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Chapter One 

 

Mathematical Background 

 

 

 

1. Introduction 

“This chapter introduces a brief presentation of artificial neural networks 

(ANN's), to choose suitable network, that is suitable designer and architecture 

to implement the problem of this thesis, also introduce a brief definition and 

presentation of perturbation problems, singular perturbation problems, which 

helps us to design a suitable ANN's to solve suggested problem”.  
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Section One: Artificial Neural Networks 

 

1.1.1.Introduction 

    “  A Neural Network is a powerful modeling tool that is able to capture and 

represent complex input/output relationships. The motivation for the development 

of neural network technology stemmed from the desire to develop an artificial 

system that could perform "intelligent" tasks similar to those performed by the 
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human brain. Neural networks resemble the human brain in the following two 

ways: 

 A neural network acquires knowledge through learning. 

 A neural network's knowledge is stored within inter-neuron connection 

strengths known as synaptic weights. [21]” 

 

1.1.2.What is Artificial Neural Networks? 

      “ Artificial neural network is designed to perform assignments in the similar 

manner that human brain works. An ANNs consists of a number of simple and 

processor units, called neurons, which are identical to the biological neurons in the 

brain. The neurons are connected by links passing signals from one to another 

neuron these links called the weights. Each neuron receives input signals during its 

connections; but, it never produces more than a single output signal. The output 

signal is sent during the neuron’s outgoing connection which is corresponding to 

the biological axon. The outgoing connection, in turn, rifting into a number of 

laterals that send the same signal. The outgoing laterals terminate at the incoming 

connections of other neurons in the ANN. Figure (1.1)illustrates the connections of 

ANN” 
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Figure 1.1: Architecture of ANN 
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        In the same way of the human brain which have been designed the component 

of computing unit, ANN could perform machine learning, which involves adaptive 

mechanisms that enable computers to learn from experience, learn by example and 

learn by symmetry and thus improve the performance of the intelligent system over 

time.                                                                                                                       

It is worth noting that in order to perform machine learning, three essential features 

are:                                                                                                                             

• Neurons, as mentioned above, the basic computing elements; 

• Network architecture that describes the connections between computing 

units, and; 

• Training (learning) algorithm that is used to find the values of the network 

parameters for performing particular task. 

 

1.1.3. Artificial Neuron 

        “Artificial neuron is a basic building unit of every ANN. Its design and 

functionalities are derived from observation of a biological neuron that is basic 
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building unit of biological systems which includes the brain, spinal cord and 

peripheral ganglia [20]. Figure (1.2) illustraits the similarities in design and 

functionalities which can be seen where the left side of a figure represents a 

biological neuron with its soma, dendrites and axon and where the right side of a 

figure represents an artificial neuron with its inputs, weights, transfer function, bias 

and outputs”. 

 

 

Figure1.2:Similarity between biological and artificial neuron. 

 

        “In case of biological neuron information comes into the neuron via dendrite, 

soma processes the information and passes it on via axon. In case of artificial 

neuron the information comes into artificial neuron via inputs that are weighted, 

each input can be individually multiplied with a weight ”.  

      “ Then the artificial neuron sums the weighted inputs and bias then processes the 

sum with a transfer function. At the end an artificial neuron passes the processed 
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information via output(s). The mathematical description of artificial neuron model 

can be seen as[5]:” 

               𝑦 = 𝐹 (∑ 𝑤𝑖𝑥𝑖

𝑚

𝑖=0

+ 𝑏)                                                       (1.1) 

where: 

𝒙𝒊: input value,𝒘𝒊: weight value, b: bias, 

F: transfer function,𝒚: output value. 

As seen from a model of an artificial neuron and its equation (1.1) the major 

unknown variable of our model is its transfer function.  

