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    "In this work, all rings have identity elements and all modules are right 

unitary. In [1], Nicholson and Zhou defined annihilator -small right (left) 

ideals as follows :a left ideal A of a ring R is called annihilator -small if 

A+T=R, where T is a left ideal , implies that r(T)=0 , where r(T) indicates 

the right annihilator. Kalati and Keskin consider this problem for modules 

in [2]as follows :let M be an R-module and S=End(M) . A submodule K 

of M is called annihilator –small if K+T=M , T a submodule of M, 

implies that rs(T) = 0 , where  rs indicates the right annihilator of T over 

S=End(M) , where rs(T) = {f ∈ S|f(T) = 0   ∀t ∈ T}."                             

"These observation lead us to introduce the following concept. A sub-

module N of an R-module M is called R-annihilator small if N+T=M , T 

a submodule of M , implies that annR(T) = 0, where  annR(T) =

{r ∈ R|r. T = 0}. In fact , the set KM  of all elements K such that RK is 

semisubmodule and annihilator-small and contains both the Jacobson 

radical and the singular submodule when M is finitely generated and 

faithful . The submodule AM generated by KM is a submodule of M 

analogue of the Jacobson radical that contains every R-annihilator-small 

submodules . in this work we give some basic properties of R-annihilator 

small submodules and various."                                                               
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Background of Modules 

 

Definition 1.1 [2] "A submodule N of a module M is called small in M 

(denoted by 𝑁 ≪ 𝑀) if ∀𝐾 ≤ 𝑀 with N+K=M  implies that 

K=M".                      

Example 1.2  For every module M, we have  0 ≪ 𝑀.  

  

Theorem 1.3 [3]" 𝐴 ≪ 𝑀 ⟺ ∀ ∪≤≠ 𝑀(𝐴 +∪≤≠ 𝑀)".  

Proof. ⟹ "Let 𝐴 ≪ 𝑀 [we will proof by using contradiction] and since 

𝐴 ≤ 𝑀 then U=M. Suppose ∃𝑈 ≤ 𝑀 ∋ 𝐴 + 𝑈 = 𝑀 ,and since 𝐴 ≤ 𝑀 

then U=M and this is contradiction (U=M). So ∀𝑈 ≤ 𝑀(𝐴 + 𝑈 ≤ 𝑀)."     

⟸  Suppose  𝐴 𝑀 , then ∃𝑈 ≤≠ 𝑀 ∋ 𝐴 + 𝑈 = 𝑀. And this is a 

contradiction. Then U=M ,so 𝐴 ≤ 𝑀.  

 

Theorem 1.4 [1]  𝑀 ≠ 0 , 𝐴 ≪ 𝑀 ⟹ 𝐴 ≠ 𝑀.  

Proof. "Let 𝑀 ≠ 0 ∧ 𝐴 ≪ 𝑀 [We will proof it by using contradiction] 

Suppose A=M , then A+0=M , but 𝐴 ≪ 𝑀 so M=0  and that is 

contradiction →so𝐴 ≠ 𝑀."  

 

Definition 1.5 [4] A module M is said to be semi simple if ∀𝑁 ≤ 𝑀∃𝐾 ≤

𝑀 ∋ 𝑁⨁𝐾 = 𝑀.  

 

Theorem 1.6 " If M is a semi simple module then 0 is the only small 

submodule in M".  

Proof. "Let 𝑁 ≪ 𝑀 𝑠𝑜 𝑁⨁𝑀 so (since M is semi simple), ∃𝐾 ≤ 𝑀 

with 𝑁⨁𝐾 = 𝑀, i.e. 𝑁 ∩ 𝐾 = 0  and N+K=M".   

CHAPTER ONE 
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⟹K=M but 𝑁 ∩ 𝐾 = 0 so 𝑁 ∩ 𝑀 = 0 ⟹ 𝑁 = 0.   

Definition 1.7 "Let M be an R module A subset X of M is called basis of 

M iff : 

1) X is generated M , i.e. 𝑀 = 〈𝑋〉. 

2) X is linearly independent , that is for every finite subset⟨𝑥1, 𝑥2, … , 𝑥𝑛⟩ 

of X with ∑ 𝑋𝑖 ∝𝑖= 0 , ∀∝𝑖∈ 𝑅 𝑡ℎ𝑒𝑛 ∝𝑖= 0 , ∀1 ≤ 𝑖 ≤ 𝑛𝑛
𝑖=1 ."  

      

Definition 1.8 "An R-module M is said to be free if satisfy the following 

condition :                                                                                                

1) M  has basis.  

2) 𝑀 = ⨁∀𝑖∈𝐼𝐴𝑖 ∧ ∀𝑖 ∈ 𝐼 [𝐴𝑖 ≡ 𝑅𝑅]."  

  

Example 1.9  Z as Z-module is a free module.  

 

Example 1.10  Z as Z-module is free since 〈1〉=Z 

 〈1〉 = {1. 𝑎|𝑎 ∈ 𝑍} = {… , −3, −2, −1,0,1,2,3, … } 

And ∀∝∈ 𝑍, ∝ .1 = 0 ⟹∝= 0. 

 

Theorem 2.1.11 "In a free Z-module (0) is only submodule.  

Proof. Let 𝐹 = ⨁𝑖∈𝐼𝑥𝑖 Z be a free Z-module with basis {𝑋𝑖|𝑖 ∈ 𝐼} 

 𝐴 ≤ 𝐹 , 𝑎 ∈ 𝐴 and let ∝= 𝑥𝑖1𝑧1 + ⋯ + 𝑥𝑖𝑚𝑧𝑚 , 𝑧𝑖 ∈ 𝑍 , 𝑤𝑖𝑡ℎ      𝑧1 ≠ 0   

let 𝑛 ∈ 𝑍 with g.c.d(𝑧1, 𝑛) = 1 and 𝑛 < 1 

Put 𝑈 = ⨁𝑥𝑖𝑍 + 𝑥𝑖𝑛𝑍 ,  then  aZ+U=F , hence A+U=F  with 𝑈 ≠ 𝐹." 

 

Zoren's lemma 2.1.12  "If A is non-empty partial order set such that 

every chain in A has an upper bound in A , then A has maximal element".    

 

 



Chapter One 

  2018                                                                                                                                                   1439 

 

- 4 - 
 

Proposition 1.13 [5]"If finitely many arbitrary elements are omitted from 

an arbitrary generating set X of 𝑄𝑧, then the set with out these elements 

omitted is again generating ". 

 

Theorem 1.14 [2]"Every finitely generating submodule of 𝑄𝑧 is small in 

𝑄𝑧. 

