
Republic of Iraq
Ministry of Higher Education
And Scientific Research
Al-Qadisiya University
Collage of Education
Department Of mathematics

Solve Perturbation Problems By Neural

Network

A reasarch

Submitted to the department of mathematics college of education

University AL-Qadisiya as a partial fulfillment of the requirement for

the degree of bachelor of science in mathematics

 By

Dhuha Nazar Obeid

Supervised By

Dr Khalid Mindeel Mohammed

Chapter One

Mathematical Background

1. Introduction

“This chapter introduces a brief presentation of artificial neural networks

(ANN's), to choose suitable network, that is suitable designer and architecture

to implement the problem of this thesis, also introduce a brief definition and

presentation of perturbation problems, singular perturbation problems, which

helps us to design a suitable ANN's to solve suggested problem”.

]اكتب عنوان المستند[

Section One: Artificial Neural Networks

1.1.1.Introduction

 “ A Neural Network is a powerful modeling tool that is able to capture and

represent complex input/output relationships. The motivation for the development

of neural network technology stemmed from the desire to develop an artificial

system that could perform "intelligent" tasks similar to those performed by the

]اكتب عنوان المستند[

human brain. Neural networks resemble the human brain in the following two

ways:

 A neural network acquires knowledge through learning.

 A neural network's knowledge is stored within inter-neuron connection

strengths known as synaptic weights. [21]”

1.1.2.What is Artificial Neural Networks?

 “ Artificial neural network is designed to perform assignments in the similar

manner that human brain works. An ANNs consists of a number of simple and

processor units, called neurons, which are identical to the biological neurons in the

brain. The neurons are connected by links passing signals from one to another

neuron these links called the weights. Each neuron receives input signals during its

connections; but, it never produces more than a single output signal. The output

signal is sent during the neuron’s outgoing connection which is corresponding to

the biological axon. The outgoing connection, in turn, rifting into a number of

laterals that send the same signal. The outgoing laterals terminate at the incoming

connections of other neurons in the ANN. Figure (1.1)illustrates the connections of

ANN”

]اكتب عنوان المستند[

Figure 1.1: Architecture of ANN

]اكتب عنوان المستند[

 In the same way of the human brain which have been designed the component

of computing unit, ANN could perform machine learning, which involves adaptive

mechanisms that enable computers to learn from experience, learn by example and

learn by symmetry and thus improve the performance of the intelligent system over

time.

It is worth noting that in order to perform machine learning, three essential features

are:

• Neurons, as mentioned above, the basic computing elements;

• Network architecture that describes the connections between computing

units, and;

• Training (learning) algorithm that is used to find the values of the network

parameters for performing particular task.

1.1.3. Artificial Neuron

 “Artificial neuron is a basic building unit of every ANN. Its design and

functionalities are derived from observation of a biological neuron that is basic

]اكتب عنوان المستند[

building unit of biological systems which includes the brain, spinal cord and

peripheral ganglia [20]. Figure (1.2) illustraits the similarities in design and

functionalities which can be seen where the left side of a figure represents a

biological neuron with its soma, dendrites and axon and where the right side of a

figure represents an artificial neuron with its inputs, weights, transfer function, bias

and outputs”.

Figure1.2:Similarity between biological and artificial neuron.

 “In case of biological neuron information comes into the neuron via dendrite,

soma processes the information and passes it on via axon. In case of artificial

neuron the information comes into artificial neuron via inputs that are weighted,

each input can be individually multiplied with a weight ”.

 “ Then the artificial neuron sums the weighted inputs and bias then processes the

sum with a transfer function. At the end an artificial neuron passes the processed

]اكتب عنوان المستند[

information via output(s). The mathematical description of artificial neuron model

can be seen as[5]:”

 𝑦 = 𝐹 (∑ 𝑤𝑖𝑥𝑖

𝑚

𝑖=0

+ 𝑏) (1.1)

where:

𝒙𝒊: input value,𝒘𝒊: weight value, b: bias,

F: transfer function,𝒚: output value.