 

1.1.6. Feed Forward Neural Networks 

       “   An ANN with feed forward topology is called feed forward neural network 

(FFNN) and has only one worked formula: information must flow from input to 

output in only one direction with no back loops , that is, the output from one layer 

of neurons feeds forward into the next layer of neurons. There not any backward 

connections, and connections never skip a layer(see Figure 1.4) [43]. There are no 

limitations on number of layers, type of transfer function used in individual 
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artificial neuron or number of connections between individual artificial neurons 

[56].” 

 

 

 

 

Section Two: Perturbation Problems 

 

 

1.2.1.Introduction 

     “  The term "perturbation problem" is generally used in mathematics when one 

deals with the following situation: There is a family of problems depending on a 

small parameter 0 ˂ ϵ˂˂ 1,perturbation problems governing mathematical models 

appear in many interesting applications in sciences and engineering fields such: 

mechanical engineering, hydraulics and chemical engineering. Similarly, studies of 

heat transfer, diffusion, and evaporation in moving fluids were greatly aided by the 
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knowledge of the boundary layer flow [42].The above information indicates that 

there has been some successful interaction between scientists and engineers which 

has resulted in an almost exponential growth of research on boundary layer flow in 

recent years. To this end, it will be paramount to highlight an account of some 

recent developments (both theoretical and applied) on non-linear perturbation 

models. We include some of the works that use the perturbation techniques to solve 

some other problems in recent years. There are two types of Perturbation Problems, 

regular perturbation problems and singular perturbation problems,in this thesis, will 

focus on singular perturbation problems (SPP) ”.  

 

 

1.2.2. Singular Perturbation Problems 

      “ Singular perturbation problems (SPP) are common in applied sciences and 

engineering, for example, fluid dynamics, quantum mechanics, chemical reactions, 

electrical networks, chemical kinetics, elasticity, aerodynamics, plasma dynamics, 

magneto-hydrodynamics and other domains of the world of fluid motion [27]. 

 Perturbed problems are known to be the problems consist a small parameter ԑ 

multiplied by one or more parts of the problem”. 
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      “Singularly Perturbed problems are known to be the problems in which the 

highest order in derivative term is multiplied by a small parameter ԑ and this 

parameter is known as the perturbation parameter. A singularly perturbed 

differential equation is a differential equation in which the highest derivative is 

multiplied by a small parameter ɛ. The general form of singular perturbation 

problems for ODE which containing a small positive parameter ԑ, 0 ˂ ε ˂˂ 1,has 

the form (in case 2nd order): 

ε y′′(x) = f(x, y, y′, ε) , x ∈ [a, b],                                                       (1.7)  

Where f is in general nonlinear functions of their arguments, and 

f (x, y, yʹ, ε) ϵ C3([a, b]×R2×[0, 1]) 



f
 (x, y, yʹ, ε) ≠ 0, (x, y, yʹ, ε) ϵ ([a, b] ×R2× [0, 1])), 

This problem has been treated by several authors in the last years for more details 

see [42] , [2] , [3] ,[ 13] , [41] , [55] ,[30] ,[7] , [12] and their references”. 

1.2.3. Regular Perturbation Problems 

      “ A perturbation problem is called regular if its solution y features smooth 

dependence on the parameter, i.e., Since ε usually represents a physically 

meaningful parameter, letting ε tend to 0 corresponds to neglecting the effect of 

small perturbations. 
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The 2nd order regular perturbation problem has the form: 

y′′(x) = f(x, y, y′, ε), x ∈ [a, b]   , 0 ˂ ε ˂˂ 1;                                      (1.8)    

where f is in general nonlinear functions of their arguments, and 

f (x, y, yʹ, ε) ϵ C3([a, b]×R2 ×[0, 1]) 



f
 (x, y, yʹ, ε) ≠ 0, (x, y, yʹ, ε) ϵ ([a, b] ×R2× [0, 1]), 

Note, assume that our problem contains only one small, positive parameter ϵ (0 < ϵ 

≪1), denote the problem by Pϵ. What happens if ϵ→0? we have the reduced 

problem P0. We want to study the relationship between the solution of Pϵ and the 

solution of P0 under appropriate assumptions. A perturbation problem (1.7) is 

called SPP, if ϵ→ 0, the solution 𝑦∈(𝑥) converges to 𝑦0(𝑥) only in some interval of 

x, but not throughout the entire interval, thus giving rise to the "boundary layers" 

phenomena at both end-points [33].” 