Proof. Let 𝑁 ≤ 𝑄𝑧  be a finitely generating submodule , so 

∃{𝑞1, 𝑞2, … , 𝑞𝑛}  ⊆ 𝑄 such that 𝑁 = 〈𝑞1, 𝑞2, … , 𝑞𝑛〉 

Let 𝐾 ≤ 𝑄𝑧 with 𝑄𝑧 = 〈〈𝑞1, 𝑞2, … , 𝑞𝑛〉 ∪ 𝐾〉 , so by the proposition 

⟹Q=Z⟹N is small. "  

 

Modular law 1.15 [3]" If 𝐴, 𝐵, 𝐶 ≤ 𝑀 ∧ 𝐵 ≤ 𝐶 , 𝑡ℎ𝑒𝑛 (𝐴 + 𝐵) ∩ 𝐶 =

(𝐴 ∩ 𝐶) + (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐶) + 𝐵."  

 

Lemma 1.16 " If 𝐴 ≤ 𝐵 ≤ 𝑀 ≤ 𝑁 𝑎𝑛𝑑 𝐵 ≪ 𝑀 ⟹ 𝐴 ≪ 𝑁. 

Proof. Let 𝑈 ≤ 𝑁  , let A+U=N [we must proof that U=N] 

Since 𝐴 ≤ 𝐵 then 𝐵 + 𝑈 = 𝑁 ⟹ (𝐵 + 𝑈) ∩ 𝑀 = 𝑁 ∩ 𝑀 ⟹ 𝐵 +

(𝑈 ∩ 𝑀) = 𝑀 ( by modular law ) 

Hence 𝑈 ∩ 𝑀 = 𝑀(𝑠𝑖𝑛𝑐𝑒 𝐵 ≪ 𝑀), and so 𝑀 ≤ 𝑈 and since assub 𝐵 ≪

𝑀 , 𝑠𝑜 𝐴 ≤ 𝑈 and since A+U=N  then 𝑈 = 𝑁 ⟶ 𝐴 ≪ 𝑁."  

 

Theorem  1.17     

𝐴𝑖 ≪ 𝑀, 𝑖 = 1,2, … , 𝑛 ⟹ ∑ 𝐴𝑖 ≪ 𝑀

𝑛

𝑖=1

 

 

Proof.  Let 𝐴𝑖 ≪ 𝑀, i=1,2,…,n 

If  i=1 , 𝐴1 + 𝑈 = 𝑀 ⟹ 𝑈 = 𝑀 (by hypothesis)⟶ [𝐴𝑖 ≪ 𝑀] 

If  i=2 ,𝐴1 + 𝐴2 + 𝑈 = 𝑀 ⟶ 𝐴1 + (𝐴2 + 𝑈) = 𝑀 



Chapter One 

  2018                                                                                                                                                   1439 

 

- 5 - 
 

Since 𝐴1 ≪ 𝑀  𝑡ℎ𝑒𝑛 𝐴2 + 𝑈 = 𝑀 

Since 𝐴2 ≪ 𝑀 ⟹ 𝑈 = 𝑀 , 𝑠𝑜 ∑ 𝐴𝑖 ≪ 𝑀2
𝑖=1  

Let it be true at n-1, and we will proof it at n 

Let 𝐴 = 𝐴1 + 𝐴2 + ⋯ + 𝐴𝑛−1 ≤ 𝑀 ≤⟶ 𝐴 + 𝐴𝑛 + 𝑈 = 𝑀 

Then 𝐴𝑛 + 𝑈 = 𝑀 [𝑠𝑖𝑛𝑐𝑒 𝐴 ≪ 𝑀], then U=M [since 𝐴𝑛 ≪

𝑀] 𝑠𝑜 ∑ 𝐴𝑖 ≪ 𝑀𝑛
𝑖=1 . 

 

Definition 1.18  "A homomorphism ∝: 𝐴 ⟶ 𝐵 is called small ⟺ 𝑘𝑎𝑟 ∝

≪ 𝐴. 

 

If ∝: 𝑀 ⟶ 𝑁 modular homomorphism on R-ring then if 𝐵 ≤ 𝑁  𝑡ℎ𝑒𝑛 ∝

(∝−1 (𝐵)) = 𝐵 ∩ 𝐼𝑚(∝)."   

 

Theorem 1.19 [1] " If 𝐴 ≪ 𝑀 𝑎𝑛𝑑 ∅ ∈ 𝐻𝑜𝑚(𝑀, 𝑁) ⟹ ∅(𝐴) ≪ 𝑁. 

Proof.  Let ∅(𝐴) + 𝑈 = 𝑁  𝑎𝑛𝑑  𝑈 ≤ 𝑁 , 𝑠𝑜 ∅(𝑚) ∈ 𝑁 ∀𝑚 ∈ 

∅(𝑚) = ∅(𝑎) + 𝑢        𝑤𝑖𝑡ℎ  𝑎 ∈ 𝐴 , 𝑢 ∈ 𝑈 → ∅(𝑚) − ∅(𝑎) = 𝑢 

→ ∅(𝑚 − 𝑎) = 𝑢 → ∅−1(∅(𝑚 − 𝑎)) = ∅−1(𝑢) 

→ 𝑚 − 𝑎 ∈ ∅−1(𝑈) → 𝑚 ∈ 𝐴 + ∅−1(𝑈) 

→ 𝐴 + ∅−1(𝑈) = 𝑀  𝑏𝑢𝑡  𝐴 ≪ 𝑀 , ℎ𝑒𝑛𝑐𝑒 𝑀 = ∅−1(𝑈) 

 → ∅(𝑀) = ∅(∅−1(𝑈)) = 𝑈 ∩ 𝐼𝑚(∅)  [by theorem 2.1.19] 

→ ∅(𝐴) ≤ ∅(𝑀) ≤ 𝑈,   ℎ𝑒𝑛𝑐𝑒 𝑈 = ∅(𝐴) = 𝑁."  

 

Theorem 1.20" If ∝: 𝑀 → 𝑁 , 𝛽𝑁 → 𝐾  modular homomorphism on R-

ring then  ker(𝛽 ∝) =∝−1 (ker(𝛽)).  

Proof. Let 𝑥 ∈ ker(𝛽 ∝) → 𝛽 ∝ (𝑥) = 0′ → (∝ (𝑥)) = 0′ →∝ (𝑥) ∈

ker (𝛽) → 𝑥 ∈∝−1 (ker(𝛽)). So ker (𝛽 ∝) ⊆∝−1 (ker(𝛽))  … (1)" 
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Let 𝑥 ∈∝−1 (ker(𝛽)) →∝ (𝑥) ∈ ker(𝛽) → (∝ (𝑥)) = 0′ → 𝛽 ∝ (𝑥) =

0′ → 𝑥 ∈ ker (𝛽 ∝). So ∝−1 (ker(𝛽)) ⊆ ker (𝛽 ∝)  … (2) 

Form (1),(2)→ ker(𝛽 ∝) =∝−1 (ker (𝛽)).  

