alpha} \notin R b k \quad \forall 0 \neq b \in R$.

Proof. (i) \rightarrow (ii) By Theorem 2.2.3.
(ii) \rightarrow (iii) "Let $0 \neq b \in R$, assume that $b x_{\alpha} \in R b k, \forall_{\alpha} \in \wedge$ then $b x_{\alpha}$ let $0 \neq b \in R$. There for $b \in \operatorname{ann}\left(x_{\alpha}-x_{\alpha} k\right), \quad \forall_{\alpha} \in \wedge$ and hence $0 \neq b \in \bigcap_{\alpha \in \wedge}$ ann $\left(x_{\alpha}-r_{\alpha} k\right)=0$ which is a contradiction. (iii) \rightarrow (ii) let $b \in \cap_{\alpha \in \wedge}$ ann $\left(x_{\alpha}-r_{\alpha} k\right)$ and hence $b \in \operatorname{ann}\left(x_{\alpha}-\right.$ $\left.x_{\alpha} k\right) \forall \propto \in \wedge$. there for $b x_{\alpha}=r_{\alpha} b k, \forall \alpha \in \wedge$. so $b x_{\alpha} \in \operatorname{Rbk} \quad \forall_{\alpha} \in$ \wedge By our assumption, $\mathrm{b}=0$.

Theorem 2.2.5 [2] Let R be a commutative ring, and let $M=\sum_{\alpha \in \Lambda} R x_{\alpha}$ be a module and $K \leq M$ then the following statements are equivalent:
(i) $K \ll^{a} M$
(ii) $\bigcap_{\alpha \in \wedge} a n n R\left(x_{\alpha}-k_{\alpha}\right)=0, \forall k_{\alpha} \in K$

Proof. (i) \rightarrow (ii) let $k_{\alpha} \in K \quad \forall \propto \in \Lambda$ then $x_{\alpha}=x_{\alpha}-k_{\alpha}+k_{\alpha}, \forall \propto \in \Lambda$ and hence $M=\sum_{\alpha \in \Lambda} R\left(x_{\alpha}-k_{\alpha}\right)+k$. But $k \ll^{a} M$, therefor
$0=\operatorname{ann}\left(\sum_{\alpha \in \Lambda} R\left(x_{\alpha}-k_{\alpha}\right)\right)=\bigcap_{\alpha \in \Lambda} \operatorname{ann} R\left(x_{\alpha}-k_{\alpha}\right)$
(ii) \rightarrow (i) let $\mathrm{M}=\mathrm{K}+\mathrm{A}$. then for each $\propto \in \wedge, \quad x_{\alpha}=k_{\alpha}+a_{\alpha}, \quad a_{\alpha} \in A, k_{\alpha} \in$

Hence $a_{\alpha}=x_{\alpha}-k_{\alpha}$, for each $\propto \in \wedge$, so $M=\sum_{\alpha \in \wedge} R\left(x_{\alpha}-k_{\alpha}\right)+k$
Now let $t \in$ annA there for $t\left(x_{\alpha}-k_{\alpha}\right)=0, \forall \propto \in \wedge$ so $t \in$ $\cap_{\propto \in \wedge} \operatorname{annR}\left(x_{\propto}-k_{\alpha}\right)=0$ thus annA $=0$ and $k \ll^{a} M$.

Definition 2.2.6 [3] Let M be an R-module and $k \in M$, we say that k is R-a-small in M if $R k<^{a} M$. Let $k_{m}=\left\{k \in M \mid R k \ll^{a} M\right\}$.

Example 2.2.7 In Z as Z -module we know that every proper submodule is $\mathrm{R}-\mathrm{a}$-small, this implies the set all R - a -small elements are $Z \mid\{-1,1\}$.

Notes 2.2.8 [5]

(i) That $Z(M) \subseteq k_{M}$ and $\operatorname{rad}(M) \subseteq k_{M}$, when M is finitely generated and faithful .
(ii) k_{M} is not closed under addition in general. For example consider Z as Z - module the sum of R -a-small need not be R -a-small. clearly that $3 Z<^{a} Z$ and $2 Z<^{a} Z$ but $\mathrm{Z}=3 \mathrm{Z}+2 \mathrm{Z}$ is not R -a-small in Z .

Remark 2.2.9 Let M be a module and $k \in k_{M}$, then $R k \subseteq k_{m}$.
Proof. Let $r \in R$ clearly that $R r k \subseteq R k \ll^{a} M$ by proposition (2.1.4) Rrk $\lll^{a} M$ and hence $r k \in K_{M}$ thus $R k \subseteq K_{M}$.

Remark 2.2.10 [4] Let M be a module and $A<{ }^{a} M$ then $A \subseteq K_{M}$. Let $x \in A$, then $R x \subseteq K \lll^{a} M$ and hence $R x \ll^{a} M$ by proposition (2.1.4) Thus $x \in K_{M}$ as we have seen, the sum of R -a-small submodules need not be R -a-small (consider $3 \mathrm{Z}+2 \mathrm{Z}$ in Z).

Definition 2.2.11 [1] Let M be a module and let R -a-small submodule A_{M} of M be the sum of R -a-small submodule of M . If M has no R -asmall submodule, we write $A_{M}=M$. It is clear that $K_{M} \subseteq A_{M}$ in every module, but this may not be equality (consider Z as Z -module).