 

 

1.2.4. Differential Equations and Perturbation Problems 

     “   An ordinary differential equation(ODE) is an equation containing a function 

of one independent variable and its derivatives.                                                                
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There are many general forms of an ODE's can take, and these are classified in 

practice. The derivatives are ordinary because partial derivatives only apply to 

functions of many independent variables and said to be partial differential equation 

(PDE).                                                                                                                        

         The problems of ODE are classified into initial value problems(IVP) and 

boundary value problems (BVPs), depending on how the conditions at the 

endpoints of the domain are specified. All the conditions of an initial value 

problem are specified at the initial point of the domain. On the other hand, the 

problems becomes a boundary value problem if the conditions are needed for 

both initial and final points of the domain [48].                                                                              

         There are many interesting regions for which to specify boundary conditions. 

One deal in this thesis is to solve perturbation problems as the form: 

          yʹʹ = f(x, y, yʹ,ε);    a ≤ x ≤ b,                                                   (1.9) 

with specific boundary condition.  

         There are many types of the boundary conditions [49]:                                      

 If the boundary gives a value to the normal derivative of the problem then it is a 

Neumann boundary condition. 
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 If the boundary gives a value to the problem then it is a Dirichlet boundary 

condition.  

 If the boundary has the form of a curve or surface that gives a value to the 

normal derivative and the problem itself then it is a Cauchy boundary condition 

or mixed condition.” 

 

 

Chapter Two 

 

 

Suitable Architecture Of Networks To Solve 

Singular Perturbation Problems 

 

 

 

2.1. Introduction 

        “ Many methods have been developed to solve this problem. Some of them 

give the solution at a selected group of points, others give the solution in analytic 
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form by using basis functions and transform the original problem usually to a 

system of algebraic equations.” 

     “  Most of the previous studies in solving SPPs using ANNs was restricted to the 

case of solving the systems of algebraic equations which we resulted from the 

discretization of the domain. In this chapter we suggest suitable FFNNs as a 

method to solve SPPs with initial or boundary conditions. To demonstrate the 

applicability of the suggested design, we solved several model examples and 

presented the computational results ”.  

The computed results have been compared with the solution to show the accuracy 

and efficiency of the suggested networks. 

 

2.2. Description the Design of the Neural Networks 

“ In this section, we will illustrate how can be design suitable neural network 

to find the solution of the SPPs, the general form of a non-linear second order SPPs 

is: 

ɛ ),   xϵ R,                                                            (2.1) 

subject to IC’s or BC’s and y(x) is the solution to be computed ,where ϵ˂˂1,and the 

function 𝑓(𝑥, 𝑦, 𝑦ʹ) is a non-linear function of y satisfies: 
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                    𝑓 (𝑥, 𝑦, 𝑦ʹ) ϵ C3([a, b]×R2) 

              
𝜕𝑓

 𝜕𝜀
(x, y, yʹ) ≠ 0, (x, y, yʹ) ϵ ([a, b]×R2),   a, b ϵ R, 

 

In the suggested network the design expressed as summing of two parts: the 

first part satisfies the IC or BC. The second part can be found by using suggested 

FFNN which is trained so as to satisfy the suggested problem and such technique 

called collocation neural network. That is: 

         𝑦𝑡(𝑥, 𝑝) =  𝑦𝑎(𝑥) +  𝐺( 𝑥, 𝜀, 𝑁(𝑥, 𝑝))                                                  (2.2) 

where N(𝑥, 𝑝) is output of the FFNN with coefficients 𝑝 and 𝑛 input units fed with 

the input data 𝑥 , the second part 𝐺 is not depending on the IC’s or BC’s by 

constructed, this term can be formed by using suggested networks whose weights 

and biases are to be adjusted using the minimization technique ”. 