 

Theorem 1.21 [2] "If ∝: 𝑀 → 𝑁 , 𝛽: 𝑁 → 𝐾  modular homomorphism on 

R-ring then  if 𝐴 ≤ 𝑀  𝑡ℎ𝑒𝑛 ∝−1 (∝ (𝐴)) = 𝐴 + ker(∝).  

Proof. Let 𝑥 ∈∝−1 (∝ (𝐴)) →∝ (𝑥) ∈∝ (𝐴).  

Then ∃𝑏 ∈ 𝐴 ∋∝ (𝑥) =∝ (𝑏) 

→∝ (𝑥 − 𝑏) = 0′ → 𝑥 − 𝑏 ∈ ker(∝) , 𝑡ℎ𝑒𝑛 ∃𝑘 ∈ ker(∝) ∋ 𝑥 − 𝑏 = 𝑘 

→ 𝑥 = 𝑏 + 𝑘 → 𝑥 ∈ 𝐴 + ker(∝)   [𝑠𝑖𝑛𝑐𝑒 𝑘 ∈ ker(∝) , 𝑏 ∈ 𝐴] 

So ∝−1 (∝ (𝐴)) ⊆ 𝐴 + ker(∝) … (1) 

Let 𝑥 ∈ 𝐴 + ker(∝) , 𝑡ℎ𝑒𝑛 ∃𝑏 ∈ 𝐵 , 𝑘 ∈ ker(∝) ∋ 𝑥 = 𝑏 + 𝑘 

→∝ (𝑥) =∝ (𝑏 + 𝑘) →∝ (𝑥) =∝ (𝑏)+∝ (𝑘) 

→∝ (𝑥) =∝ (𝑏)[𝑠𝑖𝑛𝑐𝑒 𝑘 ∈ ker(∝)] → 𝑥 ∈∝−1 (∝ (𝐴)) 

So 𝐴 + ker(∝) ⊆∝−1 (∝ (𝐴)) … (2) 

So from (1) ,(2) we get ∝−1 (∝ (𝐴)) = 𝐴 + ker (∝). " 

 

Theorem 1.22 [3]" If ∝: 𝐴 → 𝐵 , 𝛽: 𝐵 → 𝐶 are small epimorphism  then 

𝛽 ∝: 𝐴 → 𝐶 also small epimorphism.   

Proof. By theorem 𝛽 ∝ is also epimorphism  

Now we must proof ker (𝛽 ∝) ≪ 𝐴 

Let 𝑈 ≤ 𝐴  with  ker(𝛽 ∝) + 𝑈 = 𝐴 , then ∝ (ker(𝛽 ∝) + 𝑈) =∝

(𝐴) ⟹∝ (ker(𝛽 ∝))+∝ (𝑈) = 𝐵 ⟹∝ (∝−1 ker(𝛽))+∝ (𝑈) = 𝐵 (by 

theorem2.1.21). " 
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⟹ ker(𝛽) +∝ (𝑈) = 𝐵 ,  but ker(𝛽) ≪ 𝐵 ⟹∝ (𝑈) = 𝐵 ⟹∝ (𝑈) =∝

(𝐴) ⟹∝−1 (∝ (𝑈)) =∝−1 (∝ (𝐴)) ⟹ 𝑈 + ker(∝) = 𝐴 (by theorem 

2.1.22). But ker(∝) ≤ 𝐴 ⟹ 𝑈 = 𝐴.  

 

Definition 1.23 [2] "Let 𝐴 ≤ 𝑀 then 𝐴 − 𝐵 ≤ 𝑀 is called addition 

complement of A in M (briefly adco ) iff : 

1)A+B=M  

2)𝐵 ≤ 𝑀  minimal in A+B=M , i.e ∀𝐵 ≤ 𝑀  with A+B=M , i.e ∀𝑈 ≤ 𝑀  

with A+U=M and 𝑈 ≤ 𝐵 imply U=B   

𝐵 − 𝐷 ≤ 𝑀 is called intersection complement of A in M (beieflyinco) iff  

1)𝐴 ∩ 𝐷 = 0 

2)D is a maximal in 𝐴 ∩ 𝐷 = 0 

i.e. ∀𝐶 ≤ 𝑀 with 𝐴 ∩ 𝐶 = 0 ∧ 𝐷 ≤ 𝐶 implies C=D."   

 

Corollary  1.24 "Let 𝐴 ≤ 𝑀  𝑎𝑛𝑑 𝐵 ≤ 𝑀   𝑡ℎ𝑒𝑛  𝐴⨁𝐵 = 𝑀 ⟺ B is 

adco and inco of A in M.   

Proof.  ⟹ Suppose that B is adco and inco of A 

Then A+B=M resp. 𝐴 ∩ 𝐵 = 0 ⟹ 𝑀 = 𝐴⨁𝐵 

⟸ Suppose that 𝐴⨁𝐵 = 𝑀 , hence A+B=M and 𝐴 ∩ 𝐵 = 0 

Let 𝐶 ≤ 𝑀 with A+C=M  and 𝐶 ≤ 𝐵, (𝐴 + 𝐶) ∩ 𝐵 = 𝑀 ∩ 𝐵 ⟹

(𝐴 + 𝐶) ∩ 𝐵 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐶 = 𝐵 ⟹ 𝐶 = 𝐵[𝐴 ∩ 𝐵 = 0] 

So B is adco of A in M  

Let 𝐶 ≤ 𝑀  with 𝐴 ∩ 𝐶 = 0  𝑎𝑛𝑑 𝐵 ≤ 𝐶 

Since A+B=M⟹A+C=M [since 𝐴 + 𝐵 ⊆ 𝐴 + 𝐶] 

→ 𝐴⨁𝐶 = 𝑀 ⟹ 𝐴⨁𝐶 = 𝐴⨁𝐵 [𝐴⨁𝐵 = 𝑀by assumption] 

𝐴⨁𝐶

𝐴
=

𝐴⨁𝐵

𝐴
⟹ 𝐶 = 𝐵 ⟶ so B is inco of A in M."  
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Lemma 1.25 [3] "Let M=A+B , then we have B is adco of A in M ⟺

𝐴 ∩ 𝐵 ≪ 𝐵.                                                                                              