Proposition 2.2.12 [2] Let M be a module such that $K_{M} \neq \emptyset$ then :
(i) A_{M} is a submodule of M, A_{M} contains all R -a-small submodule of M .
(ii) $A_{M}=\left\{k_{1}+k_{2}+\cdots+k_{n} \mid k_{i} \in K_{M}\right.$ for each $\left.i, n \geq 1\right\}$.
(iii) A_{M} is generated by K_{M}.
(iv) If M finitely generated, then $\operatorname{Rad}(M) \subseteq A_{M}$ and $Z(M) \subseteq A_{M}$.

Proposition 2.2.13 [5] Let M be a module such that $K_{M} \neq \emptyset$ then the following are equivalent:
(i) K_{M} is closed under addition, that is a finite sum of R - a -small elements is $\mathrm{R}-\mathrm{a}$-small.
(ii) $A_{M}=K_{M}$.

Proof. (i) \rightarrow (ii) let $k_{1}+k_{2}+\cdots+k_{n} \in A_{M}, k_{i} \in$ K_{i} and $K_{i} \ll^{a} M, \quad \forall i=1,2, \ldots, n$
Then $R K_{i} \ll{ }^{a} M$ by proposition (2.1.4) hence $K_{i} \in K_{M} \forall i=$ $1,2, \ldots, n$. By our assumption , $k_{1}+k_{2}+\cdots+k_{n} \in K_{M}$, thus $A_{M}=K_{M}$. (ii) \rightarrow (i) assume that $A_{M}=K_{M}$ and let $x, y \in K_{M}$ since $K_{M} \subseteq$ A_{M}, then $x, y \in A_{M}$. But A_{M} is a submodule of M by proposition (2.2.11). Therefor $x+y \in A_{M}=K_{M}$ thus K_{M} is closed under addition.

Proposition 2.2.14 [3] Let M be a module such that $K_{M} \neq \emptyset$ consider the following statements :
(i) $A_{M}<{ }^{a} M$.
(ii) If $K \ll^{a} M$ and $L<^{a} M$ then $K+L<^{a} M$.
(iii) K_{M} is closed under addition , that is the sum of R -a-small elements is R-a-small.
(iv) $A_{M}=K_{M}$.

Then $(i) \rightarrow(i i) \leftrightarrow(i i i) \leftrightarrow(i v)$, if M is finitely generated $(i) \leftrightarrow(i i)$.
Proof. (i) \rightarrow (ii) Assume that $A_{M} \ll^{a} M$ and let K and L be R -a-small submodule of M, then $K+L \subseteq A_{M}$. But $A_{M} \ll^{a} M$ therefor $K+$ $L<^{a} M$ by proposition (2.1.4)
(iii) \rightarrow (iv) by proposition (2.2.12)

To show that $(\boldsymbol{i i}) \rightarrow(\boldsymbol{i})$ Let $M=R_{m_{1}}+R_{m_{2}}+\cdots+R_{m_{n}} \quad$ and let $M=$ $A_{M}+X$ then $m_{i}=a_{i}+x_{i}, \quad a_{i} \in A_{M}$ and $x_{i} \in X, \forall i=$ $1,2, \ldots, n$ there for $M=\sum_{i=1}^{n} R a_{i}+X \quad$ since $a_{i} \in A_{M}, \forall i=$ $1,2, \ldots, n$, then $a_{1}+a_{2}+\cdots+a_{n} \in A_{M}$ hence $R a_{i} \ll^{a} M, \forall i=$ $1,2, \ldots, n$ (by our assumption) $\sum_{i=1}^{n} R a_{i} \ll^{a} M$. So annX=0 .

Proposition 2.2.15 [1] Let M be a finitely generated module such that $A_{M} \ll^{a} M$ then:
(i) A_{M} is the unique largest R -a- small submodule of M
(ii) $A_{M}=\cap\left\{W \mid W\right.$ maximal submodule of M with $\left.A_{M} \subseteq W\right\}$

Chapter Two

Proof.(ii) Leta $\in \cap\left\{W \mid W\right.$ maximal submodule of M with $\left.A_{M} \subseteq W\right\}$ Claim that $R a \ll^{a} M$ assume not, then $\mathrm{M}=\mathrm{Ra}+\mathrm{X}$, $X \leq M$ and ann $X \neq 0$. Since $A_{M} \ll^{a} M$, then $M \neq A_{M}+X$. but M is finitely generated then there exist a maximal submodule such that $A_{M}+X \subseteq B$. Now , if $a \in B$ we get $\mathrm{B}=\mathrm{M}$ which is a contradiction so $a \notin$ B. But $a \in \cap\left\{W \mid W\right.$ maximal submodule of M with $\left.A_{M} \subseteq W\right\}$ which is a contradiction .Thus $R a \ll^{a} M$ and hence $a \in A_{M}$.

REFERENCES

[1] Nicholson, W.K and Zhou, Y., 2011, Annihilator-small right ideals, algebra Colloqum, 18(1), 785-800.
[2] Amouzegar Kalati, T. and Keskin-Tutuncu,D.2013. Annihilatorsmall submodules, Bulletine of the Iranian Mathematical Society, 39(6), 1053-1063.
[3] Goodearl, K.R., 1976, Rings Theory, Non-singular Rings and Modules, Mercel Dekker, Newyork.
[4] Kasch F. 1982, Modules and Rings, Academic press, London.
[5] Anderson, D. and Camillo, V.P, 1998, Armendariz rings and Gaussian rings, Comm. in Algebra, 26, 2265-2272.