3.3. Architect Suggested Networks  

       “   We suggest multilayer feed forward neural network with one hidden layer 

which can approximate any function to arbitrary accuracy to solve SPPs ”. 

3.5. Choosing the Initial Weights       
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“If we treat all the weights in the same way in the training algorithm, that is 

if we start all the weights as the same, the hidden units at the end the same value 

and the suggested network will not learned well. For this reason, we generally 

start all the weights and biases with small random values. Usually we take the 

weights around zero [–1, 1], many researchers choose the weights by using 

Gaussian distribution around zero [14] ”. 

 

3.6. Illustration of the Architect FFNN for Solving SPPs With ICs  

            “ Consider the 2nd order non-linear SPPs: 

ɛ , ɛ),   𝑥∈ [a, b],                                                             (3.7) 

With initial condition (IC):  y (a) = 𝐴, 𝑦ʹ(a) = 𝐴ʹ; where 𝐴, 𝐴ʹ ϵ R. 

A trial solution yt can be written as: 

 𝑦𝑡(𝑥, 𝑝) = 𝐴 + 𝐴′(𝑥 − 𝑎) + (𝑥 − 𝑎)2𝑁(𝑥, 𝑝)                                       (3.8) 

Where  𝑁(𝑥, 𝑝)  is the output of the FFNN with one input unit for 𝑥 and weight 𝑝. 

The amount of error which must be minimized is given as: 

𝐸[𝑝] = ∑ {
𝑑2𝑦𝑡(𝑥𝑖,𝑝)

𝑑𝑥2
−  𝑓( 𝑥𝑖  , 𝑦𝑡(𝑥𝑖  , 𝑝),

𝑑𝑦𝑡(𝑥𝑖 ,𝑝)

𝑑𝑥
, 𝜀)}𝑛

𝑖=1

2

                         (3.9) 
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Where the xi [a, b].Since, 

𝑑𝑦𝑡(𝑥, 𝑝)

𝑑𝑥
= 𝐴′ + (𝑥 − 𝑎)2

𝑑𝑁(𝑥, 𝑝)

𝑑𝑥
+ 2(𝑥 − 𝑎)𝑁(𝑥, 𝑝) 

𝑑2𝑦𝑡(𝑥,𝑝)

𝑑𝑥2
= (𝑥 − 𝑎)2 𝑑2𝑁(𝑥,𝑝)

𝑑𝑥2
+ 2𝑁(𝑥, 𝑝) + 4(𝑥 − 𝑎)

𝑑𝑁(𝑥,𝑝)

𝑑𝑥
                 (3.10)  

 

It is easy to evaluate the gradient of the performance with respect to the coefficient 

of the network ”. 

 

3.7. Illustration of the Architect FFNN for Solving SPPs with BCs 

        “  Consider the 2ndorder non-linear SPBVPs: 

                  ɛ , ɛ) ,  𝑥∈ [𝑎,𝑏],                                     (3.11a) 

With boundary conditions (BC):  

In the case of Dirichlet BC:    y(a) = A,  y(b) = B;                               (3.11b) 

In the case of Neumann BC:  y′(a) = A,  y′(b) = B;                              (3.11c) 

In the case of Cauchy or mixed BC: y(a) = A, y′(b) = B,                     (3.11d) 

                  Or               y′(a) = A, y(b) = B;  where A, B ϵ R                (3.11e) 
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a trialist solution 𝑦𝑡can be written as: 

𝑦𝑡(x,p) = 
(bA–aB)

b−a
 + (B−A)

b−a
x + (x−a)(x−b)N(x,p,𝜀),                                    (3.12) 

where N(x, p, ԑ) is the output of the suggested FFNN with one input unit for x and 

weight p. 