Proof. ⟹ 𝑙𝑒𝑡 𝑈 ≤ 𝐵 (𝐴 ∩ 𝐵) + 𝑈 = 𝐵 

Then 𝑀 = 𝐴 + (𝐴 ∩ 𝐵) + 𝑈 ⟹ 𝐴 + 𝑈 = 𝑀 [𝑠𝑖𝑛𝑐𝑒 𝐴 ∩ 𝐵 ⊆ 𝐴] 

But B is so 𝐴 ∩ 𝐵 ≪ 𝐵 

⟸ We have by assumption M=A+B , let 𝑈 ≤ 𝑀 with A+U=M  and 𝑈 ≤

𝐵 

→ (𝐴 + 𝑈) ∩ 𝐵 = 𝑀 ∩ 𝐵 → (𝐴 + 𝑈) ∩ 𝐵 = 𝐵 [𝐵 ≤ 𝑀] → (𝐴 + 𝐵) ∩

𝑈 = 𝐵 [by modular law] 

But 𝐴 ∩ 𝐵 ≪ 𝐵 , hence U=B , thus B is adco to A in M. "  
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1. R-annihilator-small submodules   

 

Definition 2.1.1 [3]" A submodule N of a module M is called R- a-small, 

if 𝑁 + 𝑋 = 𝑀, X  a submodule of M implies that 𝑎𝑛𝑛𝑅X = 0, we write 

𝑁 ≪𝑎 𝑀 in this 

case".                                                                                                                                                                                                          

 [3] Examples  2.1.2 

(i) "In Z as Z module every proper submodule is Z-a-small. Let nZ be         

a proper submodule in Z ∋ 𝑛 ≠ ∓1, and let mZ be a submodule of Z  

such that nZ+mZ=Z. We have 𝑎𝑛𝑛𝑍𝑚𝑍 = {𝑟 ∈ 𝑍|𝑟𝑎 = 0   ∀𝑎 ∈ 𝑚𝑍} 

where   a=m.b  ∋b∈Z. So 𝑎𝑛𝑛𝑍𝑚𝑍 = {0}, and hence nZ is Z-a-small 

submodule . In particular {0} is a-small submodule in Z as Z-module.   

(ii) {0} is a small in 𝑍4 as Z-module, but we have 0 + 𝑍4 = 𝑍4 with  

ann𝑍4 = 4𝑍 ≠ 0 so {0} is not a-small submodule in 𝑍4." 

 

Proposition  2.1.3 [4] "Let A  and B be submodule of M such that 𝐴 ≤ 𝐵, 

if 𝐴 ≪𝑎 𝐵 then 𝐴 ≪𝑎 𝑀". 

Proof. Let M=A+X ,  where 𝑋 ≤ 𝑀,  by modular law, we have 𝑀 ∩ 𝐵 =

(𝐴 + 𝑋) ∩ 𝐵,B=A+(X∩B). Since 𝐴 ≪𝑎 𝐵,then ann(X∩B)=0 but 𝑋 ∩ 𝐵 ⊆

𝑋 , 𝑎𝑛𝑛𝑋 ⊆ 𝑎𝑛𝑛𝑋 ∩ 𝐵 = 0 then  𝑎𝑛𝑛𝑋 = 0,  thus 𝐴 ≪𝑎 𝑀. 

 

Proposition  2.1.4 [2]"Let A and B be submodules of M such that 𝐴 ≤ 𝐵 

,if 𝐵 ≪𝑎 𝑀 then 𝐴 ≪𝑎 𝑀." 

Proof. "Let M=A+X ,  where 𝑋 ≤ 𝑀. Then M=B+X. Since 𝐴 ⊆ 𝐵, then 

 𝐴 + 𝑋 ⊆ 𝐵 + 𝑋  so 𝑀 ⊆ 𝐵 + 𝑋   but 𝐵 + 𝑋 ⊆ 𝑀, thus M=B+X . Since 

𝐵 ≪𝑎 𝑀, then   annX=0 ." 

 

CHAPTER TWO 
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Corollary 2.1.5  "Let  {𝐴𝑖}𝑖∈𝐼 , 𝐼 = {1,2,3, … , 𝑛} be a family of submodules 

of a module M. If  𝐴𝑡 ≪𝑎 𝑀 then  ⋂ 𝐴𝑖
𝑛
𝑖=1 ≪𝑎 𝑀  for some  𝑡 ∈ 𝐼."  

Proof. Since ⋂ 𝐴𝑖 = 𝐴1 ∩ 𝐴2 ∩ … ∩ 𝐴𝑡 ∩ … ∩ 𝐴𝑛 ≤ 𝐴𝑡
𝑛
𝑖=1 , and 𝐴𝑡 ≪𝑎 𝑀  

So by Proposition 2.1.4, we get ⋂ 𝐴𝑖
𝑛
𝑖=1 ≪𝑎 𝑀.  

 

Proposition  2.1.6 [3] Let M and N be two R-modules and f:M→N be an 

epimorphism if  𝐻 ≪𝑎 𝑁  then  𝑓−1(𝐻) ≪𝑎 𝑀. 

Proof. "Let 𝑀 = 𝑓−1(𝐻) + 𝑋, since f  is an epimorphism, N=H+f(X). 

But 𝐻 ≪𝑎 𝑁 therefore ann f(X)=0. To prove ann X ⊆ ann f(X). Let 

r∈annX, then rX=0, for all x∈X,  so f(rX)=f(0)=0 , So f(rX)=0 ,  but 

f(rX)=rf(X), then  rf(X)=0  for all x∈X, then r∈annf(X). Hence  annX=0". 

 

Notes  2.1.7  

(i)"Let f:M⟶N be an epimorphism, the image of R-a-small submodule of 

M need not be R-a-small in N as the following example shows : Consider 

the natural epimorphism 𝜋: 𝑍 → 𝑍4. Since {0}is a-small in Z as Z-module 

but 𝜋(0) = 0̅  is not  a-small  in 𝑍4  as Z-module, since 0̅ + 𝑍4=𝑍4    but  

𝑎𝑛𝑛𝑍4 = 4𝑍 ≠ 0." 

(ii) The sum of two R-a-small submodules of a module M need not be   

R-a-small submodule for example . In Z as Z-module ,  2Z  and  3Z  are  

a-small submodules but  2Z+3Z=Z  is not  a-small  in itself . 

 

Theorem 2.1.8 [3] Let M be a faithful  module if 𝑁 ≪ 𝑀, then  𝑁 ≪𝑎 𝑀. 

Proof. "Let 𝑋 ≤ 𝑀 such that  N+X=M. Since 𝑁 ≪ 𝑀 implies that  X=M, 

hence  annX=annM.  But M  is faithful, annM=0 , thus annX=0, therefore 

𝑁 ≪𝑎 𝑀". 