As seen from a model of an artificial neuron and its equation (1.1) the major

unknown variable of our model is its transfer function.

1.1.6. Feed Forward Neural Networks

 “ An ANN with feed forward topology is called feed forward neural network

(FFNN) and has only one worked formula: information must flow from input to

output in only one direction with no back loops , that is, the output from one layer

of neurons feeds forward into the next layer of neurons. There not any backward

connections, and connections never skip a layer(see Figure 1.4) [43]. There are no

limitations on number of layers, type of transfer function used in individual

]اكتب عنوان المستند[

artificial neuron or number of connections between individual artificial neurons

[56].”

Section Two: Perturbation Problems

1.2.1.Introduction

 “ The term "perturbation problem" is generally used in mathematics when one

deals with the following situation: There is a family of problems depending on a

small parameter 0 ˂ ϵ˂˂ 1,perturbation problems governing mathematical models

appear in many interesting applications in sciences and engineering fields such:

mechanical engineering, hydraulics and chemical engineering. Similarly, studies of

heat transfer, diffusion, and evaporation in moving fluids were greatly aided by the

]اكتب عنوان المستند[

knowledge of the boundary layer flow [42].The above information indicates that

there has been some successful interaction between scientists and engineers which

has resulted in an almost exponential growth of research on boundary layer flow in

recent years. To this end, it will be paramount to highlight an account of some

recent developments (both theoretical and applied) on non-linear perturbation

models. We include some of the works that use the perturbation techniques to solve

some other problems in recent years. There are two types of Perturbation Problems,

regular perturbation problems and singular perturbation problems,in this thesis, will

focus on singular perturbation problems (SPP) ”.

1.2.2. Singular Perturbation Problems

 “ Singular perturbation problems (SPP) are common in applied sciences and

engineering, for example, fluid dynamics, quantum mechanics, chemical reactions,

electrical networks, chemical kinetics, elasticity, aerodynamics, plasma dynamics,

magneto-hydrodynamics and other domains of the world of fluid motion [27].

 Perturbed problems are known to be the problems consist a small parameter ԑ

multiplied by one or more parts of the problem”.

]اكتب عنوان المستند[

 “Singularly Perturbed problems are known to be the problems in which the

highest order in derivative term is multiplied by a small parameter ԑ and this

parameter is known as the perturbation parameter. A singularly perturbed

differential equation is a differential equation in which the highest derivative is

multiplied by a small parameter ɛ. The general form of singular perturbation

problems for ODE which containing a small positive parameter ԑ, 0 ˂ ε ˂˂ 1,has

the form (in case 2nd order):

ε y′′(x) = f(x, y, y′, ε) , x ∈ [a, b], (1.7)

Where f is in general nonlinear functions of their arguments, and

f (x, y, yʹ, ε) ϵ C3([a, b]×R2×[0, 1])



f
 (x, y, yʹ, ε) ≠ 0, (x, y, yʹ, ε) ϵ ([a, b] ×R2× [0, 1])),

This problem has been treated by several authors in the last years for more details

see [42] , [2] , [3] ,[13] , [41] , [55] ,[30] ,[7] , [12] and their references”.

1.2.3. Regular Perturbation Problems

 “ A perturbation problem is called regular if its solution y features smooth

dependence on the parameter, i.e., Since ε usually represents a physically

meaningful parameter, letting ε tend to 0 corresponds to neglecting the effect of

small perturbations.