The amount of error which must be minimized is given as: 

       𝐸[𝑝] = ∑ {
𝑑2𝑦𝑡(𝑥𝑖,𝑝)

𝑑𝑥2
−  𝑓( 𝑥𝑖  , 𝑦𝑡(𝑥𝑖  , 𝑝),

𝑑𝑦𝑡(𝑥𝑖 ,𝑝)

𝑑𝑥
, 𝜀)}𝑛

𝑖=1

2

  ,           (3.13) 

Where the xi [a, b]. Since:  

dyt(x,p)

dx
=

A–B

b−a
+ {(x − a) + (x − b)} N(x, p, ε) + (x − a)(x − b)

dN(x,p,ε)

dx
, (3.14) 

and 

𝑑2yt(x,p)

d𝑥2 = 2N(x, p, ε) + 2{(x − a) + (x − b)}
dN(x,p,ε)

dx
+ (x − a)(x − b)

𝑑2N(x,p,ε)

d𝑥2 ,   (3.15) 

It is easy to evaluate the gradient of the performance with respect to the coefficient ”. 

3.9. Examples 

“To illustrate the suggested FFNN, we give many examples to demonstrate 

the behavior and efficiency of the suggested design; the programs are written 

with MATLAB version 7.12. 
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We suggest FFNN having 5 hidden units in one hidden layer and linear 

output unit. The sigmoid function of the hidden units is tansig. 

We test the performance of the solutions by computing the absolute error: 

E(x)  | yt(x) – ya(x) |. 

We begin with linear problems ”. 

 

3.9.1. Linear Examples 

         “We beginning with SPPs consist perturbed IC, i.e., the IC contain perturbed 

number   

Example 3.1 

       “Consider the following 2nd order non homogeneous SPPs: 

     𝑦 + 𝜀3ex2
y + 4(2 − x) = x2ex,    x ϵ [0, 1] 

with IC: 𝑦(0) = 1  , 𝑦′(0) =
1

ε
and the analytic solution is [6]:  

𝑦𝑎(𝑥) =
𝑥2𝑒𝑥

2−𝑥
+ 3𝑒

−𝑥

𝜀 − 2𝑒
−2𝑥

𝜀 , 

depending on the equation (3.8), the suggested FFNN has the solution is: 
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                                  𝑦𝑡(𝑥) = 1 +
𝑥

Ɛ
+ 𝑥2𝑁(𝑥, 𝑝). 

        “ The FFNN trained using a grid of equidistant points in [0,1], we get ɛ =10-4, 

Figure (3.1) illustrates the analytic and neural solution in the training set. Then 

oral  result with training algorithms: Bayesian Regulation (trainbr), Levenberg – 

Marquardt (trainlm), quasi – Newton (trainbfg), and modified Levenberg – 

Marquardt (trainnlm) are gave in Table (3.1) and its errors ” in Table (3.2), Table 

“(3.3) gave the accuracy of the train for epoch and time compared with the mean 

square error of numerical method used in [6] to solve this example, Table (3.4) 

gave the initial weight and bias of the FFNN. 

 

 

Figure3.1: analytic and neural solution of example 3.1, with ɛ =10-4. 
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Table 3.1: Analytic and Neural solution of example 3.1, ɛ =10-4 

  

 

Solution of FFNN yt(x) for training algorithm Analytic solution input 
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Table 3.2: Accuracy of solutions of example 3.1, ɛ =10-4 

 

 

 

Table 3.3:The accuracy of the train of suggested FFNN, ɛ =10-4, 

 

MSE of Numerical 

Method in [6] 

 
Msereg. Time Epoch 

Performance 

of train 
Train function 

8.241e-2 

1.583069324864220e-06 0:00:01 121 4.21e-31 Trainlm  

2.254393657527956e-05 0:00:02 140 4.38e-19 Trainbfg 

0.090819966644612 0:00:04    404 1.87e-10 Trainbr       

 

 

 

Trainbr Trainbfg Trainlm ya(x)  x 
0.000490306650163041 1.00000060781947 0.999640976175370 1 0.0 