 

Proposition  2.1.9 "Let M be a module and 𝐴 ≤ 𝐵  be submodules of M, 

then 𝑎𝑛𝑛𝑅𝐵 ⊆ 𝑎𝑛𝑛𝑅𝐴 . 

Proof . Let 𝑟 ∈ 𝑎𝑛𝑛𝑅𝐵,  then  r.a=0 ,  for all  a∈ 𝐵 , but we have 𝐴 ≤ 𝐵, 

hence 𝑟. 𝑎 = 0 for all  𝑎 ∈ 𝐴, therefore  𝑟 ∈ 𝑎𝑛𝑛𝑅𝐴." 
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The following example show the application of previous proposition.  

In 𝑍12  as Z-module , 〈4〉 = {0̅, 4̅, 8̅} , 〈2〉 = {0̅, 2̅, 4̅, 6,̅ 8̅, 10̅̅̅̅ }  

𝑎𝑛𝑛𝑍12
〈4〉 = {0̅, 3̅, 6̅, … } = 3𝑍 

𝑎𝑛𝑛𝑍12
〈2〉 = {0̅, 6̅, … } = 6𝑍   but  6𝑍 ⊆ 3𝑍 

This means  𝑎𝑛𝑛𝑍12
〈2〉 ⊆ 𝑎𝑛𝑛𝑍12

〈4〉 .  

 

Proposition 2.1.10 [3]  Let 𝑀1 , 𝑀2  be modules, if  𝐾1 ≪𝑎 𝑀1  and  

𝐾2 ≪𝑎 𝑀2, then 𝐾1 ⨁ 𝐾2  ≪𝑎 𝑀1 ⨁ 𝑀2 . 

Proof. "Let 𝑃𝑖: 𝑀1 ⨁ 𝑀2 ⟶ 𝑀𝑖  , 𝑖 = 1,2  be the projection maps. Since   

𝐾1 ≪𝑎 𝑀1 , 𝐾2 ≪𝑎 𝑀2, (by proposition 2.1.6) 𝐾1⨁𝑀2 = 𝑃1
−1(𝐾1) ≪𝑎 

𝑀1⨁𝑀2 𝑎𝑛𝑑 𝑀1⨁𝐾2 = 𝑃2
−1 (𝐾2) ≪𝑎 𝑀1⨁𝑀2 (by proposition2. 1.7) 

(𝐾1⨁𝑀2)⋂(𝑀1⨁𝐾2) = 𝐾1⨁𝐾2 ≪𝑎 𝑀1⨁𝑀2 (by corollary 2.1.5)".  

 

     "Let M be a module over an integral domain R. Define the set T(M) = 

{𝑚 ∈ 𝑀|𝑟𝑚 = 0   for some (𝑟 ≠ 0) ∈ 𝑅}. If T(M)=M, then M is called 

torsion, if T(M)=0  then M is called torsion free". 

 

Remark 2.1.11[5] "Let R be an integral domain and  let M be a torsion 

free module then every proper submodule of M is R-a-small in M". 
 

Proposition 2.1.12 Let N and K be two submodules of a module M then 

𝑎𝑛𝑛( 𝑁 + 𝐾) = 𝑎𝑛𝑛𝑁 ∩ 𝑎𝑛𝑛𝐾 . 

Proof. "Since 𝑁 ⊆ 𝑁 + 𝐾, 𝐾 ⊆ 𝑁 + 𝐾, 𝑎𝑛𝑛(𝑁 + 𝐾) ⊆ 𝑎𝑛𝑛𝑁, and 

𝑎𝑛𝑛(𝑁 + 𝐾) ⊆ 𝑎𝑛𝑛𝐾. Let 𝑟 ∈ 𝑎𝑛𝑛 𝑁  𝑎𝑛𝑑 𝑟 ∈ 𝑎𝑛𝑛 𝐾  𝑟𝑎 = 0   for all 

𝑎 ∈ 𝑁  𝑎𝑛𝑑  𝑟. 𝑏 = 0. For all b∈ 𝐾 r(a+b)=0  for all a∈ 𝑁  and  b∈ 𝐾,  

then  r∈ann(N+K), so ann N∩annK ⊆ 𝑎𝑛𝑛(𝑁 + 𝐾) ...(2) from 1 and 2  

we get  ann(N+K)=annN∩ 𝑎𝑛𝑛𝐾 ". 

 

Proposition  2.1.13 [1]  Let M be a faithful R-module,  N be a submodule 

of M such that 𝑎𝑛𝑛𝑁 ≤𝑒 𝑅,  then 𝑁 ≪𝑎M . 
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Proof."Let M=N+K ,then  0=ann M=ann (N+K) ann (N+K)=ann N ∩ ann 

K, by proposition 2.1.12, then 0=ann N ∩ ann K, but ann N≤𝑒R  therefor 

annK=0  thus N≪𝑎M."   

Proposition 2.1.14 [1]  Let R be an integral domain, let M be a faithful     

R-module, then every submodule N of M with  annN≠0 is R-a-small. 

Proof." Assume that M=N+K, then 0=annM=ann(N+K)=annN∩annK, 

since annN≠0  and R is an integral domain, then annN≤𝑒R. Therefor  

annK=0. Thus N is R-a-small ." 

 

Proposition  2.1.15  Let R be an integral domain and M be a faithful and 

torsion module, every finitely generated submodule N of M is R-a-small. 

Proof. "Let N=R𝑥1 + 𝑅𝑥2 + ⋯ + 𝑅𝑥𝑛  be a submodule of M and 

M=N+K. Then  0=annM=ann(N+K)=annN ∩ annK = (ann(R𝑥1 + 𝑅𝑥2 +

⋯ + 𝑅𝑥𝑛)) ∩ 𝑎𝑛𝑛𝐾 = (⋂ 𝑎𝑛𝑛𝑛
𝑖=1 𝑅𝑥𝑖) ∩ 𝑎𝑛𝑛𝐾. Since M is torsion, then  

𝑎𝑛𝑛𝑅𝑥𝑖 ≠ 0 𝑓𝑜𝑟𝑎𝑙𝑙  𝑖 = 1,2, … , 𝑛. But R is an integral domain, there  for 

𝑎𝑛𝑛𝑅𝑥𝑖 is essential in R, for all i, hence ⋃ 𝑎𝑛𝑛𝑛
𝑖=1 𝑅𝑥𝑖= annK=0. Thus 

𝑁 ≪𝑎M".  
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2. Characterizations of R-a-small submodules 

 

Proposition 2.2.1[1] Let M be a finitely generated module and 𝐾 ≪𝑎 𝑀, 

then 𝐾 + 𝑅𝑎𝑑 (𝑀) + 𝑍(𝑀) ≪𝑎 𝑀. 