]اكتب عنوان المستند[

The 2nd order regular perturbation problem has the form:

y′′(x) = f(x, y, y′, ε), x ∈ [a, b] , 0 ˂ ε ˂˂ 1; (1.8)

where f is in general nonlinear functions of their arguments, and

f (x, y, yʹ, ε) ϵ C3([a, b]×R2 ×[0, 1])



f
 (x, y, yʹ, ε) ≠ 0, (x, y, yʹ, ε) ϵ ([a, b] ×R2× [0, 1]),

Note, assume that our problem contains only one small, positive parameter ϵ (0 < ϵ

≪1), denote the problem by Pϵ. What happens if ϵ→0? we have the reduced

problem P0. We want to study the relationship between the solution of Pϵ and the

solution of P0 under appropriate assumptions. A perturbation problem (1.7) is

called SPP, if ϵ→ 0, the solution 𝑦∈(𝑥) converges to 𝑦0(𝑥) only in some interval of

x, but not throughout the entire interval, thus giving rise to the "boundary layers"

phenomena at both end-points [33].”

1.2.4. Differential Equations and Perturbation Problems

 “ An ordinary differential equation(ODE) is an equation containing a function

of one independent variable and its derivatives.

]اكتب عنوان المستند[

There are many general forms of an ODE's can take, and these are classified in

practice. The derivatives are ordinary because partial derivatives only apply to

functions of many independent variables and said to be partial differential equation

(PDE).

 The problems of ODE are classified into initial value problems(IVP) and

boundary value problems (BVPs), depending on how the conditions at the

endpoints of the domain are specified. All the conditions of an initial value

problem are specified at the initial point of the domain. On the other hand, the

problems becomes a boundary value problem if the conditions are needed for

both initial and final points of the domain [48].

 There are many interesting regions for which to specify boundary conditions.

One deal in this thesis is to solve perturbation problems as the form:

 yʹʹ = f(x, y, yʹ,ε); a ≤ x ≤ b, (1.9)

with specific boundary condition.

 There are many types of the boundary conditions [49]:

 If the boundary gives a value to the normal derivative of the problem then it is a

Neumann boundary condition.

]اكتب عنوان المستند[

 If the boundary gives a value to the problem then it is a Dirichlet boundary

condition.

 If the boundary has the form of a curve or surface that gives a value to the

normal derivative and the problem itself then it is a Cauchy boundary condition

or mixed condition.”

Chapter Two

Suitable Architecture Of Networks To Solve

Singular Perturbation Problems

2.1. Introduction

 “ Many methods have been developed to solve this problem. Some of them

give the solution at a selected group of points, others give the solution in analytic

]اكتب عنوان المستند[

form by using basis functions and transform the original problem usually to a

system of algebraic equations.”

 “ Most of the previous studies in solving SPPs using ANNs was restricted to the

case of solving the systems of algebraic equations which we resulted from the

discretization of the domain. In this chapter we suggest suitable FFNNs as a

method to solve SPPs with initial or boundary conditions. To demonstrate the

applicability of the suggested design, we solved several model examples and

presented the computational results ”.

The computed results have been compared with the solution to show the accuracy

and efficiency of the suggested networks.

2.2. Description the Design of the Neural Networks

“ In this section, we will illustrate how can be design suitable neural network

to find the solution of the SPPs, the general form of a non-linear second order SPPs

is:

ɛ), xϵ R, (2.1)

subject to IC’s or BC’s and y(x) is the solution to be computed ,where ϵ˂˂1,and the

function 𝑓(𝑥, 𝑦, 𝑦ʹ) is a non-linear function of y satisfies:

]اكتب عنوان المستند[

 𝑓 (𝑥, 𝑦, 𝑦ʹ) ϵ C3([a, b]×R2)

𝜕𝑓

 𝜕𝜀
(x, y, yʹ) ≠ 0, (x, y, yʹ) ϵ ([a, b]×R2), a, b ϵ R,

In the suggested network the design expressed as summing of two parts: the

first part satisfies the IC or BC. The second part can be found by using suggested

FFNN which is trained so as to satisfy the suggested problem and such technique

called collocation neural network. That is:

 𝑦𝑡(𝑥, 𝑝) = 𝑦𝑎(𝑥) + 𝐺(𝑥, 𝜀, 𝑁(𝑥, 𝑝)) (2.2)

where N(𝑥, 𝑝) is output of the FFNN with coefficients 𝑝 and 𝑛 input units fed with

the input data 𝑥 , the second part 𝐺 is not depending on the IC’s or BC’s by

constructed, this term can be formed by using suggested networks whose weights

and biases are to be adjusted using the minimization technique ”.