0.00581682218438316 0.00581748398780408 0.00584858735571990 0.00581668904250341 0.1 

0.0270766508893611 0.0260890754780599 0.0262235919926366 0.0271422835146705 0.2 

0.0714583209579391 0.0714627704412003 0.0720379285133504 0.0714631133422590 0.3 

0.149199034176640 0.149182398207817 0.148860377994119 0.149182469764127 0.4 

0.274774551828534 0.284179642578833 0.273944920310229 0.274786878450021 0.5 

0.468532552107991 0.478528518159394 0.469737313059561 0.468544834386131 0.6 

0.759056497736270 0.759030222208309 0.762296279887764 0.759029866661949 0.7 

1.18693667442537 1.17927557251113 1.18678423417625 1.18695516186265 0.8 

1.81116773829719 1.81116317468505 1.81124271936535 1.81116229094284 0.9 

2.71828042684631 2.71828275379187 2.72006218179475 2.71828182845905 1.0 

The error E(x)  | yt(x) ya(x) |w h e r e  yt(x) computed  by the following training 
algorithm 

Trainbr Trainbfg Trainlm 
0.999509693349837 6.07819470532789e-07 0.000359023824629823 

1.33141879750387e-07 7.94945300671215e-07 3.18983132164890e-05 

6.56326253093281e-05 0.00105320803661058 0.000918691522033870 

4.79238431989881e-06 3.42901058700273e-07 0.000574815171091411 

1.65644125127151e-05 7.15563100717187e-08 0.000322091770007971 

1.23266214873685e-05 0.00939276412881179 0.000841958139792765 

1.22822781396525e-05 0.00998368377326325 0.00119247867343003 

2.66310743208820e-05 3.55546359687153e-07 0.00326641322581489 

1.84874372832766e-05 0.00767958935151758 0.000170927686401257 

5.44735434981902e-06 8.83742201640558e-07 8.04284225008889e-05 

1.40161273609607e-06 9.25332822809821e-07 0.00178035333569948 
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Table 3.4: Initial weight and bias of FFNN, ɛ =10-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.9.2. Nonlinear Examples 

Example 3.4 

 

          “Consider the following 2nd order nonlinear SPP: 

ɛy + y + y2 = 0       

Initial weights and bias for trainbfg 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 
0.8110 0.0323 0.4429 

0.1386 0.5570 0.0530 

0.8818 0.7198 0.0878 

0.9235 0.1104 0.7979 

0.0127 0.2166 0.6555 

Initial weights and bias for trainlm 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 
0.6240 0.4332 0.6393 

0.3279 0.8842 0.9173 

0.802 0.3930 0.1615 

0.9994 0.1789 0.7156 

0.9809 0.6333 0.5777 

Initialweights and bias for trainbr 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 
0.1692 0.2865 0.5502 

0.4304 0.0773 0.1805 

0.4162 0.9005 0.6784 

0.7287 0.8466 0.0556 

0.4064 0.3956 0.0340 
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with Dirishlit BC′s: 𝑦(0) = 0, 𝑦(1) = 1/2  and the analytic solution is[27]:    

       𝑦𝑎(𝑥) =
1

1+𝑥
−

𝑒−𝑥/ɛ

(1+𝑥)2
, 

Depending on equation (3.12) the neural solution is ”: 

𝑦𝑡(𝑥) =
1

2
 𝑥 + (𝑥 − 1)𝑁(𝑥, 𝑝) 

         “ The FFNN training using a grid of ten equidistance points in [0,1],  we get   

ɛ=10-5 Figure (3.8) illustrates the analytic and neural solutions with different 

training algorithm. The neural results with different types of training algorithm 

such as: trainlm, trainbfg, trainbr, are introduced in Table (3.32) and its errors are 

given in Table (3.33), Table (3.34) gives the accuracy of the training for epoch and 

time, finally Table (3.35) gives the initial weight and bias of the FFNN ”. 