Proof. "Let 𝑀 = 𝑅𝑚1 + 𝑅𝑚2 + ⋯ + 𝑅𝑚𝑛 ,    𝑚𝑖 ∈ 𝑀 , ∀𝑖 = 1,2, … , 𝑛  

and M=K+Rad(M)+Z(M)+X . Since M is finitely generated. Then  

𝑅𝑎𝑑(𝑀) ≪ 𝑀 ,  and hence M=K+Z(M)+X . So 𝑚𝑖 = 𝑘𝑖 + 𝑧𝑖 + 𝑥𝑖  ,   𝑘𝑖 ∈

𝐾 ,    𝑥𝑖 ∈ 𝑋,   𝑧𝑖 ∈ 𝑍(𝑀),   ∀𝑖 = 1,2, … , 𝑛  

𝑀 = 𝐾 + 𝑅𝑧1 + 𝑅𝑧2 + ⋯ + 𝑅𝑧𝑛 + 𝑋 , 𝑏𝑢𝑡 𝐾 ≪𝑎 𝑀 ,  therefore 

𝑎𝑛𝑛(𝑅𝑧1 + 𝑅𝑧2 + ⋯ + 𝑅𝑧𝑛 + 𝑋) = 0. Hence (⋂ 𝑎𝑛𝑛(𝑅𝑧𝑖)) ∩𝑛
𝑖=1

𝑎𝑛𝑛𝑋 = 0  𝑠𝑖𝑛𝑐𝑒 𝑧𝑖 ∈ 𝑍(𝑀) , ∀𝑖 = 1,2, … , 𝑛. Then 𝑎𝑛𝑛(𝑧𝑖) ≤𝑒 𝑅, ∀𝑖 =

1,2, … , 𝑛     𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 ⋂ 𝑎𝑛𝑛(𝑧𝑖) ≤𝑒 𝑅𝑛
𝑖=1 . So  annX=0  

Thus 𝐾 + 𝑅𝑎𝑑(𝑀) + 𝑍(𝑀) ≪𝑎 𝑀". 

 

Proposition 2.2.2 [3] Let M be a module and 𝐾 ≪𝑎 𝑀 .  If 𝑅𝑎𝑑 (𝑀) ≪

𝑀 and Z(M) is finitely generated, then 𝐾 + 𝑅𝑎𝑑 (𝑀) + 𝑍(𝑀) ≪𝑎 𝑀. 

 

Theorem 2.2.3 [2]"Let 𝑀 = ∑ 𝑅𝑋∝∝∈∧   be a module and 𝐾 ∈ 𝑀, then the 

following  statements are equivalent : 

(i) 𝑅𝑘 ≪𝑎M. 

(ii) ⋂ 𝑎𝑛𝑛(𝑥∝∝∈∧ − 𝑟∝𝑘) = 0  ∀𝑟∝ ∈ 𝑅. 

Proof. (i)→(ii) Let 𝑟∝ ∈ 𝑅   for each ∝∈∧    𝑡ℎ𝑒𝑛 𝑥∝ = 𝑥∝ − 𝑟∝𝑘 + 𝑟∝𝑘 ,  

∀∝∈∧, then 𝑀 = ∑ 𝑅(𝑥∝ − 𝑟∝𝑘) + 𝑅𝑘  𝑠𝑖𝑛𝑐𝑒 𝑅𝑘 ≪∝∈∧

≪𝑎 𝑀    𝑡ℎ𝑒𝑛  0 = 𝑎𝑛𝑛(∑ 𝑅(𝑥∝ − 𝑟∝𝑘)) = ⋂ 𝑎𝑛𝑛𝑅(𝑥∝ − 𝑟∝𝑘)∝∈∧∝∈∧  

(ii)→ (𝒊) Let M=RK+B . then for each ∝∈ ∧ . 𝑥∝ = 𝑟∝𝑘 + 𝑏∝       𝑟∝ ∈

𝑅 𝑎𝑛𝑑 𝑏∝ ∈ 𝐵 . Now let 𝑡𝑥∝ = 𝑡𝑟∝𝑘+𝑡𝑏∝    , 𝑠𝑖𝑛𝑐𝑒  𝑡𝑏∝ =

0    𝑡ℎ𝑒𝑛  𝑡(𝑥∝ − 𝑟∝𝑘) = 0 , ∀∝∈∧      𝑠𝑜  𝑡 ∈ 𝑎𝑛𝑛(𝑥∝ − 𝑟∝𝑘) = 0  , ∀∝∈

∧. Hence   𝑡 ∈ ⋂ 𝑎𝑛𝑛(𝑥∝ − 𝑟∝𝑘) = 0∝∈∧ . " 
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Theorem 2.2.4 [5]"Let R be a commutative ring, and  𝑀 = ∑ 𝑅𝑥∝∝∈∧  be       

a module and 𝑘 ∈ 𝑀 then the following statements are equivalent" : 

(i) 𝑅𝑘 ≪𝑎M 

(ii) ⋂ 𝑎𝑛𝑛(𝑥∝ − 𝑟∝𝑘) = 0   ∀𝑟∝ ∈ 𝑅∝∈∧  

(iii) there exists ∝∈∧   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   𝑏𝑥∝ ∉ 𝑅𝑏𝑘    ∀0 ≠ 𝑏 ∈ 𝑅. 

Proof. (i)→(ii)  By Theorem 2.2.3. 

(ii)→(iii)  "Let 0 ≠ 𝑏 ∈ 𝑅 , assume that 𝑏𝑥∝ ∈ 𝑅𝑏𝑘,   ∀∝∈ ∧  then  

𝑏𝑥∝ 𝑙𝑒𝑡 0 ≠ 𝑏 ∈ 𝑅.  There for 𝑏 ∈ 𝑎𝑛𝑛(𝑥∝ − 𝑥∝𝑘),    ∀∝∈ ∧

 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒  0 ≠ 𝑏 ∈ ⋂ 𝑎𝑛𝑛(𝑥∝ − 𝑟∝𝑘) = 0∝∈∧   which is a contradiction. 

(iii)→(ii)  let 𝑏 ∈  ⋂ 𝑎𝑛𝑛 (𝑥∝ − 𝑟∝𝑘)  𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑏 ∈ 𝑎𝑛𝑛(𝑥∝ −∝∈∧

𝑥∝𝑘)   ∀∝∈ ∧ . 𝑡ℎ𝑒𝑟𝑒 𝑓𝑜𝑟  𝑏𝑥∝ =  𝑟∝𝑏𝑘 , ∀∝∈∧  .   𝑠𝑜 𝑏𝑥∝ ∈  𝑅𝑏𝑘     ∀∝∈

 ∧ By our assumption , b=0".  