3.3. Architect Suggested Networks

 “ We suggest multilayer feed forward neural network with one hidden layer

which can approximate any function to arbitrary accuracy to solve SPPs ”.

3.5. Choosing the Initial Weights

]اكتب عنوان المستند[

“If we treat all the weights in the same way in the training algorithm, that is

if we start all the weights as the same, the hidden units at the end the same value

and the suggested network will not learned well. For this reason, we generally

start all the weights and biases with small random values. Usually we take the

weights around zero [–1, 1], many researchers choose the weights by using

Gaussian distribution around zero [14] ”.

3.6. Illustration of the Architect FFNN for Solving SPPs With ICs

 “ Consider the 2nd order non-linear SPPs:

ɛ , ɛ), 𝑥∈ [a, b], (3.7)

With initial condition (IC): y (a) = 𝐴, 𝑦ʹ(a) = 𝐴ʹ; where 𝐴, 𝐴ʹ ϵ R.

A trial solution yt can be written as:

 𝑦𝑡(𝑥, 𝑝) = 𝐴 + 𝐴′(𝑥 − 𝑎) + (𝑥 − 𝑎)2𝑁(𝑥, 𝑝) (3.8)

Where 𝑁(𝑥, 𝑝) is the output of the FFNN with one input unit for 𝑥 and weight 𝑝.

The amount of error which must be minimized is given as:

𝐸[𝑝] = ∑ {
𝑑2𝑦𝑡(𝑥𝑖,𝑝)

𝑑𝑥2
− 𝑓(𝑥𝑖 , 𝑦𝑡(𝑥𝑖 , 𝑝),

𝑑𝑦𝑡(𝑥𝑖 ,𝑝)

𝑑𝑥
, 𝜀)}𝑛

𝑖=1

2

 (3.9)

]اكتب عنوان المستند[

Where the xi [a, b].Since,

𝑑𝑦𝑡(𝑥, 𝑝)

𝑑𝑥
= 𝐴′ + (𝑥 − 𝑎)2

𝑑𝑁(𝑥, 𝑝)

𝑑𝑥
+ 2(𝑥 − 𝑎)𝑁(𝑥, 𝑝)

𝑑2𝑦𝑡(𝑥,𝑝)

𝑑𝑥2
= (𝑥 − 𝑎)2 𝑑2𝑁(𝑥,𝑝)

𝑑𝑥2
+ 2𝑁(𝑥, 𝑝) + 4(𝑥 − 𝑎)

𝑑𝑁(𝑥,𝑝)

𝑑𝑥
 (3.10)

It is easy to evaluate the gradient of the performance with respect to the coefficient

of the network ”.

3.7. Illustration of the Architect FFNN for Solving SPPs with BCs

 “ Consider the 2ndorder non-linear SPBVPs:

 ɛ , ɛ) , 𝑥∈ [𝑎,𝑏], (3.11a)

With boundary conditions (BC):

In the case of Dirichlet BC: y(a) = A, y(b) = B; (3.11b)

In the case of Neumann BC: y′(a) = A, y′(b) = B; (3.11c)

In the case of Cauchy or mixed BC: y(a) = A, y′(b) = B, (3.11d)

 Or y′(a) = A, y(b) = B; where A, B ϵ R (3.11e)

]اكتب عنوان المستند[

a trialist solution 𝑦𝑡can be written as:

𝑦𝑡(x,p) =
(bA–aB)

b−a
 + (B−A)

b−a
x + (x−a)(x−b)N(x,p,𝜀), (3.12)

where N(x, p, ԑ) is the output of the suggested FFNN with one input unit for x and

weight p.