 

. 
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          Figure3.8: analytic and neural solution of example 3.4 ,with ɛ =10-5. 

 

 

 

 

 

 

 

 

 

 

 

Table 3.32: Analytic and Neural solution of example 3.4 , ɛ =10-5 
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Table3.33: Accuracy of solutions for example 3.4 , ɛ =10-5 

 

 

 

 

 

 

 

 

 

Solution of FFNN yt(x) for different training algorithm Analytic solution input 

Trainbr Trainbfg Trainlm ya(x)  x 
0.999394605934724 -7.46042284111519e-07 2.01858731750028e-16 0 0.0 

0.909090899405227 0.907012437275230 0.909090909090908 0.909090909090909 0.1 

0.833333390984059 0.833316323016675 0.833333333333334 0.833333333333333 0.2 

0.769222734844288 0.769224640766005 0.769230769230769 0.769230769230769 0.3 

0.714285333857831 0.714266006331668 0.715802392679189 0.714285714285714 0.4 

0.666667572440800 0.666704092932498 0.667307331279249 0.666666666666667 0.5 

0.624999233072860 0.625022350272257 0.625000000000000 0.625000000000000 0.6 

0.588235168678295 0.588206083448708 0.588235294117647 0.588235294117647 0.7 

0.555556321619597 0.555530665155201 0.555555555555556 0.555555555555556 0.8 

0.526315243648641 0.526340751988947 0.525705170771698 0.526315789473684 0.9 

0.500000140628989 0.499993460412034 0.497859222777642 0.500000000000000 1.0 

The error E(x)  | yt(x) ya(x) | w h e r e  yt(x) computed by the 

Trainbr Trainbfg Trainlm 
0.999394605934724 7.46042284111519e-07 2.01858731750028e-16 

9.68568181214380e-09 0.00207847181567955 7.77156117237610e-16 

5.76507254157477e-08 1.70103166584612e-05 2.22044604925031e-16 

8.03438648167010e-06 6.12846476422124e-06 1.11022302462516e-16 

3.80427883417411e-07 1.97079540465994e-05 0.00151667839347458 

9.05774133586057e-07 3.74262658315860e-05 0.000640664612582054 

7.66927140127827e-07 2.23502722571656e-05 2.22044604925031e-16 

1.25439352571810e-07 2.92106689391280e-05 3.33066907387547e-16 

7.66064040980119e-07 2.48904003549155e-05 2.22044604925031e-16 

5.45825043607451e-07 2.49625152629607e-05 0.000610618701986310 

1.40628989231395e-07 6.53958796625886e-06 0.00214077722235811 
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Table3.34:Theaccuracy of the train, with ɛ =10-5 

 

 

Table 3.35: Initial weight and bias of the FFNN, with ɛ =10-5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Msereg. Time Epoch Performance of train TrainFunction 

6.272629208206621e-07 0:00:03 237 3.58e-32 Trainlm 

3.538472650520739e-07 0:00:07 478 1.96e-23 Trainbfg 

0.081719147326782 0:00:06 576 2.75e-13 Trainbr 

Weights and bias for trainbfg 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 
0.6618 0.8009 0.5406 

0.1696 0.1425 0.4320 

0.2788 0.4785 0.5427 

0.1982 0.2568 0.7124 

0.1951 0.3691 0.0167 

Weights and bias for trainlm 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 
0.0073 0.0261 0.5238 

0.6800 0.9547 0.2649 

0.7060 0.4306 0.0684 

0.6451 0.9616 0.4363 

0.5523 0.7624 0.1739 

Weights and bias for trainbr 

Net.B{1} Net.LW{2,1} Net.IW{1,1} 
0.1626 0.6154 0.4132 

0.7968 0.7795 0.2178 

0.1138 0.9548 0.8586 

0.1588 0.9196 0.8610 

0.3558 0.3848 0.2839 



 ]اكتب عنوان المستند[

 

 

 

 