 

Theorem  2.2.5 [2] "Let R be a commutative ring, and let 𝑀 = ∑ 𝑅𝑥∝∝∈∧  

be  a module and 𝐾 ≤ 𝑀 then the following statements are equivalent: 

(i) 𝐾 ≪𝑎 𝑀 

(ii)⋂ 𝑎𝑛𝑛𝑅∝∈∧ (𝑥∝ − 𝑘∝) = 0 , ∀𝑘∝ ∈ 𝐾 

Proof. (i)→(ii) let 𝑘∝ ∈ 𝐾  ∀∝∈∧   𝑡ℎ𝑒𝑛  𝑥∝ = 𝑥∝ − 𝑘∝ + 𝑘∝ , ∀∝∈∧

𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒    𝑀 = ∑ 𝑅(𝑥∝ − 𝑘∝) + 𝑘.∝∈∧  But 𝑘 ≪𝑎 𝑀, therefor  

0=ann( ∑ 𝑅(𝑥∝ − 𝑘∝))∝∈∧  =⋂ 𝑎𝑛𝑛𝑅(𝑥∝ − 𝑘∝)∝∈∧  

(ii)→(i)  let M=K+A. then for each ∝∈∧,   𝑥∝ = 𝑘∝ + 𝑎∝,     𝑎∝ ∈ 𝐴, 𝑘∝ ∈  

Hence 𝑎∝ = 𝑥∝ − 𝑘∝ , for each ∝∈∧ ,      𝑠𝑜 𝑀 = ∑ 𝑅(𝑥∝ − 𝑘∝) + 𝑘    ∝∈∧  

Now let 𝑡 ∈ 𝑎𝑛𝑛𝐴  𝑡ℎ𝑒𝑟𝑒 𝑓𝑜𝑟 𝑡(𝑥∝ − 𝑘∝) = 0 , ∀∝∈∧    𝑠𝑜 𝑡 ∈

⋂ 𝑎𝑛𝑛𝑅(𝑥∝ − 𝑘∝) = 0   𝑡ℎ𝑢𝑠  𝑎𝑛𝑛𝐴 = 0  𝑎𝑛𝑑   𝑘 ≪𝑎 𝑀 ∝∈∧ . " 

 

Definition  2.2.6 [3] Let M be an R-module and 𝑘 ∈ 𝑀,  we say that k is 

R-a-small in M if 𝑅𝑘 ≪𝑎 𝑀.  Let 𝑘𝑚 = {𝑘 ∈ 𝑀|𝑅𝑘 ≪𝑎 𝑀}. 
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Example  2.2.7  In Z as Z-module we know that every proper submodule 

is R-a-small, this implies the set all R-a-small elements are 𝑍|{−1,1}.  

 

Notes  2.2.8 [5] 

(i) That 𝑍(𝑀) ⊆ 𝑘𝑀   𝑎𝑛𝑑  𝑟𝑎𝑑 (𝑀) ⊆ 𝑘𝑀, 𝑤ℎ𝑒𝑛  𝑀 𝑖𝑠 finitely generated 

and faithful . 

(ii)"𝑘𝑀 is not closed under addition in general. For example consider Z 

as Z- module the sum of R-a-small  need not be R-a-small. clearly that 

3𝑍 ≪𝑎Z   and 2𝑍 ≪𝑎 𝑍  but  Z=3Z+2Z  is not R-a-small in Z. "  

 

Remark 2.2.9  Let M be a module and 𝑘 ∈ 𝑘𝑀, then 𝑅𝑘 ⊆ 𝑘𝑚.  

Proof. Let 𝑟 ∈ 𝑅   𝑐𝑙𝑒𝑎𝑟𝑙𝑦 𝑡ℎ𝑎𝑡 𝑅𝑟𝑘 ⊆ 𝑅𝑘 ≪𝑎 𝑀  by proposition (2.1.4) 

𝑅𝑟𝑘 ≪𝑎 𝑀 and hence  𝑟𝑘 ∈ 𝐾𝑀  𝑡ℎ𝑢𝑠  𝑅𝑘 ⊆ 𝐾𝑀. 
 

 

 

 

Remark  2.2.10 [4] " Let M be a module and 𝐴 ≪𝑎 𝑀   𝑡ℎ𝑒𝑛  𝐴 ⊆ 𝐾𝑀. 

Let 𝑥 ∈ 𝐴,   𝑡ℎ𝑒𝑛 𝑅𝑥 ⊆ 𝐾 ≪𝑎 𝑀 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑅𝑥 ≪𝑎 𝑀  by proposition    

(2.1.4) Thus 𝑥 ∈ 𝐾𝑀  as we have seen , the sum of R-a-small submodules 

need not be R-a-small  (consider  3Z+2Z in Z )."  
 

 

 

 

Definition 2.2.11 [1] "Let M be a module and let  R-a-small submodule 

𝐴𝑀 𝑜𝑓 𝑀  be the sum of R-a-small submodule of M . If M  has no R-a-

small submodule , we write 𝐴𝑀 = 𝑀. It is clear that   𝐾𝑀 ⊆ 𝐴𝑀   in every 

module , but this may not be equality  (consider Z as Z-module)". 

 

Proposition  2.2.12 [2] "Let M be a module such that 𝐾𝑀 ≠ ∅ then : 

(i) 𝐴𝑀 is a submodule of M , 𝐴𝑀 contains all R-a-small submodule of M . 

(ii) 𝐴𝑀 = {𝑘1 + 𝑘2 + ⋯ + 𝑘𝑛|𝑘𝑖 ∈ 𝐾 𝑀   𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 , 𝑛 ≥ 1}. 

(iii) 𝐴𝑀 is generated by 𝐾𝑀. 

(iv) If M finitely generated , then 𝑅𝑎𝑑 (𝑀) ⊆ 𝐴𝑀  𝑎𝑛𝑑  𝑍(𝑀) ⊆ 𝐴𝑀." 

 

Proposition 2.2.13 [5] Let M be a module such that 𝐾𝑀 ≠ ∅ then the 

following  are equivalent:  
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(i) 𝐾𝑀 is closed under addition , that is a finite sum of R-a-small elements 

is R-a-small.  

(ii) 𝐴𝑀 = 𝐾𝑀. 
 