The amount of error which must be minimized is given as:

 𝐸[𝑝] = ∑ {
𝑑2𝑦𝑡(𝑥𝑖,𝑝)

𝑑𝑥2
− 𝑓(𝑥𝑖 , 𝑦𝑡(𝑥𝑖 , 𝑝),

𝑑𝑦𝑡(𝑥𝑖 ,𝑝)

𝑑𝑥
, 𝜀)}𝑛

𝑖=1

2

 , (3.13)

Where the xi [a, b]. Since:

dyt(x,p)

dx
=

A–B

b−a
+ {(x − a) + (x − b)} N(x, p, ε) + (x − a)(x − b)

dN(x,p,ε)

dx
, (3.14)

and

𝑑2yt(x,p)

d𝑥2 = 2N(x, p, ε) + 2{(x − a) + (x − b)}
dN(x,p,ε)

dx
+ (x − a)(x − b)

𝑑2N(x,p,ε)

d𝑥2 , (3.15)

It is easy to evaluate the gradient of the performance with respect to the coefficient ”.

3.9. Examples

“To illustrate the suggested FFNN, we give many examples to demonstrate

the behavior and efficiency of the suggested design; the programs are written

with MATLAB version 7.12.

]اكتب عنوان المستند[

We suggest FFNN having 5 hidden units in one hidden layer and linear

output unit. The sigmoid function of the hidden units is tansig.

We test the performance of the solutions by computing the absolute error:

E(x)  | yt(x) – ya(x) |.

We begin with linear problems ”.

3.9.1. Linear Examples

 “We beginning with SPPs consist perturbed IC, i.e., the IC contain perturbed

number

Example 3.1

 “Consider the following 2nd order non homogeneous SPPs:

 𝑦 + 𝜀3ex2
y + 4(2 − x) = x2ex, x ϵ [0, 1]

with IC: 𝑦(0) = 1 , 𝑦′(0) =
1

ε
and the analytic solution is [6]:

𝑦𝑎(𝑥) =
𝑥2𝑒𝑥

2−𝑥
+ 3𝑒

−𝑥

𝜀 − 2𝑒
−2𝑥

𝜀 ,

depending on the equation (3.8), the suggested FFNN has the solution is:

]اكتب عنوان المستند[

 𝑦𝑡(𝑥) = 1 +
𝑥

Ɛ
+ 𝑥2𝑁(𝑥, 𝑝).

 “ The FFNN trained using a grid of equidistant points in [0,1], we get ɛ =10-4,

Figure (3.1) illustrates the analytic and neural solution in the training set. Then

oral result with training algorithms: Bayesian Regulation (trainbr), Levenberg –

Marquardt (trainlm), quasi – Newton (trainbfg), and modified Levenberg –

Marquardt (trainnlm) are gave in Table (3.1) and its errors ” in Table (3.2), Table

“(3.3) gave the accuracy of the train for epoch and time compared with the mean

square error of numerical method used in [6] to solve this example, Table (3.4)

gave the initial weight and bias of the FFNN.

Figure3.1: analytic and neural solution of example 3.1, with ɛ =10-4.

]اكتب عنوان المستند[

Table 3.1: Analytic and Neural solution of example 3.1, ɛ =10-4

Solution of FFNN yt(x) for training algorithm Analytic solution input

]اكتب عنوان المستند[

Table 3.2: Accuracy of solutions of example 3.1, ɛ =10-4

Table 3.3:The accuracy of the train of suggested FFNN, ɛ =10-4,

MSE of Numerical

Method in [6]

Msereg. Time Epoch

Performance

of train
Train function

8.241e-2

1.583069324864220e-06 0:00:01 121 4.21e-31 Trainlm

2.254393657527956e-05 0:00:02 140 4.38e-19 Trainbfg

0.090819966644612 0:00:04 404 1.87e-10 Trainbr

Trainbr Trainbfg Trainlm ya(x) x
0.000490306650163041 1.00000060781947 0.999640976175370 1 0.0