Proof. (i)→(ii) let "𝑘1 + 𝑘2 + ⋯ + 𝑘𝑛 ∈ 𝐴𝑀, 𝑘𝑖 ∈

𝐾𝑖    𝑎𝑛𝑑 𝐾𝑖 ≪𝑎 𝑀 ,     ∀𝑖 = 1,2, … , 𝑛    

Then 𝑅𝐾𝑖 ≪𝑎 𝑀   𝑏𝑦 𝑝𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (2.1.4)  ℎ𝑒𝑛𝑐𝑒 𝐾𝑖 ∈ 𝐾𝑀   ∀𝑖 =

1,2, … , 𝑛. By our assumption , 𝑘1 + 𝑘2 + ⋯ + 𝑘𝑛 ∈ 𝐾𝑀 , thus 𝐴𝑀 = 𝐾𝑀. 

(ii)→(i) assume that 𝐴𝑀 = 𝐾𝑀     𝑎𝑛𝑑 𝑙𝑒𝑡 𝑥, 𝑦 ∈ 𝐾𝑀   𝑠𝑖𝑛𝑐𝑒 𝐾𝑀 ⊆

𝐴𝑀,   𝑡ℎ𝑒𝑛 𝑥, 𝑦 ∈ 𝐴𝑀  . But 𝐴𝑀 is a submodule of M  by proposition 

(2.2.11). Therefor 𝑥 + 𝑦 ∈ 𝐴𝑀 = 𝐾𝑀 𝑡ℎ𝑢𝑠 𝐾𝑀  is closed under addition."   

 

Proposition   2.2.14 [3] "Let M be a module such that 𝐾𝑀 ≠ ∅   consider 

the following statements : 

(i) 𝐴𝑀 ≪𝑎 𝑀. 

(ii) If 𝐾 ≪𝑎 𝑀     𝑎𝑛𝑑  𝐿 ≪𝑎 𝑀     𝑡ℎ𝑒𝑛 𝐾 + 𝐿 ≪𝑎 𝑀. 

(iii) 𝐾𝑀 is closed under addition , that is the sum of R-a-small elements is 

R-a-small. 

(iv)𝐴𝑀 = 𝐾𝑀." 
 

Then (i)→ (𝑖𝑖) ⟷ (𝑖𝑖𝑖) ⟷ (𝑖𝑣), if M is finitely generated  (i)⟷(ii).  

 

Proof. (i)→ (𝒊𝒊) Assume that  𝐴𝑀 ≪𝑎 𝑀   𝑎𝑛𝑑  let  K and L be  R-a-small 

submodule of M, then 𝐾 + 𝐿 ⊆ 𝐴𝑀.   But 𝐴𝑀 ≪𝑎 𝑀  𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟  𝐾 +

𝐿 ≪𝑎 𝑀   by proposition (2.1.4) 

(iii)→(iv) by proposition (2.2.12) 

To show that (ii)→(i) Let 𝑀 = 𝑅𝑚1
+ 𝑅𝑚2

+ ⋯ + 𝑅𝑚𝑛
     𝑎𝑛𝑑 𝑙𝑒𝑡 𝑀 =

𝐴𝑀 + 𝑋   𝑡ℎ𝑒𝑛   𝑚𝑖 = 𝑎𝑖 + 𝑥𝑖   ,       𝑎𝑖 ∈ 𝐴𝑀    𝑎𝑛𝑑 𝑥𝑖 ∈ 𝑋 ,   ∀𝑖 =

1,2, … , 𝑛   𝑡ℎ𝑒𝑟𝑒 𝑓𝑜𝑟 𝑀 = ∑ 𝑅𝑎𝑖
𝑛
𝑖=1 + 𝑋     𝑠𝑖𝑛𝑐𝑒  𝑎𝑖 ∈ 𝐴𝑀 , ∀𝑖 =

1,2, … , 𝑛 , 𝑡ℎ𝑒𝑛  𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 ∈ 𝐴𝑀   ℎ𝑒𝑛𝑐𝑒   𝑅𝑎𝑖 ≪𝑎 𝑀 ,   ∀𝑖 =

1,2, … , 𝑛  (𝑏𝑦 𝑜𝑢𝑟 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) ∑ 𝑅𝑎𝑖 ≪𝑎 𝑀𝑛
𝑖=1 . So annX=0 . 

 

Proposition 2.2.15 [1] "Let M be a finitely generated module such that 

𝐴𝑀 ≪𝑎 𝑀 then: 
 

(i) 𝐴𝑀 is the unique largest R-a- small submodule of M  

(ii) 𝐴𝑀 =∩ {𝑊|𝑊  𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑠𝑢𝑏𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝑀 𝑤𝑖𝑡ℎ 𝐴𝑀 ⊆ 𝑊}" 
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Proof.(ii)"Let𝑎 ∈∩ {𝑊|𝑊   𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑠𝑢𝑏𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝑀  𝑤𝑖𝑡ℎ 𝐴𝑀 ⊆ 𝑊} 

Claim that 𝑅𝑎 ≪𝑎 𝑀 assume not , then M=Ra+X , 

𝑋 ≤ 𝑀   𝑎𝑛𝑑  𝑎𝑛𝑛𝑋 ≠ 0. Since 𝐴𝑀 ≪𝑎 𝑀 , 𝑡ℎ𝑒𝑛 𝑀 ≠ 𝐴𝑀 + 𝑋  . but M 

is finitely generated then there exist a maximal submodule such that 

𝐴𝑀 + 𝑋 ⊆ 𝐵. Now , if 𝑎 ∈ 𝐵 we get B=M which is a contradiction so 𝑎 ∉

𝐵. But 𝑎 ∈∩ {𝑊|𝑊 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑠𝑢𝑏𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝑀 𝑤𝑖𝑡ℎ 𝐴𝑀 ⊆ 𝑊} 

which is a contradiction .Thus 𝑅𝑎 ≪𝑎 𝑀  𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒   𝑎 ∈ 𝐴𝑀." 

 

 

 

 

 

 



- 18 - 
 

References  

 

[1] Nicholson, W.K  and  Zhou, Y., 2011, Annihilator-small right 

ideals, algebra Colloqum, 18(1), 785-800. 
 

[2] Amouzegar  Kalati, T. and Keskin–Tutuncu,D.2013. Annihilator-

small submodules, Bulletine of the Iranian Mathematical Society, 

39(6), 1053-1063. 
 

[3] Goodearl, K.R., 1976, Rings Theory, Non-singular Rings and 

Modules, Mercel Dekker, Newyork. 
 

[4] Kasch F. 1982, Modules and Rings, Academic press, London. 
 

[5] Anderson, D. and Camillo, V.P, 1998, Armendariz rings and 

Gaussian rings, Comm. in Algebra, 26, 2265-2272.  

 

 