0.00581682218438316 0.00581748398780408 0.00584858735571990 0.00581668904250341 0.1

0.0270766508893611 0.0260890754780599 0.0262235919926366 0.0271422835146705 0.2

0.0714583209579391 0.0714627704412003 0.0720379285133504 0.0714631133422590 0.3

0.149199034176640 0.149182398207817 0.148860377994119 0.149182469764127 0.4

0.274774551828534 0.284179642578833 0.273944920310229 0.274786878450021 0.5

0.468532552107991 0.478528518159394 0.469737313059561 0.468544834386131 0.6

0.759056497736270 0.759030222208309 0.762296279887764 0.759029866661949 0.7

1.18693667442537 1.17927557251113 1.18678423417625 1.18695516186265 0.8

1.81116773829719 1.81116317468505 1.81124271936535 1.81116229094284 0.9

2.71828042684631 2.71828275379187 2.72006218179475 2.71828182845905 1.0

The error E(x)  | yt(x) ya(x) |w h e r e yt(x) computed by the following training
algorithm

Trainbr Trainbfg Trainlm
0.999509693349837 6.07819470532789e-07 0.000359023824629823

1.33141879750387e-07 7.94945300671215e-07 3.18983132164890e-05

6.56326253093281e-05 0.00105320803661058 0.000918691522033870

4.79238431989881e-06 3.42901058700273e-07 0.000574815171091411

1.65644125127151e-05 7.15563100717187e-08 0.000322091770007971

1.23266214873685e-05 0.00939276412881179 0.000841958139792765

1.22822781396525e-05 0.00998368377326325 0.00119247867343003

2.66310743208820e-05 3.55546359687153e-07 0.00326641322581489

1.84874372832766e-05 0.00767958935151758 0.000170927686401257

5.44735434981902e-06 8.83742201640558e-07 8.04284225008889e-05

1.40161273609607e-06 9.25332822809821e-07 0.00178035333569948

]اكتب عنوان المستند[

Table 3.4: Initial weight and bias of FFNN, ɛ =10-4

3.9.2. Nonlinear Examples

Example 3.4

 “Consider the following 2nd order nonlinear SPP:

ɛy + y + y2 = 0

Initial weights and bias for trainbfg

Net.B{1} Net.LW{2,1} Net.IW{1,1}
0.8110 0.0323 0.4429

0.1386 0.5570 0.0530

0.8818 0.7198 0.0878

0.9235 0.1104 0.7979

0.0127 0.2166 0.6555

Initial weights and bias for trainlm

Net.B{1} Net.LW{2,1} Net.IW{1,1}
0.6240 0.4332 0.6393

0.3279 0.8842 0.9173

0.802 0.3930 0.1615

0.9994 0.1789 0.7156

0.9809 0.6333 0.5777

Initialweights and bias for trainbr

Net.B{1} Net.LW{2,1} Net.IW{1,1}
0.1692 0.2865 0.5502

0.4304 0.0773 0.1805

0.4162 0.9005 0.6784

0.7287 0.8466 0.0556

0.4064 0.3956 0.0340

]اكتب عنوان المستند[

with Dirishlit BC′s: 𝑦(0) = 0, 𝑦(1) = 1/2 and the analytic solution is[27]:

 𝑦𝑎(𝑥) =
1

1+𝑥
−

𝑒−𝑥/ɛ

(1+𝑥)2
,

Depending on equation (3.12) the neural solution is ”:

𝑦𝑡(𝑥) =
1

2
 𝑥 + (𝑥 − 1)𝑁(𝑥, 𝑝)

 “ The FFNN training using a grid of ten equidistance points in [0,1], we get

ɛ=10-5 Figure (3.8) illustrates the analytic and neural solutions with different

training algorithm. The neural results with different types of training algorithm

such as: trainlm, trainbfg, trainbr, are introduced in Table (3.32) and its errors are

given in Table (3.33), Table (3.34) gives the accuracy of the training for epoch and

time, finally Table (3.35) gives the initial weight and bias of the FFNN ”.

.

]اكتب عنوان المستند[

 Figure3.8: analytic and neural solution of example 3.4 ,with ɛ =10-5.

Table 3.32: Analytic and Neural solution of example 3.4 , ɛ =10-5

]اكتب عنوان المستند[

Table3.33: Accuracy of solutions for example 3.4 , ɛ =10-5

Solution of FFNN yt(x) for different training algorithm Analytic solution input

Trainbr Trainbfg Trainlm ya(x) x
0.999394605934724 -7.46042284111519e-07 2.01858731750028e-16 0 0.0

0.909090899405227 0.907012437275230 0.909090909090908 0.909090909090909 0.1

0.833333390984059 0.833316323016675 0.833333333333334 0.833333333333333 0.2

0.769222734844288 0.769224640766005 0.769230769230769 0.769230769230769 0.3

0.714285333857831 0.714266006331668 0.715802392679189 0.714285714285714 0.4

0.666667572440800 0.666704092932498 0.667307331279249 0.666666666666667 0.5

0.624999233072860 0.625022350272257 0.625000000000000 0.625000000000000 0.6

0.588235168678295 0.588206083448708 0.588235294117647 0.588235294117647 0.7

0.555556321619597 0.555530665155201 0.555555555555556 0.555555555555556 0.8

0.526315243648641 0.526340751988947 0.525705170771698 0.526315789473684 0.9

0.500000140628989 0.499993460412034 0.497859222777642 0.500000000000000 1.0

The error E(x)  | yt(x) ya(x) | w h e r e yt(x) computed by the

Trainbr Trainbfg Trainlm
0.999394605934724 7.46042284111519e-07 2.01858731750028e-16

9.68568181214380e-09 0.00207847181567955 7.77156117237610e-16

5.76507254157477e-08 1.70103166584612e-05 2.22044604925031e-16

8.03438648167010e-06 6.12846476422124e-06 1.11022302462516e-16

3.80427883417411e-07 1.97079540465994e-05 0.00151667839347458

9.05774133586057e-07 3.74262658315860e-05 0.000640664612582054

7.66927140127827e-07 2.23502722571656e-05 2.22044604925031e-16

1.25439352571810e-07 2.92106689391280e-05 3.33066907387547e-16

7.66064040980119e-07 2.48904003549155e-05 2.22044604925031e-16

5.45825043607451e-07 2.49625152629607e-05 0.000610618701986310

1.40628989231395e-07 6.53958796625886e-06 0.00214077722235811

]اكتب عنوان المستند[

Table3.34:Theaccuracy of the train, with ɛ =10-5

Table 3.35: Initial weight and bias of the FFNN, with ɛ =10-5

Msereg. Time Epoch Performance of train TrainFunction

6.272629208206621e-07 0:00:03 237 3.58e-32 Trainlm

3.538472650520739e-07 0:00:07 478 1.96e-23 Trainbfg

0.081719147326782 0:00:06 576 2.75e-13 Trainbr

Weights and bias for trainbfg

Net.B{1} Net.LW{2,1} Net.IW{1,1}
0.6618 0.8009 0.5406

0.1696 0.1425 0.4320

0.2788 0.4785 0.5427

0.1982 0.2568 0.7124

0.1951 0.3691 0.0167

Weights and bias for trainlm

Net.B{1} Net.LW{2,1} Net.IW{1,1}
0.0073 0.0261 0.5238

0.6800 0.9547 0.2649

0.7060 0.4306 0.0684

0.6451 0.9616 0.4363

0.5523 0.7624 0.1739

Weights and bias for trainbr

Net.B{1} Net.LW{2,1} Net.IW{1,1}
0.1626 0.6154 0.4132

0.7968 0.7795 0.2178

0.1138 0.9548 0.8586

0.1588 0.9196 0.8610

0.3558 0.3848 0.2839

]اكتب عنوان المستند[

